
192

A GRID-BASED APPROACH TO AUTOMATING DISPLAY LAYOUT

Steven Feiner

Department of Computer Science
Columbia University

New York, NY 10027

Abstract

A research testbed is described for exploring the automated
layout of graphical displays. We address the problem of
determining the size and position of the objects displayed to a
user. Our approach is based on the graphic design concept of a
design grid. A design grid is a set of proportionally-spaced
vertical and horizontal lines that control the position and size
of the objects being laid out. The system first generates a grid
intended for a set of possible displays, based on information
about the kind of material to be displayed, the user, and the
display hardware. The grid is next used, in conjunction with
further information about the kinds of objects to be presented,
to create a prototype display layout. This prototype display
layout determines how each actual set of objects will be sized
and positioned in the displays presented to the user.

Keywords: user interface design, graphical layout, design
grids

1. Introduction

Recent experiments in interface design have explored the use
of direct manipulation graphical editors to layout an
application' s displays [HANASO; FEINS2; WONGS2;
BUXTS3; GREES5; OLSES5; HOLLS6; MYERS6]. Ideally,
these systems allow a user to design an interface that has
exactly the visual appearance that he or she desires. They have
shown some dramatic results in allowing users, both
programmers and nonprogrammers, to design certain kinds of
interfaces in less time than it would take using conventional
methods.

There are several problems, however, with the editor-based
approach to interface design. First, most users are
unfortunately not experienced graphic designers, let alone
interface designers. That the system does exactly what its
designer wants is therefore not enough: the designer has to
want the right interface to begin with. It is true, however, that
by making it easier to create and modify an interface,
successive refinement is encouraged. Therefore, the designer

This work is supported in part by the Defense Advanced Research Projects
Agency under Contract NOOO39-84-C-0165 and the New York State Center
for Advanced Technology under Contract NYSS1F-CAT(87)-5.

may be more willing to change the interface in response to user
pressure (or their own attempts to use it). Early editor-based
systems provided only the simplest of layout assistance, such
as the user-specified layout grids of IGD [FEINS2]. In
contrast, more recent projects, such as Peridot [MYERS6] and
Designer [HOLLS6], have begun to address this problem by
monitoring the designer's actions and offering rule-based
suggestions to help the user craft a better display.

Second, although the information to be presented and its
general format may be known in advance, there may be a large,
heterogeneous user community and a diversity of situations
under which the material is to be viewed. One common
approach attempts to take this into account in the initial design
phase by providing a fixed set of different display types.
Unfortunately, this may still result in grouping users and
situations in overly large equivalence classes. Users and
situations differ in seemingly small, but important, ways and
our systems should be able to adapt to these.

Finally, there are many situations, such as command and
control, and maintenance and repair, in which diverse, and
sometimes unexpected, information must be presented on the
fly. Here, timely presentation of information is essential, yet
there may be no time for the presentation to be developed in
advance.

In recognition of these problems, a number of researchers have
investigated automated generation of both the form and content
of graphical presentations, representative of which are
[FRIES4; FEINS5a; MACKS6] . There is a host of difficult
problems associated with tasks such as determining what
information is to be presented, when it is to be presented, what
format it will be presented in, and what kind of user input will
be accepted. In contrast, the system described here
concentrates only on the layout of separately generated
information. Thus, we assume that the specific material to be
laid out will be provided as input.

2. Automating layout

At the core of the graphics layout problem that we are
investigating is the task of determining the positions and sizes
of a set of graphical objects. In the work described here, we
use information about the objects to be displayed, the user, and
the display. We intentionally ignore the possibility of
interactions between layout generation and content generation.

Graphics Interface '88

Our implementation requires that objects to be laid out are
nonoverlapping upright rectangles. Even with these
restrictions a layout problem may be quite costly to solve.
Beach [BEAC85] has pointed out that determining whether an
arbitrary set of nonoverlapping rectangular objects can fit on a
display is NP-complete, as is finding the minimum size
rectangle in which the objects can be packed. Although the
layout resulting from a space minimization strategy alone may
be quite space-efficient, it may also be difficult to use and
understand. The challenge is to develop a set of constraints
and evaluation criteria that will result in the generation of
effective layouts, while simultaneously restricting the
possibilities that must be considered. Happily, there are
proven approaches to display layout in which arbitrary sizing
and placement of objects are expressly prohibited.

3. Grid-based layout

Grid-based layout has provided a particularly influential and
effective framework for graphic design [HURL78; MULL81].
In this design technique, the designer divides the design space
with a rectangular design grid, whose lines are positioned in
proportions based on the size of the space, the material being
laid out, and the purpose for which the layout is designed.
When layout is performed using the grid, objects are typically
sized and positioned so that they are aligned with the grid lines
and occupy an integral number of grid fields both horizontally
and vertically.

