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Abstract 

In prior work we proposed a class of physically-based mod­
els suitable for animating /lezible objects in simulated phys­
ical environments {ll. Our original formulation works well 
in practice for models whose shapes are moderately to highly 
deformable, but it tends to become numerically ill-condi­
tioned as we increase the rigidity of the models. The present 
paper develops an alternative formulation of deformable 
models. We decompose deformations into a reference com­
ponent, which may represent an arbitrary shape, and a 
displacement component allowing deformation away from 
this reference shape. The reference component evolves ac­
cording to the laws of rigid-body dynamics. Equations of 
nonrigid motion based on linear elasticity govern the dy­
namics of the displacement component. With nonrigid and 
rigid dynamics operating in unison, this hybrid formulation 
yields well-conditioned discrete equations, even for compli­
cated refrence shapes, particularly as the rigidity of models 
is increased beyond the stability limits of our prior for­
mulation. We illustrate the application of our deformable 
models to a physically-based computer animation project. 

Keywords: Modeling, Animation, Deformation, Elastic­
ity, Dynamics, Simulation 

1. Introduction 

Conventional computer animation is kinematic. The ani­
mation of graphics objects often requires the coordinated 
motion of multiple geometric primitives each involving mul­
tiple variables such as position, orientation, scale, etc. To 
synthesize convincing motions, the animator must spec­
ify the variables at each instant in time while satisfying 
kinematic constraints. A standard scheme for rendering 
the task less onerous is to automatically spline trajecto­
ries through keyframes. Often the results are not entirely 
satisfactory-motions, especially as they increase in com­
plexity, tend to inherit unnatural qualities. In short, cre­
ating natural-looking animation kinematically requires pa­
tience and expertise [2J. 

An alternative to kinematic animation is dynamic an­
imation. The latter offers unsurpassed realism because it 
makes use of fundamental physical principles. Even in­
experienced users can create realistic motions by apply-

ing forces to dynamic models in simulated physical worlds. 
Numerical procedures automatically generate time-varying 
values for variables in accordance with the laws of Newto­
nian mechanics. Like real-world objects (and quite unlike 
conventional, purely geometric models) dynamic models 
have an active, natural response to applied forces. Such 
models encourage computer animators to think more like 
stage choreographers. Choreographers need not concern 
themselves with every kinematic detail of a routine-physics 
inevitably dictates the low-level motions of dancers-but 
concentrate instead on more abstract qualities such as tim­
ing, rhythm, and style . By incorporating physics into com­
puter animation, we are able to choreograph motions in 
similar terms by controlling the simulation through phys­
ical parameters, initial conditions, and applied forces. It 
is therefore not surprising to see a growing interest in the 
development of physically-based models for the purposes 
of dynamic animation [3-9J. 

1.1. Physical Simulation of Nonrigid Objects 

Physical simulation is especially indispensl).ble when ani­
mating continuously flexible objects. In [IJ, we propose a 
class of physically-based models that describe the shapes 
and motions of deformable curve, surface, and solid prim­
itives. These primitives simulate elastic materials such as 
string, rubber, cloth, paper, sheet metal, or sponge. Our 
results demonstrate complex motions arising from the in­
teraction of deformable models with ambient media and 
impenetrable obstacles. Any attempt to recreate the re­
alism of these free-form motions kinematically-that is, 
without making use of the physical principles underlying 
the dynamics of nonrigid bodies-seems contrived and un­
reasonably tedious. 

The deformable models in [1] are based on elastic­
ity theory [10] . The (Lagrangian) equations of nonrigid 
motion are expressed in terms of position functions in Eu­
clidean 3-space. These functions are parametric in the ma­
terial (intrinsic) coordinates of the model-they directly 
locate each of its points in space as a function of time. 
The partial differential equations of motion include a non­
linear elastic force associated with the deformable body. 
We designed this force to be invariant to rigid-body mo­
tion, which imparts no deformation. Nonlinearity results 
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because the elastic force attempts to restore the shape of 
the deformed body to a prescribed, undeformed or rest 
shape that is generally nontrivial. The shape is defined 
by as many nonvanishing fundamental tensors as may be 
necessary to specify a reference shape up to a rigid-body 
transformation (e.g., for a deformable curve, the required 
tensors reduce to the familiar arc-length, curvature, and 
torsion functions along the prescribed undeformed curve). 

