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Abstract 

Eva is an event driven framework for implementing 
user interfaces in multiprocessor Smalltalk systems. Most 
current user interfaces systems (e.g., Smalltalk, MacApp and 
NeWS), while event based, use polling and coroutines to 
handle user interaction. This makes them hard to understand 
and difficult to use in multiprocessor environments. Eva uses 
events to drive the Actors (light weight processes) which make 
up the user interface. The components of the user interface are 
constructed from parts rather than by inheritance. This 
structure increases modularity and allows the interface to be 
distributed over several processors. Comprehensive event 
management and synthesis simplify the creation of new parts. 
Eva is useful in both uni- and multiprocessor systems. 

1 Introduction 

Eva is an event driven framework for implementing 
user interfaces in multiprocessor Smalltalk systems. Most 
current user interface software such as Smalltalk, the 
Macintosh and NeWS are event based but not event driven. 
They use polling and coroutines to handle user interaction. 
These interfaces are based on the multiwindow interface first 
implemented in Smalltalk-801 [Krasner, 1985~ which was. one 
of the first systems to clearly separate the user mterface objects 
(view and controller) from the application (model). 

The Eva user interface paradigm is an alternative to the 
ModellView/Controllers (MVC) found in Smalltalk. Eva was 
first thought of as a mechanism for building a new user 
interface for Smalltalk [Nickel, 1986] . The central goal of this 
work is to provide true toolkit facilities which will allow 
application programmers to rapidly prototype new user 
interfaces. Partitioning the user interface classes to take 
advantage of functional mUltiprocessing on advanced 
multiprocessor workstations as in AC1RA [Thomas, LaLonde 
and Pugh, 1986a] is a secondary objective. Multiprocessing 
capabilities would allow different parts of the user interface to 
run on different processors (e.g., a screen manager on a 
TMS3401Q2). Even though this goal has had a great influence 
on Eva's overall design, Eva is useful in both uni- and 
multiprocessor systems. 

1.1 User Interface Tools Are Hard To Use 

There are many multiwindow user interface toolkits 
available (e.g., MacApp, NeWS, SUNWindows, MS­
Windows) . Nevertheless, most application developers 

ISmalltalk-80 is a registered trademark of Xerox Inc. 
2The TMS34010 is a specialized graphics microprocessor from Texas 
Instruments. 

encounter major difficulties when trying to create window 
based systems. There are four major problems with existing 
systems, they; 

• are closed, 
• use of polling and coroutines, 
• over use of specialization versus aggregation and 
• have hidden view coordination. 

User Interfaces Need To Be Open 

The user interface behaviour is hidden from the user 
(programmer), in systems such as the Macintosh and MS­
Windows. When creating user interfaces for complex and 
sophisticated applications, developers must conform to what 
they are given. In closed systems, programmers do not know 
the full extent of what is possible. Because of this, doing 
something which is out of the ordinary is difficult since 
programmers cannot see or modify how the system's 
components function. 

In Small talk, browsing the user interface classes helps 
people see how the existing data types interact and how new 
data types can be built. Some may argue that .such. ~pen 
systems violate user interface standards or are too IneffiCient. 
We believe that the ability to restructure/modify the system is 
essential when designing more complex user interfaces. The 
interface designer must be given both fine and coarse grain 
control over the system. 

This control can be used in the design of an application 
which is to be used by both able-bodied and handicapped 
persons. User's with motor disabilities would like t? be able 
to adjust such critical parameters as the hysteresIs of the 
mouse. The same is true of systems which are used on both 
high powered graphics workstations and character only 
displays. Both of these situations occur frequently, yet few 
systems allow for adjustment of these parameters. 

Polling and Coroutines 

The use of polling and coroutines to handle 
asynchronous events places too much .responsibility on the 
application programmer who must obtaIn and release control 
of the processor. Polling systems are simple b~t they prevent 
true multitasking, restrict the interface to a SIngle . focus of 
control and force the user interface to keep the notIOn of an 
active window to maintain context. Further, since a polling 
loop will test the supported devices in a specific order, some 
inputs have a slightly higher priority than the others. 