Design grids often consist of a set of regularly spaced vertical
. and horizontal lines that describe a set of equal-sized
. rectangular grid fields. The fields are separated vertically and
horizontally by equal-sized spaces and the entire array of fields
is surrounded on the display by top, bottom, and side margins.
In general, fields need not be of equal size, but there are many
designers who follow these restrictions, in some cases further
constraining the fields to be square.

Grid-based layout has been used extensively for magazine and
newspaper design. In these applications, a single grid is
treve10ped for the generic material to be laid out and then is
used for each page. The concept of the design grid has been
adapted by Friedell [FRIE84] for positioning groups of icons
and by Beach [BEAC85] for table layout. In Beach's system, a
table is laid out from a user-provided specification of its
contents, which includes the column and row position of each
item in the table. Given these'relative item positions, a
constraint-based system determines the position and size of the
columns and rows, guided by a style sheet specified for the
layout.

Our system generates the original grid itself and completely
determines the mapping of objects to positions in the grid.
First a grid is created, based on information about the material
to be laid out, the display, and the user. In part the information
consists of a grammar, discussed later, describing the kind of
material to be presented in actual displays. The actual objects
that will be encountered in a particular display may be thought
of as instances of these general classes of objects whose
properties and relationships are input during the grid design
phase. The system currently supports pictures, text blocks, and
headings, which the user must further specialize by designating
limits, on their expected size and contents.

193

Next, the grid that the system produces is used in conjunction
with information about the material to generate a prototype
display layout. This prototype is then used to determine how
to layout input instances of the objects described by the
display grammar to form actual displays.

By generating a grid first and using it to produce multiple
layouts, we gain one of the important advantages of grid-based
design: consistency. Each layout of a set is not optimized as an
individual design problem, but bears a visual relationship to
the others. Not only do we gain efficiency in not having to
redesign each display afresh, but the use of a common layout
format visually enforces the relationship between the displays.
Furthermore, the regular spacing of the grid, and hence the
regular sizes and positions of the objects embedded in it, also
helps achieve a coherent, consistent look for an individual
display [MULL8l].

4. Designing the grid

Our system is a rule-based testbed that embodies a vastly
simplified version of one of many possible approaches to
display layout. It begins by determining the size of the
individual grid field that will serve as the building block from
which a grid of uniform-sized fields will be constructed. The
field's size is derived from information about the pictures and
text to be laid out and the user's position.

The distance at which the display will be viewed is used, in
conjunction with legibility rules, to determine the point size to
be used to set body text. This in turn determines the leading or
vertical space between successive lines of type. The point size
and leading for headings is determined similarly. Rules for
legibility further determine an appropriate line length and
hence the width of a text block:. Information about the
expected character count of textual material that will be
included in the displays allows the system to determine an
approximate number of lines, and hence an expected height for
the text block.

The input includes a normalized size for the pictures. This
normalized size specifies the minimum width and height that
the picture must have in order to be understandable when
viewed at a set distance. In conjunction with the viewer's
distance it determines the actual minimum size at which the
picture must be reproduced.

In the uniform-size grid field design scheme adopted, the field
size is determined by the size of the smallest picture or text
block to be laid out, further constrained so that the field is tall
enough to hold an integral number of lines of text. In the
layout style espoused by [MULL8l], and currently enforced by
our system, the ascender of the topmost line of type in a field is
set flush with the top of the field, while the descender of the
bottommost line of type in the field is set flush with bottom of
the field. All lines of type are separated vertically by the
previously determined leading. The vertical space between the
grid fields must also hold an integral number of lines of text,
although it includes leading above and below the first and last
text lines respectively. This approach allows a passage of text
to span multiple vertical grid fields, while still maintaining the
same relationship to the top and bottom lines in each full grid
field. The result of these constraints can be seen in the figures
presented below.

Graphics Interface 'SS

If a picture does not exactly span an integral number of grid
fields, it must be further scaled and/or cropped. In previous
work, we explored the automated design of sequences of
pictures that explain how to perform actions in a 3D world
[FEIN85b]. Each of these pictures included information about
the extent that bounds the essential material in the picture that
must be displayed. The pictuies discussed here are assumed to
have this information. Cropping thus involves uniform scaling
of the material in the extent if the aspect ratio will correctly
span full grid fields or actual expansion of the extent vertically
or horizontally. An interesting issue not addressed here is
whether additional information or background should be
shown by expanding the extent or whether the picture can be
generated with an aspect ratio that talces into account
knowledge of the grid design.