The advantage of nonlinear elasticity, on the one hand, 
is that it is in principle the most accurate way to charac­
terize the behavior of certain elastic phenomena, such as 
the large deformation of shells. On the other hand, the 
nonlinear formulation can lead to serious practical difficul­
ties in the numerical implementation of deformable models. 
First the discrete equations involved become increasingly 
ill-conditioned as one tries to increase the rigidity of the 
model or as the rest shapes are made more complex. Sec­
ond, relatively complicated algorithms are needed to inte­
grate nonlinear, time-varying partial differential equations 
and to deal with the probable nonuniqueness of their solu­
tions. The computational cost of robust solution methods 
tends to be high. 

1.2. Decomposition into Reference and 
Displacement Components 

Since linear elasticity theory circumvents the complexities 
of its nonlinear counterpart, we would like to exploit it in 
the formulation of deformable models for computer graph­
ics. Now, the nonlinear formulation in [1] reduces to a 
linear model when the rest shape has trivially zero funda­
mental tensors; i.e., collapsed to a point. Such a restriction 
is clearly unreasonable. Another possibility, which we have 
attempted with limited success, is to linearize the equa­
tions by extracting the nonlinearity from the elastic force 
to approximate its effect as an explicit, external force. Un­
fortunately, the explicit forces tend to degrade the stability 
of our time integration algorithms. 

In this paper, we define deformable models for com­
puter graphics applications which enjoy the benefits of lin­
ear elasticity. Rather than being based explicitly on a sin­
gle set of position functions as in [1], the new model is 
based on two sets of dependent functions : functions that 
determine a reference configuration for the body in 3-space, 
and functions that determine the displacements of material 
points away from the reference configuration. Clearly, the 
3-space positions of points can be determined by adding 
the displacement component to the reference component. 

The elastic behavior of the deformable model man­
ifests itself only in the displacement component, which 
defines the deformation mode of the model. The defor­
mation mode is governed by linear elasticity, where zero 
displacement can imply an arbitrary shape determined by 
the reference configuration component. But the reference 
component represents a fixed set of reference positions in 
3-space, hence the position and attitude of the rest shape 
will be fixed. In order for ,the deformable model to permit 
a rigid-body motion mode in addition to an elastic mode, 
we allow the reference component to evolve over time ac­
cording to the laws of rigid-body dynamics [11]. Thus, we 
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obtain a hybrid model which includes both rigid and de­
formable dynamics. With regard to numerical implemen­
tation, the hybrid formulation of deformable models can 
offer an important benefit-it leads to discrete equations 
that remain well-conditioned as we make the model more 
rigid. 

The remainder of this paper is organized as follows: 
Section 2 describes the geometric representation underly­
ing the hybrid formulation . Section 3 develops the equa­
tions of motion governing the hybrid model. Section 4 
develops the energy of linear elastic deformation. Section 
5 describes our numerical solution. Section 6 presents an 
application of our deformable models to a physically-based 
animation project. 

2. Geometric Representation 

Let u be the intrinsic or material coordinates of points in 
a body 0. For a solid body u = ('1£1,'1£2,'1£3) has three 
coordinates. For a surface u = ('1£1, '1£2) and for a curve 
u = ('I£d. In the three cases, respectively, and without 
loss of generality, 0 will be the unit interval [0,1], the unit 
square [0,1]2, and the unit cube [0,1]3. 

The positions of points in the body relative to an in­
ertial frame of reference Cl> in Euclidean 3-space are given 
by a time-varying vector valued function of the material 
coordinates 

x(u, t) = [Zl(U, t), Z2(U, t), Z3(U, t)l', (1) 
where the prime denotes the transpose operator. We indi­
cate a 3-space vector in bold face, while its elements are 
written in italic face. 