In a system based on polli!1g, progr~mmers can 
inadvertently lockup the syst.em while debuggmg t~e user 
interface. Such a lockup typically leaves them askIng the 
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question so frequently asked by Smalltalk users, "When I am 
in this part of the window what code gets executed when I do 
this (e.g., move the mouse)?". These problems arise because 
Smalltalk's controll~rs (di~cussed below) poll for both input 
and control. When mput IS sensed by one controller it asks 
the other controllers if they want control, the first c~ntroller 
that wants control processes the input. This confusion is 
indicative of the problems surrounding polling mechanisms. 

It is often difficult to implement a clean solution to a 
problem in a polling-based system. For example, the decision 
to use a single event loop in systems like the Macintosh makes 
writing complex applications very difficult and multitasking is 
hard to introduce (e.g ., MultiFinder). As a result, the event 
loops are complicated and monolithic. 

You Can't Do It All With Inheritance 

There has been much written about the natural match 
between object oriented programming and user interface 
des.ign . The design of abstract objects such as windows 
WhICh do not correspond to any object in ph ysical reality 
reI?-ains a challenge. We have found many programmers 
usmg Smalltalk's or Flavors' subclassing organization 
(inheritance) where an aggregation or parts organiLation would 
be better. Is it really true that a bordered window is a subclass 
of window? Should a text window with a scroll bar be 
different from one without? Subclassing leads to very 
~umbe:some .and c.onfusing user interface datatypes, especially 
m a smgle mhentance model. Systems such as Animus 
[Duisberg, 1986] have clearly illustrated that it is better to 
think of a bordered window as a composite object [Liebennan, 
1986] [Lalonde, Thomas and Pugh, 1986b] composed of a 
border part and a window part. 

This means we need a system with lots of small parts 
such as buttons, text views, scroll bars , etc. which are 
assembled by the user interface designer. Combining these 
parts to form new parts should not require us to change 
existing code or write large amounts of new code. Examples 
of systems with this capability are ThingLab [Borning, 1979] 
and The Alternate Realities Kit [Smith, 1986]. 

Coordination Facilities Must Be Explicit 

One of the most difficult parts of implementing an user 
interface is defining and maintaining the relationships between 
objects. Typically it is difficult to specify that when one object 
changes, some other object should be updated. Facilities for 
explicitly stating and maintaining these dependencies must be 
available so that the designer can clearly define what 
interactions are to take place. 

Smalltalk contains a hidden and inflexible coordination 
scheme. Its dependents mechanism hides the relationships 
between objects by allowing them to interact behind the scene. 
When models think they have changed significantly , they 
indirectly send a generic update message to the views open on 
them. The interface (i.e., view) cannot specify what changes 
it is interested in nor can it control when it gets notified of 
these changes. The dependents mechanism is further restricted 
in that all messages go over a single message path which has a 
fixed format. 

Other systems (e.g. , the Macintosh) provide little or no 
coordination facilities that the user can access. These 
approaches are reasonable for simple applications which have 
few interacting objects. However, in a more general system 
which allows the user to compose arbitrarily complex objects 
from distinct parts, an explicit coordination scheme is needed. 
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1.2 Distributing The Interface And The Application 

The interface facilities in existing systems like X 
[Scheifler and Gettys, 1986] are designed to have many users 
on many machines (processors). The machines have a 
client/server relationship with the interface running on the 
server and the applications running on the clients. Users 
require one server but may connect to any number of clients. 
In this model, which tasks should be performed by the client 
and which should be done by the server (i.e., the partitioning 
of the application and the interface) is not always clear. For 
example, who is responsible for updating the display when 
part of it is destroyed? 

These systems require the designers to partition their 
product into application and interface parts which are 
distributed over the client and server. Eva, on the other hand, 
encourages but does not require this partitioning and can 
distribute both the application and the interface over many 
machines. Eva is used in a single user, multiprocessor 
environment similar to that found in Adagio [Tanner, et al., 
1985]. Because the components of Eva are Actors [Hewitt, 
Bishop and Steiger, 1973] (light weight processes) they are 
well defined and concrete. Each component is a self-contained 
object which has its own resources (including processing 
power) and communicates with other objects using a message 
passing protocol (e.g., Harmony [Gentleman 85]). This 
increased modularity makes it easy to incorporate new 
hardware into the system. 

