
50

A HYPERTEXT ENVIRONMENT FOR UNIX

Przemyslaw Prusinkiewicz and lames Hanan

Department of Computer Science
University of Regina

Regina, Saskatchewan, Canada S4S OA2

Build on the work of others.
Henry McGilton, Rachel Morgan:
introducing the UNIX system

ABSTRACT

This paper describes the design of a hypertext environ­
ment for UNIX. The main thesis is that a powerful hyper­
text system can be simply created by adding a few programs
to a typical UNIX environment with a window management
system.

RESUME

Dans cet article nous presentons un environnement
hypertexte con~u pour UNIX. La these principale est qu 'un
tel environnement peut etre construit en ajoutant quelques
programmes tres simples au systeme d'exploitation UNIX
dote d'un systeme de gestion de fenetres .

1. INTRODUCTION

What is a hypertext system? An old definition [Nelson
1967, see also Conklin 1987] describes it as "a combination
of natural language text with the computer's capacity for
interactive branching, or dynamic display, of a nonlinear text
which cannot be conveniently printed on a conventional
page." Newer systems complement this definition by
emphasizing the multimedia aspect of hypertext; the combi­
nation of text with images, animated scenes, and audio syn­
thesis [see, for example, Feiner, Nagy and Van Dam 1982,
Yankelovich, Meyrowitz and Van Dam 1985, Halasz, Moran
and Trigg 1987, Atkinson et al. 1987, Goodman 1987,
Yankelovich et al. 1988]. The images can be prestored ras­
ter files, or they can be created in real time by programs
which are automatically called when the corresponding text
segment is selected for viewing. In this case, the system
runs various programs implicitly selected by the user who
browses through the database. This assistance in selecting
programs is a function of hypertext known as task switching
[Card and Henderson 1987].

The hypothesis explored in this paper is that a powerful
hypertext system can be created by adding a few programs

to a typical UNIX environment with a window management
system. We will illustrate this concept with the example of a
hypertext system called metatext, which was implemented
on a Silicon Graphics IRIS 3130 workstation running UNIX
System V and the mex window management system [Silicon
Graphics 1987a]. The same approach could be applied to
other versions of UNIX and other window management sys­
tems.

The idea of building a hypertext system on top of a
standard UNIX environment draws on some concepts
already present in the literature. Specifically, Witten and
Bramwell [1985] developed a UNIX-based system for view­
ing documents in a nonlinear way. However, they did not
exploit the possibility of automatically calling arbitrary
UNIX programs from the documents. On the other hand,
the idea of considering an interactive document as a script
which may refer to any program available on the system was
implemented in the UNIX educational program learn [Ker­
nigh an and Lesk 1979]. To some extent metatext is a des­
cendant of these two approaches.

The paper is organized as follows. After a general
description of the metatext structure (Section 2), we specify
two essential components of the system: the frame (Section
3) and the browse program (Section 4). Next, (Section 5)
we present three example applications of metatext. We
conclude (Section 6) by summarizing our experience with
metatext and outlining some problems for future research.

2. THE STRUCTURE OF METATEXT

The structure of metatext can be described from two
perspectives: the static structure of links between informa­
tion nodes and the dynamic structure of processes created
while browsing and displaying information.

A metatext data base (Fig. 1) consists of two types of
files: frames and index files . A frame is the basic informa­
tion and display unit. It contains text to be displayed in the
text window, and a list of commands to be run along with
the text An index file is a list of names grouping related
frames into a section. A given frame can be listed in several
index files, and can include references to other index files.
This establishes a graph of references not limited to
hierarchical structures, built on top of the UNIX file system.

Graphics Interface '88

Figure 1.
Static structure of a metatext data base.

Metatext runs as a number of concurrent processes
(Fig. 2). They can be divided into three classes:

• Browse processes which read index files and allow the
user to interactively select a frame.

• Show processes which are spawned by a browse pro­
cess once a selection has been made. Each show pro­
cess reads the frame passed as its argument, and creates
child processes which display the frame text and exe­
cute the accompanying commands.

• Application processes corresponding to the commands
listed in the frame.