We represent a deformable body as the sum of a ref­
erence component 

r(u) = [r1(u),r2(u),r3(u)]' (2) 
and an elastic component 

e(u,t) = [e1(u,t),e2(u,t),e3(u,t)1' . (3) 
It is convenient to express both components in body co­
ordinates; that is, relative to a reference frame 4> (Fig. 1) 
whose origin coincides with the body's cent er of mass 

c(t) = !n11-(u)x(u,t)dU, (4) 

where 11-( u) is the mass density of the deformable body (0 is 
assumed to be the domain of integration for integrals with 
respect to u and is henceforth suppressed) . We denote the 
positions of mass elements in the body relative to 4> by 

q(u,t)= r(u)+e(u,t). (5) 
The body frame 4> translates and rotates along with 

the deformable body. The positions of mass elements rela­
tive to the inertial frame Cl> is given by x(u, t) as shown in 
the figure. To obtain x, we need to know the orientation 
8(t) of 4> relative to Cl> and the displacement c between the 
two frames. The linear and angular velocity of 4> relative 
to Cl> are 

v(t) = c(t); w(t) = 8(t), (6) 
and the velocity of mass elements relative to Cl> is 

x(u, t) = v(t) + w(t) x q(u, t) + e(u, t). (7) 
An overstruck dot denotes a time derivative d/ dt or a/at 
as appropriate. 
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Figure 1. Geometric representation. Shape is decomposed 
into reference and deformation components. 

3. Equations of Motion 

A deformable model is described completely by the posi­
tions x(u, t), velocities x( u, t), and accelerations x( u, t) of 
its mass elements as a function of material coordinates u 
and time t. When these functions are expressed in the 
inertial frame ~ directly from (1), without making refer­
ence to a body frame 4> as in (7), the Lagrange equation of 
motion governing x(u, t) takes on a relatively simple form 
[1]: 

J.LX + -yx + bx£ = f, (8) 

where J.L(u) is the mass density, -y(u) is the damping den­
sity (here a scalar, but generally a matrix), and f(x,t) 
represents the net external forces . This is a partial differ­
ential equation (due to the dependence of bx£ on x and 
its partial derivatives with respect to u-see below). Given 
appropriate conditions for x on the boundary of n and ini­
tial conditions x(u, 0), x( u, 0), we have a well-posed initial­
boundary-value problem (second-order in time and of the 
hyperbolic-parabolic type). 

The external forces f are dynamically balanced against 
the force terms intrinsic to the deformable model, which 
are found on the left hand side of (8). The first term 
is the inertial force due to the model's distributed mass 
as it resists acceleration. The second term is a velocity 
dependent (viscous) damping force which dissipates the 
kinetic energy of the body's mass elements as they move 
through a viscous ambient medium. The third term is the 
elastic force due to the deformation of the model away from 
its natural reference shape. 

The elastic force is conveniently expressed as bx£, a 
variational derivative [12] of a deformation energy £(x) 
associated with the model. The nonnegative functional £ 
measures the potential energy associated with an instanta­
neous elastic deformation of the body. Its value increases 
monotonically with the magnitude of the deformation. 
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Equation (8) is used in [1], where it proves viable for 
models with moderately high flexibilities. However, our ex­
periments with increasingly rigid models indicate a rapid 
deterioration of the numerical conditioning of the associ­
ated discrete equations. This is due to the fact that in 
order to increase rigidity using this formulation, we must 
increase the values of parameters that make £ more non­
quadratic and, consequently, make (8) more nonlinear. 

The numerical degeneration may be avoided by de­
composing x into the reference component r and deforma­
tion component e as in (7), and reformulating the equation 
of motion to treat rigid-body motion explicitly, hence per­
mitting us to use a purely quadratic elastic functional £. 
The numerical conditioning of the new formulation will 
tend to improve as the model becomes more rigid, tending 
in the limit to very well-conditioned, rigid-body dynamics. 
The capability of modeling nonrigid bodies is retained, but 
attempting extremely nonrigid models like stretchy rubber 
sheets with the hybrid formulation may yield unrealistic re­
sults, due to the simple connection of the deformation to 
a rigid reference shape through linear elastic forces. 

To obtain the equations of motion for the the un­
known functions v, w, and e under the action of an applied 
forces f, we transform the kinetic energy which governs the 
deformable body using Lagrangian mechanics. Assuming 
small deformations, this yields three coupled, differential 
equations: 

mv + ~ J J.Ledu + J -yxdu =f
v

, (9a) 

~(IW) + ~J J.Lq x edu + J -yq x xdu =f', (9b) 

JLe + J.LV + JLW x (w x q) 

+2JLw x e + p,W x q + -yx + be£ =f. (9c) 
Here, m = J JL du is the total mass of the body, and the 
inertia tensor I is a 3 x 3 symmetric matrix with entries 