2 Models, Views and Controllers 

Smalltalk uses the ModellView/Controller (MVC) 
paradigm in the design and implementation of its user 
interface. MVC is based on three kinds of objects; models, 
views and controllers. Models are data (e.g. , text, numbers 
and collections). Views are visual representations of models. 
Controllers regulate interaction between the user and the view. 
(Note: We say that x is a view on y if a view x interprets the 
data of a model y, yielding some graphical representation.) 

Analog time view 

12 

Edit time view allows 
user to change time 

Digital time view 

4 Indicates direct dependencies 

Figure 2.1. Time of day clock viewed several different ways. 

The separation of data (Le., model) and presentation 
(Le ., view) has several advantages. Each view is a particular 
interpretation of all or part of the data in the model. This 
means there may be several different views on the same model 
(e.g., a model containing the time of day could be viewed as 
an analog clock, a digital clock, etc.) (see Figure 2.1). This 
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separation improves the modularity and clarity ?f an 
application's code and allows code to ~e reusable. Designers 
can quickly prototype several user Interfaces and sWitch 
between them without disturbing the application's code. 

The MVC paradigm requires programmers to deal with 
the user's input on a low level. Controllers contain routines 
for sensing and handling user inputs such as; mouse 
movement, keypresses and button clicks. The controllers are 
constantly polling for input using these routines. When some 
event occurs, the controller must determine its context (e.g., a 
shifted mouse button down event may be different then an 
unshifted one) and do the appropriate action. This approach 
has two major problems, polling and lack of modularity. 

Polling limits the capabilities of the MVC paradigm. 
The use of processor time to test for incoming events is the 
primary shortcoming, especiall~ in a ~ultita.ski~g 
environment. Polling becomes very difficult and ineffiCient In 
a multitasking environment because it limits the system to 
sequential processing of user input and eliminates the 
possibility for mUltiple input foci . In addition, polli!lg code is 
typically littered with special case tests and exceptIOns. The 
thread of control becomes confusing because of multiple 
nested polling loops in the controll.ers. Sec<;>ndly, ~here is 
considerable processing overhead Involved In finding the 
active view and the correct context for an event. 

Since each type of view has its own input require~ents 
and set of valid user interactions, each view has an associated 
controller which handles user input. In a typical system there 
are several different types of view and thus several different 
types of controller. These view/controll~r pai~s normal~y fall 
into one of four broad groups; those dealing With text, lists or 
graphics and those dealing with aggregates of the above three. 

Within a particular view/controller pair the code is 
modular however the same is not true of the system as a 
whole. in each group, the view/controller pairs are organized 
hierarchically with subclasses differing only slightly from their 
superclasses and sharing most of their code. Because polling 
code tests a particular set of inputs, if a subclass re~ognizes 
one different input then it must re implement the pollmg loop. 
This leads to a great deal of duplicate code and confuses the 
flow of control. 

To illustrate some of these problems, consider the 
Smalltalk user who wishes to monitor all incoming data on a 
serial line and who does not want to create a separate task to 
manage this data. It is straightforward to create a text. view 
which takes its input from the serial port. The problem IS that 
its controller will only be active when the view is the active 
view. Using Smalltalk for anything else will prevent the 
controller's polling loop (the one that tests the serial port) from 
running. Solving this problem requires changing all of the 
polling loops in the system to include the serial port as one of 
the inputs. 

Construction of new ModellView/Controller triads is 
complex and cumbersome despite the existence of tools such 
as Glazier [Alexander, 1987]. Views frequently interact with 
others in subtle ways causing one controller to retain control of 
the processor and lockup the system. 

Typical implementations of Smalltalk do not use ~VC 
for everything. This leads to confUSIOn about what partIcular 
objects should be doing . For example, most controllers have 
processes associated with them. The code whi~h handles u~er 
input for popup menus does not. In fact, thIS code, which 
plays the role of a controller, is not implement~d as a 
controller. This inconsistency increases complexIty and 
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reduces compatibility between systems and between 
components within systems. 

MVC in Small talk uses the dependents mechanism to 
maintain the correspondence between model and view. 
Objects can depend on one another such that when one is 
changed, all those who depend on it will be notified. This 
scheme is reasonable for simple applications but it allows only 
a single path between dependents (i.e., the changed : and 
update: messages). Unfortunately, an object's dependents rely 
on the object to decide when to send the changed: message and 
the dependents who receive the update: message must 
determine whether or not they are interested in the change. 