The horizontal space between horizontally adjacent grid fields
must be wide enough to separate objects, such as columns of
text, from each other. Furthermore, the array of grid fields
containing the text and pictures is offset from the top, bottom,
and sides of the display by margins. The display size is given
as part of the input to the system. The size of the margins are
currently set according to a standard ratio. Since
proportionally-spaced fonts are used and the exact text being
set is not yet known when the grid is being defined, there is
some leeway in adjusting the width of the grid fields in
conjunction with the margins and grid field horiwntal spacing.
Thus, extra slack can be distributed among the horizontal space
between fields, the margins, and the width of the grid fields.
Figure. shows the grid designed for a display whose size is
indicated by the outermost rectangle. This is a scaled-down
version of a grid designed for an 8W' by •• " display to be
viewed at a distance of 20". Note that the lines of the grid are
not actually drawn in the finished display.

Figure 1: A scaled-down version of a grid designed for an 8W'
by 11" display to be viewed at 20". The outermost rectangle
defines the display's boundaries.

194

5. Prototype display grammar

The input used in designing the grid describes subclasses of
pictures, text blocks, and headings by specifying bounds on
their expected size (number of characters for text blocks and
heads and normalized size for pictures). These are prototypes
of the objects that will actually be laid out. In addition, these
prototypes may be grouped together to define aggregates.
Different kinds of groups may be specified, indicating the
relationships that hold between their members. Groups are
currently constrained to form a single hierarchy with arbitrarily
deep nesting. In practice, however, display layouts (as
opposed to the complex diagrams that they may contain) do
not seem to evidence very deep nesting.

Our current system allows distinguishing whether a group's
objects form an ordered or unordered set. For example, a
collection of pictures may be an unordered set, while a set of
pairs of pictures and text illustrating the steps of a maintenance
and repair task may form a sequence. Groups are also used to
perform alternation and repetition. Groups thus function as the
operators at the internal nodes of a syntax tree whose leaves
are the various kinds of pictures, text blocks, and headings
from which a display may be constructed.

At the highest level, the entirety of the material to be displayed
is organized as a single group. This may be thought of as a
prototype display grammar, an example of which is shown
pictorially in Figure 2. The prototype display grammar defines
the underlying logical structure of a class of actual displays
whose contents will be input later. The next step is to develop
a prototype display layout.

ordered set

heading ordered repetition (2-3 copies) -
unordered set

picture text block

Figure 2: A pictorial representation of a prototype display
grammar.

6. Designing a prototype display layout

We have designed a set of rules for each of the different kinds
of grouping strategies that determine how their components
should be laid out. For example, all of the elements in a
sequence will be laid ordered either vertically or horizontally
across the page.

Graphics Interface '88

The layout algorithm employs a generate and test strategy,
traversing the prototype tree bottom-up from the leaves. At
each node a set of layout alternatives is generated, based on the
layout of its children. The first (and current) algorithm
employed initially excludes from generation only altematives
that exceed the bounds of the grid. It generates the entire space
of design alternatives before selecting an altemative for each
node. The evaluation criteria with which we are experimenting
favor designs in which identical elements in a sequence are
laid out similarly, and in which horizontal and vertical layout
approaches alternate down a branch.

7. Laying out an actual display

Creating a prototype display layout does not produce any
graphical output. Mter the prototype display layout has been
created, it can be used to determine the layout of one or more
actual displays, based on a description of the input objects of
which they are composed. This input consists of a list of
object instances, the prototype class with which each is
associated, and the actual contents of each instance (which
must be consistent with the originally provided descriptions of
their prototypes). Each object is then sized and positioned
using information generated for its class during the creation of
the prototype display layout. Members of sequential groups
are processed in sequence to allow the layout of later objects to
depend on the positions and sizes of earlier ones.

Figure 3a shows the grid of Figure 1 populated with a set of
objects that are accepted by the prototype display grammar of
Figure 2. In the current implementation the pictures are grey
tone rectangles whose size and placement are determined by
the system, while text is represented by hard wired sentences
that the system positions and generates in the appropriate font,
point size, and leading. Figure 3b shows the display without
the grid visible, as the viewer would see it. Figure 4 shows the
same set of objects laid out in different sized displays with
different grids. All of the figures are generated for an observer
at 20" and have been scaled down to Y. of their actual size.