Iij = J JL( bijq2 - qiqj) du, (10) 

where q = [ql, q2, q31' and bij is the Kronecker delta. The 
applied force f( u, t) contributes to elastic deformation, as 
well as to a net translational force fV (t) and net torque 
f'(t) acting on the center of mass: 

fV = J fduj f' = J q x fdu . (11) 

We derive this system of equations in Appendix A. 
Let us examine equations (9) in detail. Equations 

(9a) and (9b) describe v and w, the translational and ro­
tational motion of the body's cent er of mass. Together, 
these ordinary differential equations describe the motion 
of the body frame 4> relative to the inertial frame ~. The 
partial differential equation (9c) describes, relative to 4>, 
the deformation e of the model from its reference shape r. 

The first two terms on the left hand side of (9a) rep­
resent the total inertial forces experienced by the cent er 
of mass. The first is due to the total moving mass of the 
body as if it were concentrated at c, while the second is due 
to the total displacement motion of mass elements about 
the reference component r. The third term is the total 
damping force of the moving mass elements. An analo­
gous interpretation in terms of inertial torques holds for 
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(9b). The first two terms are the inertial torques due to 
the body's moment of inertia about c and the total an­
gular momentum due to the displacement motion of mass 
elements, while the third term is the total damping torque 
of the elements. 

Equation (9c) indicates several inertial forces experi­
enced by individual mass elements as they deform in the 
body frame ~. The first term is the simple inertial force 
of a mass element. The second term is the inertial force 
due to the linear acceleration of the cent er of mass. The 
next three terms are the centrifugal force on mass elements 
due to the rotation of </>, the Coriolis force due the veloc­
ity of the mass elements in </>, and the transverse force on 
these elements due to the angular acceleration of </>. The 
penultimate term is the damping force on individual mass 
elements. The final term, the elastic force due to the de­
formation of elements away from the reference component, 
is examined in the next section. 

4. Elastic Deformation 

The elastic force due to deformational displacement e(u,t) 
away from the reference component r(u) is represented in 
(9c) by cet:, a variational derivative with respect to e of a 
elastic potential energy functional t:. The general form of 
t: is 

t:(e) = J E(u,e,eu,euu, .. . )du, (12) 

an integral over material coordinates of an elastic energy 
density E, which depends on e and its partial derivatives 
with respect to material coordinates. 

In [1] the elastic functional for a solid deformable 
model was of the form t:(x) = JIG - GO 12 du, a squared 
normed difference between the first-order or metric ten­
sors (matrices) G(x) of the deformed body and GO of 
the undeformed body. Elastic functionals for surface and 
curve models involve additional squared difference terms of 
second- and third-order tensors. The collection of tensors 
associated with the undeformed body describe its shape up 
to rigid-body motions, and t: quantifies the model's actual 
deformation away from this rigid shape. Thus, the refer­
ence component is incorporated into the energy functional 
which is invariant with respect to rigid-body motion. Such 
invariance is necessary in the simple equation of motion 
(8). 

The virtue of the new equations of motion (9) is that 
they make fewer demands on t:. Because rigid motion is 
represented explicitly, t: no longer need be invariant with 
respect to such motion. All that is required is that t: = 
o when e = 0 and that t: increase monotonically with 
increasing e, as measured by some reasonable norm. 

We have at our disposal a class of controlled-continuity 
generalized spline kernels [13]. These splines are of the 
form (12) with the potential energy density defined by 

1 P , 

E = 2" L L . , m .. ,Wj(u) [aje[2, (13) 
m=O liI=m )1 · ·· .]d. 

where i = (h,· . . ,id) is a multi-index with lil = il + ... + 
id, where d is the material dimensionality of the model 
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(d = 1 for curves, d = 2 for surfaces, and d = 3 for solids), 
and where the partial derivative operator 

om 
aj = IJujl ° j.' (14) 

1 •.• u d 

Thus, E is a weighted combination of partial derivatives 
of e of all orders up to p. Generally, the smoothness 
of the allowable deformation increases with increasing p. 
The weighting functions Wj(u) in (13) control the mate­
rial properties of the deformable model over the material 
coordinates. 

In the interior of the material domain n, the varia­
tional derivative of t: with the spline density (13) is 

P 

cet: = L (_l)m ~:~ e, (15) 
m=O 

where , 
~:~ = L . , m .. ,aj (Wj(u)aj) (16) 

Ijl=m )1'" ·)d· 

is a spatially-weighted iterated Laplacian operator of order 
m. The operator is modified at the boundary, according 
to the boundary conditions (see [13]). 