3 Eva and NeWS 

Although Eva and NeWS have evolved independently, 
they have a number of similarities. Both support the notion of 
events and multiple active views (processes) to support light 
weight windows. They both argue that complex user 
interfaces should be implemented in a portable interpretive 
language. This reflects an increasingly popular view that 
reactive applications consist of interacting objects which 
invoke application devices or stubs to perform work. They 
differ from traditional library based approaches such as GKS 
[ISO, 1982] [ANSI, 1984], where the user interface c~nsists 
of a single application driven loop which invokes lIbrary 
procedures to perform the user I/O. It is encouraging to note 
that system designers from graphics, operating systems and 
object oriented programming have converged on the same 
idea. 

We believe that Small talk provides a much better 
foundation for complex user interfaces. NeWS is based on 
POSTSCRIPT [Adobe Systems Inc ., 1984], which is 
essentially Forth with a very flexible graphics imaging model. 
POSTSCRIPT (Forth), while good for device controllers and 
the like does not meet the needs of large applications. 
POSTSCRIPT lacks a development environment (i.e., the 
browser and debugger), the garbage collector [Roberts, et al., 
1987] and the class library of Smalltalk. If we are to produce 
complex applications (e.g., a CAD system ~hich conform~ to 
the PHIGS [pHIGS] standard) then a nch programming 
environment is of utmost importance. We do not have to give 
up performance for sophistication. This despite the ~i~ely 
held view that Small talk systems are larger and less effICient 
than more traditional systems [Krasner, 1983]. For example, 
there are several Small talk systems (e.g., ParcPlace1, 
Smalltalk!V2) which execute faster than the dedicated 
POSTSCRIPT interpreter in the Apple LaserWriter. SmalltalklV 
requires only 600K to run a.nd it is an. entire programming 
environment complete With compiler, debugger and 
inspectors. Future high power, "crayola" cl~ss~ w?rkstations 
will make differences in system performance mSlgmficant. 

4 Eva 

The Eva framework uses three classes; Events, Views 
and Models. Events describe actions. Views present a 
model's data graphically and handle high leyel user interaction 
with the model. Models are data, typically part of the 
application. 

4.1 Event Management 

The mainstay of Eva's control me~hanism is t~e Event. 
Rather than having one controller handling th~ user Input for 
each view, Eva has one manager for the entlTe system, the 

1 ParcPlace Smalltalk is a product of ParcPlace Systems, Palo Alto, CA. 
2SmalltalklV is a registered trademark of Digitalk [nc. 
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event manager. This event manager can be thought of as 
managing an interrupt table. Views register with the event 
manager telling it which events the view wants to handle and 
the manager interrupts the view when one of these events 
occurs. If a view wishes to know when the left mouse button 
is clicked inside its bounding box, it would register for the 
synthetic event leftButlonClickedln: (synthetic events are 
discussed below). Whenever the left button is clicked in the 
view a leftButtonClickedln: message will be sent to the view 
which will then process the event (see Figure 4.1 below). 

The components of a user interface are more clearly 
defined in the Eva paradigm than in MVC. Programmers 
using MVCs are continually facing the question, "should this 
operation be done by the controller or the view?". In Eva this 
problem is reduced because the responsibilities of the event 
manager are more clearly defined and intuitive. It is the event 
manager's job to maintain the vi<!w's interests in events and 
inform interested views when (hese events occur. It is the 
view's job is to handle the events from the event manager by 
modifying the model and updali ng itself as appropriate. 

The task of maintaining and interpreting the interface 
context is split over several managers, the event manager, the 
screen manager and the mouse manager to name a few. 
Typically there is one manager for each input or output device 
although. Each of the managers is an Actor and so executes in 
parallel with the others. It is the job of these managers to 
combine user input and interface context creating a meaningful 
stream of events for each view. 

In Eva it is easy to understand how a particular view 
behaves. Each event has a corresponding handler (method) in 
each of the views which are interested in it. These views must 
explicitly state which events they are interested in by 
registering for them. When an event occurs, control is passed 
to the corresponding handling methods for each of the 
registered views. 

A view can be registered for an event which means that 
it is possible for the view to handle that event. If a view is 
enabled for a particular event then that view currently wants to 
handle occurrences of that event. Only views which are 
enabled for an event are informed when the event occurs. 