It is essential to the concept of metatext that new
browse processes can be created in the same way as any
application process, by executing an appropriate command
included in the frame. Consequently, several browse
processes may be active at the same time. For example,
consider a hierarchical organization of a metatext data base.
When navigating from the root towards the leaves of the
data base, new browse processes are created to handle frame
selection at successively lower levels. On the other hand,
when the user navigates back towards the root, the lower
level processes are no longer necessary and can be killed.
Thus, the number of active browse processes changes
dynamically, refiecting the user' s current position within the
data base. It follows that the navigation mechanism in
metatext is inherently based on the concept of multipro­
gramming.

51

-8

Figure 2.
Dynamic structure of metatext processes.

3. IMPLEMENTING A FRAME USING THE SHELL

Consider the operation of displaying a section . of text
with accompanying illustrations. The text to be displayed as
well as the names of all data and program files involved are
included in a single frame. An example frame, called
LJystem_overview, is given below.

.p130

.ce
\fIGraphical Applications of L-systems \fR
.LP
A string of symbols generated by an L-system can be
used to create a picture if the string symbols are
interpreted as commands controlling a Logo-style
turtle. L-systems can generate a large variety of
images: fractals, such as the Menger \fIsponge\fR;
kolam patterns (folk art from southern India),
such as \fIscissors\fR; developmental plant models,
such as \ffiychnis\fR; and realistic plant images,
such as the \fItulip\fR. The program developed
to perform this task is called "\fIp\fRIant and
\fIf\fRractal \fIg\fRenerator" or \fIpfg\fR.

:cd -!PATTERNS
:ipaste menger.ras # load Menger sponge image
:pfg scissors.! scissors. v # generate scissors kolam
:cd - !PLANTS
:pfg lychnis.! lychnis. v lychnis.a # animate model
:pfg tulip.! tulip.v # generate a tulip image

Graphics Interface '88

The text · is specified in nroff format. Programs which
should be automatically invoked to illustrate the text are
listed, together with their parameters, in the lines starting
with a colon.

In order to display such a frame, the following actions
must be performed:

• Read the specified frame.
• Filter the text, then format according to the target win­

dow size and display using a scrolling program (the
text need not fit in a single window).

• Filter the command lines from the textual content Run
all required programs, with their corresponding
parameters, concurrently.

The shell script show, which performs these tasks, is given
below:

clear> Idev/console
grep -v \A: $11 nroff -ms 1 more -1 > Idev/console
sed -n 'f' :/s/lIp' $1 1 sh

The first line clears the text window (in this case the
console). The next line filters the text using grep and pipes
it to nroff for formatting, then to more for display in the
text window. Finally, the command lines are isolated, their
leading colons are stripped using sed and they are passed to
sh for processing.

The result of running the command

% show L_system_overview
%

is shown in Fig. 3. All information specified in the frame
has been presented. Note that the graphic images can be
further manipulated (as indicated by the presence of a menu)
since the processes associated with each window remain
active until explicitly killed.

This example shows that a very simple shell script
makes it possible to associate text with arbitrary programs.
For example, these programs may generate images illustrat­
ing the text. If a number of frames following the same for­
mat are available, each of them can be displayed using the
show command typed from the console. Obviously, this is
not a convenient method for browsing through a collection
of frames. The next section presents a browsing utility which
provides a better solution to the navigation problem.

4. NAVIGATING THROUGH A COLLECTION OF
FRAMES

A utility called browse was developed to assemble a
set of frames into a linked system. Browse is invoked with
a text file as its argument. Each line of this file is entered as
a separate item in a pop-up menu. Usually, the input file is
an index of the frames composing a section.

52

A running browse process is represented on the screen
as a small (approximately 2 x 5 cm) window, with a name
corresponding to the index name (Fig. 4). If the user selects
this window, the menu containing the index appears. By
selecting an item, the user causes browse to fork a show
process with the indicated frame passed as the argument.

In addition to the frame names read from the index file,
the browse menu contains three default items. The items
next and previous are used to step through the list of frames
in forward or reverse order, respectively. The quit item kills
the browse process.

In spite of its simplicity (250 lines of C code, including
comments), the browse program is a powerful tool for inter­
connecting frames and index files into a network. While a
single browse process performs the elementary operation of
mapping an index file into a set of frames, a set of con­
current browse processes implements a flexible, non-linear
access method to the metatext frames.