5. Numerical Solution 

The equations of motion (9-11) with (15-16) are contin­
uous in material coordinates and time. To numerically 
simulate the deformable model, we discretize the equa­
tions using finite-element or finite-difference approxima­
tion methods [14, 15]. First we discretize with respect to 
material coordinates to obtain semidiscrete equations of 
motion. The result is a large system of simultaneous ordi­
nary differential equations. 

The second step is to integrate the semi discrete system 
through time, thus simulating the dynamics of deformable 
models. We use a semi-implicit time integration procedure 
which evolves the elastic displacements and rigid-body dy­
namics from given initial conditions. In essence, the evolv­
ing deformation yields a recursive sequence of (dynamic) 
equilibrium problems, each requiring solution of a "par,e, 
linear system whose dimensionality is proportional to the 
number of nodes comprising the discrete model. 

We can use iterative methods to solve these linear sys­
tems, as well as direct matrix factorization methods (such 

. as Choleski) [16]. Due to the linear elastic energy density 
(13), the system matrix system is constant; hence a direct 
solution method need factorize it only once at the begin­
ning, then simply resolve the vector Q at each time step, 
thus saving significant computation. 

Our implementations to date employ the second-order 
(p = 2) controlled-continuity spline model. Appendix B 
presents implementation details for the case of surfaces. 

6. Animation Examples 

To create animation we simulate numerically the differen­
tial equations of motion. After each time step (or every 
few time steps) in the simulation, we render the models' 
state data to create successive fra.mes of the animation. 
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We have implemented curve, surface, and solid deformable 
models in three dimensions on Symbolics 3600 series Lisp 
Machines. These machines provide an excellent proto­
typing environment, but their processors lack the power 
to support real-time interaction with discrete surface and 
solid models of modest size (having more than about 100 
nodes). 

However, we can easily interact with deformable mod­
els in real-time within a "flatland" environment, subject­
ing them to user controlled forces, gravity, forces due to 
collisions with obstacles, etc. (see [1] for more details on 
formulating applied forces). Flatland models are planar 
deformable curves (displayed as wireframes), capable of 
rigid-body dynamics and elastodynamics (Fig. 2). 

G-

Figure 2 . Flatland animations. Models are "strobed" while 
undergoing motion subject to gravity, aerodynamic drag, and 
collisions against frictionless walls. Velocity vector of the center 
of mass (dot) is indicated. (top) A deformable hoop. (bottom) 
An arbitrary shape. 

Deformable models offer a powerfUl alternative to the 
standard practice of creating animation by key-framing 
and in-betweening. We have used the formulation in this 
paper to create the animation Cooking with K urt [17]. The 
animation was rendered using the modeling test bed system 
described in [18]. Fig. 3 shows selected still frames. The 
action begins with live video footage of Kurt Fleischer plac­
ing several vegetables on a cutting board. The vegetables 
"come to life," bouncing and rolling around the kitchen ta­
ble environment, colliding with one another and with the 
table-top. 

The synthetic vegetables are deformable surface mod­
els. Their reference shapes r were reconstructed from an 
image of the real vegetables using computer vision tech­
niques, some of which are described in [19-21]. These 
techniques exploit the "modeling clay" properties of de­
formable models. They provide principled ways of trans­
forming raw image data into synthetic force fields that 
sculpt deformable models into shapes consistent with the 
imaged objects. Simple optimization methods served to 
bring the synthetic light source, surface albedos, etc. into 
consistency with the real scene. After the models captured 
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the shapes of the real objects, they were animated in a 
physically-based table-top environment by simulating the 
equations of motion. The applied forces include driving 
forces (jet thrusters), control forces (attitude control gy­
ros), and interaction forces (friction or collisions) . The de­
formable models exhibit deformations, accelerations, colli­
sions, tumbling, and other realistic physical motions. Fig. 3 
shows some synthesized motions in progress. 