8. Implementation

The majority of the layout system is implemented in OPS5, a
production system language [FORG81]. The drawing routines
are written in Lisp and generate a human-readable intermediate
file that forms a device-independent representation of the grid
and the specific sets of picture and text that are laid out using
it. The intermediate file is further processed for interactive
display on a bitmapped workstation. It can also be
automatically converted to PostScript [ADOB85], which was
done to produce the figures included in this paper.

Eventually, we intend to layout actual pictures and text
generated by a companion project [FEIN88]. Therefore, there
has been no emphasis on providing other than a program
interface for specifying the information needed to build the
grid or to describe the contents of a display.

9. Conclusions

We have described the beginnings of a testbed system for

195

-------- -- ----

investigating the automated layout of graphical displays. The
work described here is a preliminary implementation of one
part of an architecture for generating both layout and
information content automatically [FEIN88]. It has been used
to explore the rule-based generation and use of a graphic
design grid that governs the display layout process. Because
the system is intended to be provided with the actual items to
be laid out, it is not responsible for choosing the high-level
display design style that determines the identities of these
objects.

The current implementation has a number of serious
limitations which we intend to address. Many of these are
caused by the graphic design rules that the system uses, which
are extremely rudimentary and often vastly oversimplified. For
example, a number of decisions, such as font choice, are stated
a priori. As well, the system has no concept of design basics
such as visual balance or rhythm. One area of particular
interest is that of design compromises. For example, if the
minimum legible point size for a given viewer distance and
font causes a block of text to be set so large that it won't fit on
a small display, the system currently fails to develop a design,
instead of producing an inferior one.

Nonhierarchicallayout constraints are not currently provided,
so there is no way to indicate that the same layout decisions
should be used in disjoint parts of a display. Thus, two groups
whose components have identical descriptions may be laid out
in totally different ways. As well, the primitives implemented
so far must be augmented to include input as well as output
primitives.

We are also trying to develop strategies for prototype layout
design that involve more careful pruning of the layout
alternatives generated, backtracking to avoid the exponential
growth of the design search space, and improved criteria for
evaluating design alternatives. Although the current system
can handle only an extremely small subset of designs, it was
intended to provide a framework in which to develop ideas that
could help point the way toward future, more powerful
systems.

10. Acknowledgements

Mary Jones helped critique some of the system's first layouts
and provided valuable suggestions for improvements, most of
which still remain to be made. The Hewlett-Packard Company,
through its AI University Grants Program, generously donated
the equipment on which the testbed is being developed.

References

[ADOB85]

[BEAC85]

[BUXT83]

Adobe Systems Inc. PostScript Language
Reference Manual. MA: Addison-Wesley,
1985.

Beach, R. Setting Tables and Illustrations
with Style. Ph.D. Thesis, Dept. of Computer
Science, University of Waterloo, Ontario,
1985. (Xerox PARC Report CSL-85-3, May
1985).

Buxton, B. "Toward a Comprehensive User
Interface Management System." Computer
Graphics, 17:3, July 1983,35-42.

Graphics Interface '88

Figure 3: (a) The grid of Figure 1,
populated with a set of objects accepted by
the prototype display grammar of Figure 2.
(b) The display as presented to the user.

Head

ThIs lithe first body lne.
ThIs la the NCoOO body line.
ThIs la the thWd body line.
ThIs .. the fourth body line.
ThIa la .he Ilfth body lno.
ThIt: Is the alxth body Unt,
ThIs la the enth body line.
m.l8.he oIghlh body I
This 18 the ninth body line.

(a)

ThIs la the first body line.
Thlt III the IGCOnd body 1in41.
ThIs 11 the third body line.
ThIa 10 .he lourth body lino.
ThIt 11 the fifth body line.
ThIa la the ahcth body line.

196

Head

ThIs lithe flm body line.
ThIs 18 the IeCOnd body Ina.
ThI.1s the third body line.
TNt. the fourth body 11,...
ThIs la the fifth body line.
ThIs. the IIxth body line.
This la the nlh body 11,...
ThIs Is the &lgl"th body Hne.
ThI. I. the ninth body line.

this la the first body line.
This 11 the ucord body line.
Thllll It. third body line.
Thll" t'" fourth body line.
This Ia.t. 11th body lino.
This Ia.t. .Ixth body I
This Is.t. lth body I
This la .t. elgh.h body line.
Thla la .t. nllth body I

This Ia.t. I body lino.
rh. la the MCOnd body 11
this Is the third body line.
this la thllourth body 11,...
Thll 11 IhI 11th body line,
Thllllthlllxth body 11n • .

rhla la It-. first body line,
Thllla thl MCOnd body line.
Thla Ia.t. .hlrd body lino.
This la the fourth body line,
Thla la .t. 11th body lino.
Thla la .t. sixth body I
This Ia.t. lth body I
Thla la .t. eighth body line.
Thla la !he nllth body I

(a)

Figure 4: (a) The layout designed for a 14"
by 8W' display. (b) The layout designed for
a 4\4" by 22" display.