5. APPLICATION EXAMPLES

In this section we present three applications of meta­
text to illustrate the potential of the system.

5.1. Organization of computer experiments

The original purpose of metatext was to organize
descriptions, programs, data and results of computer simula­
tions of plant development. A problem was created by the
large number of files (several hundreds) involved in the
experiments. Metatext groups these files into frames . A
typical frame provides a description of the experiment and
embeds the program calls with appropriate parameters which
are involved in the corresponding simulation. Related exper­
iments are listed in a common index file. Lower-level index
files are accessed primarily from a top-level index, although
cross-references between frames from several index files are
also occasionally used. The task-switching capabilities of
metatext are used extensively to organize experiments
involving several programs which cannot run concurrently
(for example, the growth-simulation program and the patch
editor used to define plant organs).

The user can modify simulation parameters, animate
development processes, edit their descriptions, create new
experiments, include them in the system, and delete obsolete
frames . Thus, the metatext data base constantly evolves,
reflecting the current state of understanding of the research
problem considered and the corresponding evolution of the
underlying software. For further examples of hypertext
application to software development see [Bigelow 1988].

5.2. A computer-assisted geometry course

Another application being explored is the use of meta­
text to organize a computer-assisted geometry course. The
main application used for this purpose is an interactive
graphics program called L.E.G.O. [Fuller, Prusinkiewicz
and Rambally 1985]. L.E.G.O. provides an electronic
metaphor for classic Euclidean constructions with compass

Graphics Interface '88

and ruler. They can be interactively defined, saved, and
used as elements of more complicated constructions. Thus,
L.E.G.O. creates a "mathematical microworld" [Kearsley
1987] in which experiments take place. In this context, the
purpose of metatext is to guide the student from one con­
struction to another following the logical structure of
Euclidean geometry. The student starts from the simplest
constructions, such as the bisection of a line and a wedge,
and uses them in a hierarchical way to solve more and more
complex problems. Consequently, the student learns
geometry by recreating these constructions in the appropriate
order under the guidance of metatext.

5.3. Organization of IRIS demonstration and tutorial
programs

Bundled with the IRIS workstation are a number of
demonstration and tutorial programs. We have used meta­
text to organize these programs into a structure which
allows the beginner to explore the IRIS environment easily.
For instance, the on-line tutorial programs referenced in the
IRIS Programming Tutorial [Silicon Graphics 1987b] are
grouped together in the tutorial index file for easy access
while reading the manual. Some of these programs are also
cross-listed in other index files. For example, the program
queue is cross-listed in the index which groups all programs
demonstrating interface handling on the IRIS. This cross­
listing allows the user to browse through the network of pro­
grams, exploring interests as they occur.

6. CONCLUSIONS

UNIX with a window management system supports
most hypertext functions. A hypertext environment can be
composed from standard UNIX utilities with the addition of
a browsing program. This design approach is consistent
with the UNIX philosophy of supporting new functions by
combining existing utilities. From that point of view, a
parallel can be drawn between metatext and the first version
of the spell program. Like spell, reportedly written in one
afternoon [Bentley 1985], a useful hypertext environment for
UNIX can be developed in a matter of days.

Naturally, embellishments and enhancements would
require additional work. Two problems open for further
research are presented below.

• Design of a window management system with support
for hypertext. Consider the problem of calling an
interactive program from a frame. When run stand­
alone, this program may expect the user to specify a
window position and select the desirable menu options
using a mouse. On the other hand, when using hyper­
text it may be preferable to have the corresponding
parameters predefined within the frame. This can be
accomplished in an elegant and general way if the
hypertext system has a mechanism for simulating user
operations performed with the mouse. Technically, this
requires the show process to insert data on the mouse
event queue of an application process. Unfortunately,
in the current implementation of mex such inter-process
queue insertions are not possible.