7. Conclusion 

We proposed novel physically-based models for use in com­
puter graphics animation. Our hybrid deformable models 
unify rigid-body dynamics with nonrigid-body dynamics. 
By incorporating a reference component with explicit (six 
degree-of-freedom) dynamical equations, we are able to ex­
ploit a simple linear theory to model free-form elastic de­
formations. Reduction in computational effort, good con­
ditioning of the numerical equations with increasing rigid­
ity, and the consequent ability to animate flexible objects 
with complicated natural shapes are among the benefits 
accrued. Moreover, our hybrid formulation makes it es­
pecially convenient to model inelastic deformation such as 
viscoelasticity and plasticity using dynamic feedback from 
the displacement component into the reference component 
which now maintains a shape history. A subsequent pa­
per will describe inelastic models that behave like model­
ing clay. The hybrid formulation complements our earlier 
work in elastically deformable models and significantly ex­
tends our abili ties to create realistic animations of nonrigid 
objects in simulated physical environments. 
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A. Derivation of the Equations of 
Motion 

We apply Lagrangian mechanics to the kinetic energy that 
governs deformable models: 

T = ~ J /-LX' X du, (17) 

where x( u, t) is the instantaneous velocity of mass ele­
ments. It can be rewritten, using (7), in terms of the 
geometric representation of Fig. 1 as 

T = J Tdu = ~ J /-L(v+w xq+e).(v+w xq+e) duo (18) 

Expanding, 

(19) 
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Figure 3. Selected still frames from Cooking with Kurt [17J showing live action and animation of 
deformable models in a simulated physical environment. (Top left) Kurt Fleischer with real vegetables . 
(Top right) Real vegetables on cutting board. (Middle left) Reconstructed deformable-model veggies 
matted into background scene. (Middle right) Elastic collision. (Bottom left) Bouncing (note deformed 
base on large gourd). (Bottom right) Rolling . 
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where the integrands are 

T l T . T 1 .. 
1 =2"J-Lv , v, 2 = J-LV' e, 3 = 2"J-Le' e, 

T4 =~J-L(w X q) . (101 X q), Ts = J.LW x q. e, (20) 

T6 =J-Lv,w X q. 

Velocity dependent energy dissipation may be incor­
porated in terms of the (Raleigh) dissipation functional 

F = J F du = ~ J ,x· x du , (21) 

where 'Y(u) is a damping density. Note that (21) has the 
same form as (19) with 'Y replacing J-L. Hence, we express 

6 6 

F = L Fk = L J Fk du 
k=l k=l 

in the representation of Fig. 1, where the associated inte­
grands FI to F6 are readily obtained from (20) by replacing 
J-L with,. 

Using the functionals T and F and observing that t: 
does not depend on v and 101 , the equations of motion can 
be expressed as 

DvT + DeF = fV, 

DOT + DwF = 1", (22) 

DeT + DeF + Det: = f, 

where the D operators denote variational derivatives with 
respect to the subscripted functions. The generalized forces 
associated with v, 101, and e are fV, 1", and f . 

In view of the time derivatives contained in the func-
tional terms Tk and Fk, we have 

6 d OTk BFk 
DeT + DvFk ="" --+--L dt 8v 8v ' 

k=l 

(23) 

6 B BTk BTk BFk 
De T + DeFk = L Bt Be - Be + Be . 

k=l 

Now, J J-Lqdu = 0 , since it is simply the cent er of 
mass and lies at the origin of the body frame <Pi hence 
76 = T6 = O. The above sums may be derived term by 
term: 

~dOTk d dJ . 
~dt 8v = dt(mv) + dt J-Ledu+O+O+O+O, 

t Bt"v
k 

= v J 'Y du + J 'Ye du + 0 + 0 + 0 + 101 X J 'Yq du, 
k=l 

~dOTk d dJ . 
~ dt 8w = 0 + 0 + 0 + dt (L) - dt J-Lq x e du + 0, 

6 

L B:"k = 0 + 0 + 0 + J ,q x (101 X q) du - J 'Yq x e du 
k=l 

-v x J 'Yqdu, 

(24) 
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6 B BTk . d . . . L Bt Be = 0 + J-LV + d/I-£e) + 0 + 1-£(101 X q - 101 X e) + 0, 
k=l 

6 

L B~k = 0 + 0 + 0 + J.LW x (101 X q) + J.LW x e + 0, 
k=l 

6 BFk ., L Be = 0 + 'YV + 'Ye + 0 + 'YW x q + 0, 
k=l 

The term L = tw J tl-£(w x q).(w x q) du = J I-£qx(wx 
q) du is known as the angular momentum of the deformable 
body as it rotates rigidly about the cent er of mass. It can 
be shown that 

L= J l-£(wq.q-qq.w)du=Iw (25) 

where I is the inertia tensor whose components are given 
in (10). 

