
An Interactive Approach to Behavioral Control 

lane Wilhelms 
Robert Skinner 

CompUJer and In/ormaJion Sciences 
University o/California. Santa Cruz 

Santa Cruz. CA 95064 

ABSTRACT 

A method of interactively specifying 
behaviorally-controlled animation is presented. 
The method builds upon the behavioral animation 
approach described by Reynolds14 using a connec
tionist approach inspired by Braitenberg.3 Objects 
are given sensors and effectors, and the user 
interactively provides a mapping between them. 
The force from the motor effectors produces motion 
using a simple form of dynamic simulation. In this 
way, the user has general control over object 
behavior but the specific motion is automatically 
generated according to the state of the objects and 
their environment. 

Key Words and Phrases: computer animation, behavioral 
animation, stimulus/response, interactive motion control. 

1. Introduction 

Recently a number of interesting advances have been 
made involving control and semi-automatic generation of 
motion for computer animation. This includes inverse 
kinematics1,6,8.11 automatic constraint satisfaction2, 16,19,20 
dynamics,4,lO,17 and collision detection and response.9. 13 

These techniques can be considered rather low-level, in that 
control is applied in terms of linear and angular motion of 
objects and by defining forces, torques, or constraints applied 
to these objects. Less has been published in the area of 
higher-level, general motion control. Two prominent exam
ples are the worlc of Zeltzer21 in treating human walking as a 
multi-tier, parameterized hierarchy of motion commands, and 
the work of Reynolds on behavioral control. 14 This paper can 
be thought of as a way of interactively implementing 
behavioral control. 

Reynold's behavioral model involved assigning objects 
procedura1ly defined behaviors which could be used to 
automatically generate their motion, and was used success
fully to generate the motion of bird flocks and fish schools. . 
Bird's (or boids) motion was determined by their desire to 
avoid collisions, to imitate the motion of neigh boring birds, 
and to stay near the center of the flock. Their senses detected 
how much these desires were being satisfied, and this informa
tion was weighted, according to the importance of these 
desires, to produce new motion. 

It appeared that an important problem in pursuing this 
promising and elegant idea was the means of quickly specify
ing and experimenting with different behaviors. At this point, 
another area entirely, i.e., neurobiology, proved inspiring. 
Most stimulating was the book Vehicles by Valentino Braiten
berg,3 which advances the idea that relatively simple map
pings between sensors and effectors can produce motion that, 
while difficult to predict exactly, effectively produces an 
impression of emotions and thoughtful behavior on the part of 
the objects. 

This paper deals with a method for interactively creating 
automatic complex motion using behavioral control. The 
method establishes connections between sensors and effectors 
associated with animated objects. Sensors are procedurally 
defined; obvious examples are light and recognition of the 
proximity of other objects. Effectors are most commonly 
motors producing motion but could also alter object color or 
other qualities. Using an interactive interface, sensors and 
effectors can be connected together with nodes to form a net
work. Connections pass signals of variable strength from 
sensors to effectors; nodes control the mapping of signals. 
Nodes may be simple transfer functions that invert, 
emphasize, or apply thresholds to the signal, or may involve 
more sophisticated procedural operations which alter that 
mapping in more complex ways, sometimes using previous 
experience or stochastic methods. 

Initial results suggest that this method can be used to pro
duce interesting and automatic motion whose general charac
teristics are under the control of the user. The approach may 
also be of interest beyond the field of computer animation. 
The connection networks might be of interest in exploring 
neural nets for machine learning. While strictly speaking, the 
connections are not neural nets at present, they could be 
extended in that direction to explore machine learning. Biolo
gists might also find the system of use in simulating animal 
behavior. 

2. Animated Objects 

Animated objects for behavioral animation must include 
certain characteristics beyond the geometric and visual pro
perties (such as position, orientation, topology, geometry, and 
color) necessary for ordinary kinematic animation. The 
objects need sensors that detect the stimuli of their environ-

Graphics Interface '89 



ment. The objects also need effectors, e.g., motors, to propel 
them about. There must be connections established between 
sensors and effectors to produce a response. The nature of the 
response is also determined by nodes that alter the signals 
passing along the connections. Objects can be given qualities 
that allow other objects to recognize and react to them indivi
dually. 

2.1. The Sensors 

Sensors detect specific characteristics of objects in the 
environment. They each have a location and orientation on 
the animated object which affects how strongly they are 
stimulated. They also have a number of parameters which 
control how the stimulus is interpreted and passed on through 
the output connections. These parameters include a maximum 
and minimum linear and a maximum angular range within 
which they are sensitive. They also have a maximum and 
minimum scale which specifies whether and how much their 
sensitivity to the stimulus is affected by distance. Finally, they 
have a mode, which makes them sensitive either to the nearest 
example of the exciting stimulus, or to an average of the 
stimuli over their whole range. 