53

• Development of hypertext-oriented utilities and pro­
grams. The user of a hypertext system may be required
to modify the frame content. Naturally, such changes
can be achieved using an editor. The problem is that
the standard UNIX editors do not contain any provi­
sions which would make modifications to some text
fields feasible while protecting other fields from
changes. Thus, if the user is allowed to change some
data in the text, he or she can also alter the entire text.
In some applications, such as computer-assisted instruc­
tion, this is clearly undesirable (the student may be
required to insert notes but not alter the lesson content).
Consequently, a text editor should be developed to
allow modification of selected fields in a file, while
protecting others.

The above examples illustrate a more general problem.
A window manager or the UNIX utilities may lack some
features which would be useful in hypertext applications. It
would be worthwhile to identify all such features in order to
provide guidelines for future extensions of the system
software aiming at better support for hypertext.

We have found metatext to be a very useful tool, par­
ticularly in its ability to help organize computer experiments.
It has provided us with a flexible hypertext environment at a
very reasonable cost.

ACKNOWLEDGMENTS

Peter Broadwell clarified the possibilities and limita­
tions of mex. Reviewers provided very helpful comments
which have been incorporated into the paper. This work
could not have been done without the support and facilities
provided by the Department of Computer Science at the
University of Regina. Partial support from the Natural Sci­
ences and Engineering Research Council of Canada (grant
number A0324) is also gratefully acknowledged.

REFERENCES

Atkinson, B., et al. [1987]: HyperCard. Software for
Macintosh microcomputers.

Card, S. K., and Henderson, A. [1987]: A multiple, virtual­
workspace interface to support user task switching. CHI
+ GI '87 Conference Proceedings, pp. 53-59.

Bentley, J. [1985]: Programming pearls: A spelling checker.
Communications of the ACM 28, No. 5, pp. 456-462.

Bigelow, 1. [1988]: Hypertext and CASE. IEEE Software,
March 1988, pp. 23-27.

Conklin, J. [1987]: Hypertext: An introduction and survey.
Computer 20, No. 9, pp. 17-40.

Feiner, S., Nagy, S., and van Dam, A. [1982] : An experi­
mental system for creating and presenting interactive
graphical documents. ACM Transactions on Graphics 1,
No. 1, pp. 59-77.

Fuller, N., Prusinkiewicz, P. and Rambally, G. [1985]:
L.E.G.O. An interactive system for teaching
geometry. World Conference on Computers in Educa­
tion, Norfolk, Virginia, pp. 359-364.

Graphics Interface 'SS

Goodman, D. [1987]: The complete HyperCard handbook.
Bantam Books, New York.

Halasz, F. G., Moran, T. P., and Trigg, R. H. [1987]:
NoteCards in a nutshell. CHI + GI '87 Conference
Proceedings, pp. 45-52.

Kearsley, G. [1987] : Artificial intelligence and instruction -
applications and methods. Addison-Wesley, Reading,
Massachusetts.

Kernighan, B. W., and Lesk, M. E. [1979] : LEARN­
computer-aided instruction on UNIX. In UNJX user's
supplementary documents, 4.3 bsd, University of Cali­
fornia, Berkeley 1986.

Nelson, T. H. [1967] : Getting it out of our system. In: G.
Schechter (Ed.): Information retrieval: A critical
review. Thompson Books, Washington, D.C.

Silicon Graphics [1987a]: IRIS user's guide volume I:
Graphics programming. Version 3.0. Mountain View,
California.

Silicon Graphics [1987b]: IRIS programming tutorial.
Mountain View, California.

Witten, I. H., and Bramwell, B. [1985]: A system for
interactive viewing of structured documents. Communi­
cations of the ACM 28, No. 3, pp. 280-288.

Yankelovich, N., Haan, B. J., Negrowitz, N. K., and
Drucker, S. M. [1988]: Intermedia: The concept and
construction of a seamless information environment.
Computer 21, No. 1, pp. 81-96.

Yankelovich, N., Meyrowitz, N., and van Dam, A. [1985] :
Reading and writing the electronic book. Computer 18,
No. 10, pp. 15-30.

54

Graphics Interface '88

55

Figure 3. Example of a metatext frame display. This frame belongs to the plant
development database discussed in Section 5.1.

Figure 4. Example of a metatext frame display . The small windows at the bottom
of the text window represent two active browse processes. The frame belongs
to the IRIS demonstrations data base outlined in Section 5.3.

Graphics Interface '88