The event manager keeps track of all views and the 
events for which they are registered in its registry. Events and 
the views enabled for them are kept in the event manager's 
event table. The event table is used in the same way as an 
interrupt vector table. When an event occurs the list of 
handlers (views enabled) for that event is retrieved from (he 
event table. Each of the handlers in the list are informed of the 
event's occurrence. 

The set of events which are valid at a given time are 
those which are in the manager's event table. Invalid events 
will be ignored. Old and new event types can be added or 
removed at any time with no adverse effects on the rest of the 
system. The underlying code for the event manager can also 
be changed without effecting existing views. Ideally the host 
system would not require the event manager to poll for 
primitive events (e.g ., mouse button down and up, etc.). 
Polling, if required, can be limited to a few device classes. 

In practice the concept of a single event manager would 
be broken down into the its component managers. For 
example, a mouse manager would be responsible for 
distributing the mouse related events. Because there are many 
input (event) sources individual views can receive input from 
many sources at the same time. In addition, consecutive 
events in a view's event stream need not be related or have 
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been generated by the same device. Therefore, in Eva, it is 
possible to have concurrent active views with each one having 
multiple input foci. 

4.2 Synthetic Events 

A more meaningful and intuitive stream of events is 
provided by using synthetic events . Synthetic events 
[Cardelli, 85] are logical events which occur as the result of a 
specific sequence of real or physical events. For example, a 
leftButtonClick: event occurs whenever a leftButtonDown:, 
leftButtonUp: event sequence occurs within a given time 
frame. Further, using the state of the user interface, more 
complex event synthesis can be done. The leftButtonClickln: 
is generated when a leftButtonClick: event (a synthetic event) 
occurs inside a view (see Figure 4.1). Sophisticated event 
management and synthesis improves the simplicity and 
modularity of the view code. 

Low-levelleftButtonDown: 
and leftButtonUp: events 

from the mouse hardware. 

Synthetic event 
leftButtonClick: 

Synthetic event 
leftB u ttonClickIn: 

View, A, in which the 
leftButtonDown: and 
leftButtonUp: originally 
occurred. 

Figure 4.1. leftButtonClickln: event creation/distribution. 

In addition to the events generated by user interaction 
and the event manager, the application can create and post 
events (software events). Software events have higher priority 
than normal events. This allows applications to synthesize 
events and still maintain proper temporal ordering. Suppose 
four leftButtonClick: events were generated in a particular 
view and the related application dictates that three consecutive 
button clicks defines some event, x:. When the application 
receives the first three events it will create and post a x: event. 
This new event should be processed before the fourth button 
click since it happened before the click. Although not 
necessary, a sophisticated event manager can have an event 
priority scheme to attach levels of importance to particular 
events and thus particular input sources. 

4.3 View management 

It is quite common for a user to want to treat a 
collection of different views as one logical view. The 
Smalltalk class browser for instance contains several different 
subviews (a class list, selector list and code view, etc.). These 
simple subviews are all part of the same complex view, a 
browser. This relationship must be well defined. 
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Since individual views define which events they are 
interested in, and are responsible for their own operation 
combining several views to create arbitrarily complex views is 
easy. We need only to provide a general mechanism for 
grouping views together, a complex view. A complex view is 
a collection of views which acts as one. It is a container and a 
coordination mechanism for these views. Complex views 
respond to typical view methods (e.g., display, open, close, 
etc.) such that sending the open message to a complex view is 
like sending open to each of its subviews. 

Complex views allow a user interface designer to 
create views with several different parts without modifying 
any code, he simply adds components to the collection. The 
components can be anything from a border or label for the 
view to another complex view. By adding one complex view 
to another complex view several times, the user can create an 
arbitrarily complex hierarchy. Suppose the designer wanted to 
combine a debugger and a class browser. He would create a 
complex view and add the debugger's view and the class 
browser's view, both of which are complex. Neither the code 
for the debugger nor the browser has to be modified. 

Complex views are created from parts (see Figure 4.2) 
and have no display able form of their own. They create a 
logical grouping, not a physical or graphical one. For this 
reason, the subviews of a complex view need not be grouped 
together and may overlap on the screen. 