Inserting (24) and (25) into (23), (22) yields the equa­
tions of motion (9). 

B. Implementation Details 

To illustrate the implementation, we consider the case of 
surfaces. Curves (solids) involve a straightforward restric­
tion (extension) of the two-parameter equations developed 
in this section. Letting u = (UI' U2) = (u, v) be the sur­
face's material coordinates and letting p = 2 in (15) and 
(16) yields the variational derivative 

Det: =wooe - (wIOe"),, - (wOI ev)v 

+ (W20 e"")",, + 2 (Wll e "v )"v + (w02e vv )vv , 
(26) 

where the subscripts denote partial derivatives with re­
spect to material coordinates. The functions Wj(u) locally 
control the partial derivatives of deformational displace­
ment e of the model. Specifically, woo penalizes the local 
magnitude of the deformation, WIO and WOI penalize its 
local variations, while W20, Wll, and W02 penalize its local 
curvatures. 

B.t. Semidiseretization 

We illustrate the sernidiscretization step using standard 
finite-difference approximations. The unit square domain 
n = 0 :S u, v :S 1 of the surface is discretized as a regular 
M x N discrete mesh nh of nodes. The internode spacings 
are hI = 1/(M - 1) and h2 = 1/(N -1) in the U and v coor­
dinate directions respectively. Nodes are indexed by inte­
gers [m,n] where 0 :S m:S M and O :S n :S N. We approx­
imate the (continuous) vector functions of (u,t) in (9- 11) 
by arrays of (continuous-time) vector-valued nodal vari­
ables: r[m,n] = r(mhllnh2)' e[m,n](t) = e(mhI,nh2,t), 
and f[m,n ](t) = f(mhI,nh2,t). We will suppress the time 
dependence notation until the next section where we con­
sider integration through time. 

The discrete elastic force requires approximating from 
the nodal variables elm, n] the first and second partial 
derivatives of e with respect to material coordinates U and 
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v. We define the forward first difference operators 

Dio(e)[m,nJ =(e [m + 1,nJ - e[m,nJ)/h1 

Dril (e)[m,nJ =(e[m,n + 1J - e[m,nJ)/h2 
and the backward first difference operators 

D1o(e)[m ,nJ =(e[m,nJ - elm -1,nJ)/h1 

DOi(e)[m,nJ =(e[m,nJ - e[m,n -1J)/h2. 

(27) 

(28) 

Using (18-19), the forward and backward cross difference 
operators are 

Dil(e)[m,nJ =Dio(Dril(e)) [m,nJ, 

Dli(e)[m,nJ =D1o(Do1(e»)[m,nJ , 
(29) 

and the central second difference operators are 

D20 (e)[m,nJ =D1o(Dio(e))[m,nJ, 

D02 (e)[m,nJ =D01(Dt,.(e))[m,nJ . 
(30) 

Using the difference operators, we discretize (26) as 
follows : 

cet: ~wooe[m, nJ 

- D1o(wloDic,e)[m,nJ - DOl(wolDt,.e)[m,nJ 

+ D20 (W2o D2o e )[m,nJ + 2D1l (wllDile)[m,nJ 

+ D02 (w02 D02 e )[m,nJ. 
(31) 

Free (natural) boundary conditions are introduced by 
nullifying the value of difference operators found inside 
parentheses in (31). Such conditions are appropriate at 
the boundaries of Oh where these operators would attempt 
to access nodal variables elm, nJ outside the discrete do­
main. Similarly, fractures are introduced by nullifying the 
values of any difference operators accessing nodal variables 
on opposite sides of such discontinuities. 

If the nodal variables comprising the grid functions 
e[m,nJ are collected into an MN-dimensional vector!l., the 
discrete approximation (31) may be written in the grid 
vector form K!l. where K is an M N-dimensional square 
matrix. Due to the local nature of the finite-difference 
discretization , K, known as the stiffness matrix, has the 
desirable computational properties of sparseness and band­
edness. 