Graphics Interface '88

(b)

(b)

Head

TIia I, .he 11,.. body lno.
ThIs I, the HCond body line.
TIia la .he third body lino.
TIia I. the lourth body lino.
m. 18 .he Ilfth body l ne.
m. I •• he sixth body lino.
ThIs 11 the MYenth body tine.
m. I •• he oIghlh body I
m, I. the ninth body line,

_ •• he 11,.. body lno.

ThIa la .he _ond body lino.
ThII _ the third body 11,..,
ThIt _the towth body 11,..,
TIia la .he Ilfth body lno.
ThIa _ the sllcth body 11,..

II~~(.R" ~ ~ u~~~' ,~~' ,;.

,L*;~t::,r~:' ,:"",'
Xm~ ~ ~~ x v: < ~< , ~

>, ,

'7':~"\<"" ,
_ 10 the ft,.. body lno.

ThIa la .he oocond body Wno.
ThIa 10 .he third body Uno.
nn la the fourth body line.
ThIt Is the fifth body lne.
nn It the alxth body 11,..
Tl'ia It the tnth body 1/,..
ThIa I •• he oIghlh body I
Thi8 Is the ninth body 11,..

[FEIN82]

[FEIN85a]

[FEIN85b]

[FEIN88]

[FOLE82]

[FORG81]

[FRIE84]

[GREE85]

[HANA80]

[HOLL86]

[HURL78]

[MACK86]

[MULL81]

[OLSE85]

[MYER86]

[WONG82]

Feiner, S., Nagy, S., and van Dam, A. "An
Experimental System for Creating and
Presenting Interactive Graphical Documents."
ACM Trans. on Graphics, 1:1 Ianuary 1982,
59-77.

Feiner, S. "Research Issues in Generating
Graphical Explanations." Proc. Graphics
Interface '85, Montreal, May 27-31,1985,
117-123.

Feiner, S. "APEX: An Experiment in the
Automated Creation of Pictorial
Explanations." IEEE Computer Graphics and
Applications, 5:11, November 1985,29-38.

Feiner, S. "An Architecture for Knowledge
Based Graphical Interfaces." Proc.
ACMISIGCHI Workshop on Architectures for
Intelligent Interfaces, Monterey, CA, Mar 29-
Apr 1,1988.

Foley, I. and van Dam, A. Fundamentals of
Interactive Computer Graphics. MA:
Addison-Wesley, 1982.

Forgy, C. OPS5 User's Manual. Computer
Science Technical Report CMU-CS-81-135,
Carnegie-Mellon University, Iuly 1981.

Friedell, M. "Automatic Synthesis of
Graphical Object Descriptions." Computer
Graphics, 18:3, Iuly 1984,53-62.

Green, M. "The University of Alberta Use
Interface Management System." Computer
Graphics, 19:3, Iuly 1985,205-213.

Hanau, P. and Lenorovitz, D. "Prototyping
and Simulation Tools for User/Computer
Dialogue Design." Computer Graphics, 14:3,
Iuly 1980,271-278.

Hollan, I., Hutchins, E., McCandless, T.,
Rosenstein, M., and Weitzman, L. "Graphical
Interfaces for Simulation." In W. Rouse, ed.,
Advances in Man-Machine Systems, vol. 3,
Greenwich, CT: lai Press, 1986.

Hurlburt, A. The Grid. NY: Van Nostrand
Reinhold Co., 1978.

Mackinlay, I. "Automating the Design of
Graphical Presentations of Relational
Information." ACM Trans. on Graphics, 5:2,
April 1986, 110-141.

Miiller-Brockmann, 1. Grid systems in graphic
design. Niederteufen, Switzerland: Verlag
Arthur Niggli, 1981.

Olsen Ir., D., Dempsey, E., and Rogge, R.
"Input/Output Linkage in a User Interface
Management System." Computer Graphics,
19:3, Iuly 1983, 191-197.

Myers, B. and Buxton, B. "Creating Highly
Interactive and Graphical User Interfaces by
Demonstration." Computer Graphics, 20:4,
August 1986, .249-258.

Wong, P., and Reid, E. "FLAIR - User
Interface Dialog Design Tool." Computer
Graphics, 16:3, Iuly 1982,87-98.

197

Graphlc8 Interface '88