LineViews 

ConfmnerView 
BorderView BackgroundView 

Figure 4.2. Example complex view (a FindAndReplaceView). 

A complex view also serves as a coordinator for its 
subviews. The subviews can communicate with each other 
through the complex view. One kind of complex view is a 
screen manager (the screen is just a view with several 
subviews). The screen manager ensures that the proper views 
are visible and updates the screen when views are moved or 
deleted. 

4.4 Model/View Interaction 

As in MVC views are dependent on their models. 
Views can know about the models they represent but a model 
must not require knowledge of the views which may be on it. 
A model must be entirely independent of its view. This means 
that ~mplementing a view for a particular object should not 
requlfe any modification of that object's behaviour. This 
leaves us with the question, "How does the view know when 
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the model has changed?". There are several ways of dealing 
with this problem. 

What is needed is a coordination mechanism for the 
view and model. This coordinator can tell when some action 
will cause the value of the view to be changed. Sensing that 
the model has changed, the coordinator tells the view which 
takes the appropriate action. Since the coordinator forms a 
much used link between the model and view it must be light 
weight. 

A constraint satisfaction system such as the Filters 
Paradigm [Ege, 1986] [Grossman and Ege, 1987] is one such 
system. Filters combines light and heavy weight constraints 
(filters and logic) to coordinate user-object and object-object 
interaction respectively. Constraint Hierarchies [Boming et 
al., 1987] provides more complete but expensive constraint 
specification. Both are built on top of ThingLah ill1d allow the 
user to explicitly define what the interactions between entities 
are. 

Another approach to this problem is the use of 
encapsulators [pascoe, 1986] . An encapsulator is an object 
which surrounds another object intercepting all messages to it. 
In this way, the encapsulator can sense when a "significant" 
change occurs and directly inform interested objects. In both 
solutions a nice way of specifying what constitutes a 
significant change remains a challenge. 

5 Implementation 

A non-Actor uniprocessing prototype of Eva is 
implemented in SmalltalklV. Eva has three logically separate 
parts : events, views and models. The event manager consists 
of three main classes: Event, EventStream and EventManager. 
Views in Eva are different from those in MVC because they 
handle the user's interaction directly, that is, Eva does not 
require controllers. This section briefly describes each of the 
major Eva classes. 

In SmalltalklV the View and Controller of MVC have 
been renamed Pane and Dispatcher respectively. In the 
following discussion these terms are used interchangeably and 
the word view is to be associated with Eva views unless 
otherwise stated. 

5.1 Events 

Event 

Events describe actions carried out by the user. 
Control, activation and deactivation is dispensed on the basis 
of event occurrence. There are many kinds of events ; 
keypresses, mouse movement, button clicks in addition to 
software generated events. All have specific types and may 
optionally have a times tamp, an originator (i.e., who caused 
the event) and data related to the particular event. See Figure 
5.1 for an example event. There may be arbitrarily many kinds 
of events in a system. Table 5.1 contains a list of some of the 
events found in an Eva system. 

event type originator time (ms) data 

<#leftButlonDown: nil 31276152 230 @ 400> 

Figure 5.1. An example of a leftButtonDown: event. 

Events are named uniformly throughout the system. 
!he leftButtonDown: event means the same thing to all objects 
ill the system. This improves readability and portability. 
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left!rightButton Down: 
leftlrightButton Up: 
left/rig htButtonClick: 
left/rig htButtonC lickl n: 
I eftlrig htButto n FirstCI ickl n: 
leftlrightButtonFirstClickOut: 
left/rig htButton Drag: 
keyPressed: 
cursorMove: 
hotSpotEnter: 
hotSpotExit: 
updateModel: 

Table 5.1. Some standard Eva events. 

EventStream 

An EventStream supplies a continuous sequence of 
Events to the EventManager. The EventStream reads system­
specific events from the Small talk: kernel and transforms them 
into Events. This is so the Event data is consistent from 
system to system. In the current implementation of Eva it is 
possible to specify priorities for particular events. 