The discrete mass and damping densities are grid func­
tions p.[m, nJ and ,[m, nJ respectively. Let M be the mass 
matrix, a diagonal M N -dimensional square matrix with 
the p.[m, nJ variables as diagonal components, and let C be 
the damping matrix constructed analogously from ,[m, nJ. 

Using (31), the equations of motion (9) can be ex­
pressed in semi discrete form by the following system of 
coupled ordinary differential equations: 

dv v ( ) 
m dt =g , 32a 

d w ) dt (Iw) =g , (32b 

(32c) 

where 

gV =hlh2 (2: f - ~ 2:J.L~- 2:'Y~)' 
m,n m,n m,n 

(33a) 
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gW =hl h2 (2: ~p f - ~ 2: J.L~p ~ - 2: 'Y~p ~) '33b) 
m,n Tn,n m,n 

~e =f - J.L~ - J.LV - J.LW x (w x ~ - 2J.Lw x ~ 

+~xg. (33c) 

Note that the integrals in (9-11) are approximated by 
sums over nodal variables. Some of the terms in (9) have 
been brought to the right hand side in order to simplify 
the final step of the solution process. 

B.2. Numerical Integration Through Time 

To simulate the dynamics of our model, we integrate the 
semi discrete system (32) through time. Dividing an open­
ended interval from t = 0 into time steps ilt, the integra­
tion procedure computes a sequence of approximations at 
times ilt, 2ilt, ... , t, t + ilt,. .. . Each time-step requires 
the solution of two algebraic equations for v and w, which 
describe the rigid motion of the body frame <p, in tandem 
with a linear algebraic system for the displacement com­
ponent !l.. 

Substituting the discrete time approximation v ~ (vHt.t­
Vt) / ilt into (32a), we obtain the integration procedure 

VHt.t = Vt + iltg"[ /m (34) 

for the linear velocity of <p at the next time instant. Simi­
larly, we obtain from (32b) 

wHt.t = I;-';t.t (Itwt + iltg':') (35) 
for the angular velocity of <p for the next time instant . At 
each time step, the body is translated by d = iltvt, and 
rotated by an angle of 0 = iltlWtl about the unit vector 
a = [al, a2, a3J' = wdlWtl using the matrix R = 

( 

al al vers 8 + cos 0 al al vers 0 - aJ sin 8 al aJ vers 0 + al sin 0) 
a2 al vers 8 + aJ sin 0 a2 a 2 vers 0 + cos 0 a2 aJ vers 0 - al sin 0 
aJal versO - al sinO aJa2 versO + al sinO aJaJ versO + cosO 

(36) 
where versO = (1- cos 0) denotes the versine of O. The 

reference and displacement components are transformed as 
follows: 

(37) 

Next, substituting the discrete-time approximations 

~ ~ (!l.Ht.t -2!l.t+!l.t-t.t)/ ilt2 and ~ ~ (!l.Ht.t -!l.t_t.t)/2ilt 
into (32c), we obtain the procedure 

A!l.Ht.t = ~t' 
where the constant matrix 

A = K + (il
1
t2 M + 2~t C) 

and the effective force vector 

(38) 

(39) 

e (1 1) (1 1)_ !4=~t + ilt2M+2iltC !l.t+ ilt M - 2ilt C !l.t, 

(40) 
with 

(41) 

Note that (34-41) specifies a semi-implicit recursive 
procedure which evolves the rigid-body dynamics and elas­
tic displacements from given initial conditions vo, wo , !l.o, 
and ~o. In particular, the displacement!l. evolves as a time 
sequence of static equilibrium problems is solved (each a 

Graphics Interface '88 



sparse, linear system of size proportional to the number of 
nodes comprising the discrete model). 

We have employed iterative methods, such as suc­
cessive over-relaxation (SOR) or the conjugate gradient 
method, as well as direct methods, such as Choleski fac­
torization, to solve the sparse linear systems (38) (see [15] 
or [16]). Since A is a sparse matrix (due to (31), each equa­
tion will have at most 13 nonzero coefficients), we imple­
ment the direct method using an efficient, profile storage 
scheme. A more detailed description of our linear equa­
tion solvers is beyond the scope of this paper. Further 
computational savings can be had by neglecting some of 
the interaction terms comprising the right hand sides of 
(33); for example, the centrifugal force may be neglected 
unless large spins ware expected, while the Coriolis force 
may be neglected unless significant e is expected. 
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