EventManager 

The EventManager is the central dispatcher of events. 
A registry of objects and their associated events is maintained 
as is an event table which holds events and their known 
handlers. In contrast to MVC's controllers, which contain 
many control loops, Eva has one event dispatcher. By using 
the state of the interface (e.g., the mouse and the screen), Eva 
can create very high-level synthetic events. When events 
arrive from the EventStream the EventManager first tries to use 
them to make a synthetic event by looking at the new event in 
the current context of the interface (see Figure 5.2). This 
context includes the layout of the views on the screen (from 
the ScreenManager), the events which immediately proceeded 
the new one (from the EventManager) and information 
regarding the events views are enabled for (from 
EventManager's eventTable). The synthetic event generated, 
or the original if synthesis was not possible, is then dispatched 
to its associated handler(s). An event is distributed to all of the 
handlers enabled for it. 

It should be noted that Figure 5.2 depicts the non­
Actor version of Eva. The use of Actors makes it possible to 
reduce the number of events the EventManager processes. For 
example, mouse events can be handled and distributed by the 
MouseManager, not the EventManager. Views may register 
directly with the MouseManager for these mouse events. This 
will eliminate any potential for a performance bottleneck at the 
EventManager. 

Synthesizing events helps to reduce the number of 
views that get activated. Suppose that the highest level of 
mouse button event available is leftBultonUp: and 
leftButtonDown:. When the left button is clicked, every view 
is informed of the button down and up events. This means 
that each view would have to see if the mouse is in its 
bounding box and combine the events to make a click. Using 
event synthesis and the state of the interface, the 
leftButtonClickl n: event can be generated instead. This 
greatly simplifies the view's event handling code and increases 
efficiency. 
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Figure 5.2. Chronology of event synthesis and distribution. 

When the EventManager is distributing a particular 
event, say leftButlonClickln:, it looks up the event's handler 
list in its event table. Each of the handlers in the list is 
informed that the leftButtonClickln: event has occurred. An 
example leftButtonClickln: event handling method is shown in 
Figure 5.3. 

leftButtonDownln: an Event 

"TextView method - put gap selector before character 
nearest the pOint where the button went down ." 

I down Point I 
down Point := anEvent data. 
model selectAt: (self stringCoordinateOf: down Point) 

Figure 5.3. Example of an event handling routine 

For an object to receive a particular event, say 
leftBultonUp:, it must do the following: 

• implement a leftBultonUp: method which will handle 
the event, and 

• register for leftBultonUp:, 
• enable itself for leftBultonUp: 

Registering (deregistering) informs the EventManager 
that the object is (not) interested in a particular set of events. 
Enabling (disabling) an object insures that the object will (not) 
be informed when the events it is registered for occur. 

Synthetic events, as discussed above, improve the 
readability and performance of event handling code. The 
EventManager, in conjunction with the ScreenManager and the 
MouseManager (see below), is responsible for generating 
synthetic events. When the EventManager synthesizes events, 
it attempts to create the highest level event possible in the state 
of the interface. For example, leftButtonFirstClickln : will be 
generated instead of leftBultonClickln: if it is the first time the 
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button is clicked in a window and the window is enabled for 
leftButton FirstClickl n:. 

In the current implementation of Eva, event synthesis 
performed by having the various managers which register for 
the low-level device events (e.g., mouseButtonDown: for the 
MouseManager) and generate higher level synthetic events 
based on their state. In this way the event generating portion 
of Eva is a state machine. 

Event synthesis would be handled better by a series of 
simple state machines. One or more state machines would be 
attached to a particular event source (e.g., mouse or keyboard) 
to define all of the synthetic events. It is important to have a 
concrete way of creating these state machine because user 
interaction is complex. Squeak [Cardelli, 85] is a language for 
defining such state machines. Squeak fits nicely with our 
design and may be a useful future addition. 

5.2 Views 

View 

Simple views (e.g., text or list views) in Eva are 
subclasses of the class View. Views must have code 
associated with them which perform all of the necessary 
display operations and handle any associated events. The 
implementation and use of these classes is much simpler and 
smaller than that of similar view/controller pairs in MVC. 

Complex View 

The complex views discussed above are implemented 
in the class Complex View, a subclass of View. A 
Complex View maintains a list of its subviews and serves as 
their coordinator. Subviews can send messages to all of the 
other subviews by asking its superview (a Complex View) to 
distribute the message. Complex Views also coordinate 
external input. For example, sending the display message to a 
ComplexView would cause it to send display to each of its 
subviews. 

ComplexViews equal the sum of their parts and have 
no display able form of their own. That is to say, displaying a 
ComplexView which had no subviews would draw nothing on 
the screen. Everything shown on the screen is a subview, 
including the label and the border. This removes the need for 
complex class hierarchy trees and, if multiple inheritance is not 
available, duplicated code. 

ScreenManager 

ScreenManager, a subclass of ComplexView, is 
responsible for maintaining the appearance of the display 
screen. Views which are to be displayed are added to the 
current ScreenManager and as a result, are drawn on the 
display screen. The EventManager uses the ScreenManager 
during event synthesis to determine the state of the user 
interface. This aids in identifying the synthetic events which 
can be generated. 

Views on the screen (in the ScreenManager) can be 
moved, sized, collapsed or closed. The ScreenManager takes 
care of the low level updates of the physical screen. When a 
view is removed or repositioned, the ScreenManager is 
responsible for redrawing the views which were under the 
changed view thus, views can overlap arbitrarily. Moving or 
resizing a Complex View which has a border will affect all of 
its subviews. 
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ViewEditor 

In the current implementation of Eva there is also a 
view editor, the ViewEditor. This editor allows the user to 
create, remove and modify views on the screen. New views 
are added by selecting the view type from a menu and placing 
the created view on the screen. In most cases, creating a view 
in the ViewEditor will also create a default model specific to 
that type of view. The new view can be put anywhere on the 
screen or associated with an existing ComplexView. Existing 
views are edited by selecting the view and carrying out the 
desired operations on it This simple ViewEditor has been very 
useful in creating application interfaces. A system such as 
Interacticons [Smith, 1987] would be even more useful when 
designing complex interfaces. 

5.3 Models 

In the current implementation of Eva, models do not 
communicate with their views directly. Models are 
encapsulated as described above and these encapsulators 
inform the views when a model's value has changed. The 
encapsulator is like an EventManager in that a view can specify 
which messages it is interested in. When this message is sent 
to the encapsulated object the view is notified. The view can 
then determine if the change was significant enough to warrant 
updating itself. 

In this way, the model does not need any knowledge 
of the views. Another way of maintaining the correspondence 
between..-model and view is to have the views update 
themselves when they change the model. There are two 
problems with this. First, a view would then require 
knowledge of how particular operations affect its model (Le., 
in depth knowledge of the model's structure). If the model's 
behaviour is changed then the code for all of the views on it 
must also be changed. Secondly, how does one view find out 
about changes made to its model by some other view? This 
requires some sort of dependency mechanism. We are back 
where we started. 

It is not clear whether a constraint system as described 
in section 4.4 would be better than encapsulators alone. Both 
allow arbitrary objects to be used as models for views and 
both would make the relationship between model and view 
clearly defined. The choice depends on the amount of 
constraint satisfaction required. If little is required then the 
two methods are roughly equivalent. 

6 Conclusions 

The Eva paradigm is logically much more object 
oriented than the MVC model. Events, Views and Models are 
all very clearly defined and independent of each other. 
Elements of Eva communicate via explicit messages rather than 
subtle interactions. Views are independent, self-contained 
objects, Actors and each of the parts in a complex view is 
responsible for its own functioning. More complex objects are 
constructed by composing parts rather than by inheritance. 
Views are independent of one another in the sense that each 
may be combined with any of the others. Complex views 
within complex views maintain these properties. 

The implementation discussed above has shown that 
Eva is feasible. More over it has proven to be a reasonably 
good alternative to the ModeVView/Controller paradigm. 
MVC is difficult to use in a multiprocessor environment, less 
modular and more restricted. Eva is easy to understand, less 
complicated to use/understand and more intuitive. 
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To date Eva has been used in small applications 
[McAffer, 1987] but has yet to be tested in a more complex 
multiprocessor environment. Eva's ModelNiew coordination 
scheme is currently being improved so dependencies are more 
explicit and maintainable. 

Work in related areas includes the development of 
SmallScript, [Haaland, 1988] and the implementation of a 
POSTSCRIPT interpreter for Smalltalk [Nguyen, 1988]. 
SmallScript is a Smallta1k facility which uses the POSTSCRIPT 
imaging model and allows for the creation of NeWS-like 
client/server relationships between Smalltalk running on 
several machines. 
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