Distance sensors (and proximity sensors, which are their 
inverse) detect the distance to other objects. They are particu
larly useful for collision avoidance maneuvers. Quality sen
sors detect characteristic qualities that are properties of other 
objects. Examples are the color of objects. Quality sensors 
have an addedjilter parameter that affects how sensitive they 
are to a particular qUality. 

Sensors pass a scalar output indicating how strongly they 
are stimulated and a vector output indicating the direction of 
the stimulus. The latter was added for simplicity in localizing 
stimuli. If a object in two dimensions is given three sensors, 
and an object in three dimensions given four, and the sensors 
are radially and symmetrically oriented, their scalar output 
alone can be used to find the unique stimulus direction. 7 Our 
objects typically had only two sensors in two dimensions and 
three in three, which makes it impossible to determine a 
unique stimulus location from scalar sensor values alone. 

2.2. The Effectors 

Effectors can produce some change in the object, in our 
case, a force that can cause motion. Potentially, this could also 
be a change of color, shape, etc. An effector acting as a force 
pushes on the object (or pulls on it if the value is negative). 
The effector's position and orientation on the body defines the 
point of application of the force and the force direction. The 
current value of the effector represents the magnitude of the 
force being applied, which is the sum of the scalar values 
input to the effector scaled by a parameter. Effectors also 
have a parameter that limits the total force it can apply. 

In the real world, a force applied to a rigid body, such as 
our simulated objects, produces a linear acceleration; it may 
also produce an angular acceleration if applied away from the 
body's center of mass, because it also acts as a torque. Physi
cally correct dynamics, IS in which the acceleration is propor
tional to force and objects will continue to move at constant 
speed once started unless slowed by friction or other forces, is 
not used here. 

2 

Rather, the motion dynamics assume that the force is 
directly proportional to velocity, which inherently produces 
friction and causes objects to stop when not acted upon by 
other forces. (This does retain the ability to produce angular 
motion due to propulsive forces acting upon different parts of 
the body, which would be hard to imitate merely using 
kinematics.) 

The equations used to generate motion are 

where 

F = v 
m 

J-I . t = Cl) 

t = p x F 

F = 3D force vector in the local frame 
t = 3D torque vector "" 
p = 3D point of application of force "" 
m = mass 
J = 3x3 inertial tensor matrix relative 

to the local frame (moments of inertia on 
diagonal and products of inertia on 
off-diagonals) 

More information on simple ways to calculate these 
quantities can be found in WilhelmsI8 or in any introductory 
physics or mechanics text. 

2.3. Connections and Nodes 

A connection can be thought of as a wire taking the value 
from the output of a sensor or a node and sending it to the 
input of one or more nodes or effectors. The connections 
implemented are slightly more complex, in that they can scale 
the signal and add to it as it passes. Sensors can have zero or 
more outputs but have no input connections. Effectors can 
have zero or more inputs but have no output connections. 

Inclusion of nodes between sensors and effectors allows 
more complex mappings. Nodes can have both multiple input 
connections and multiple output connections. Each node type 
is associated with a procedure that calculates the output signal 
based upon its input. Parameters for nodes allow the user to 
more carefully control how the mapping takes place. 

The simplest, standard node type is a transfer function, 
which takes the sum of the input values and produces a single 
output value based upon a user-defined function. The user 
defines the function as points on a cartesian coordinate system 
(see Figure 1). Transfer functions can be monotonic (steadily 
increasing) or non-monotonic functions, involving complex 
changes in tangent and thresholds. Transfer functions that 
produce a constant value independent of input, when attached 
to an effector, will keep the motor running continuously. 
Transfer functions mostly closely resemble the low-level 
nodes described by Braitenberg,3 but are not very appropriate 
for controlling animation. For example, consider a transfer 
function node to cause objects to avoid one another based 
upon their distance. The sensor nearest the object will send a 
stronger signal to the effector on that side of the body than the 

Graphics Interface '89 



farther sensor will send to the opposite effector. This will 
cause the objects to veer away, but how quickly they turn will 
depend upon the differential push on the motors which will 
vary with distance. Furthermore, forward speed will also be 
affected by distance in ways that may not conform to the users 
wishes. For these reasons, more sophisticated nodes were 
developed. 

Two very useful nodes are love and hate, which cause 
movement toward or away from incoming stimuli. For these 
nodes, inputs and outputs are ordered and one-to-one, so that 
each input (from a particular sensor) will pass to an associated 
effector. For these nodes, a different value can be sent to each 
output connection, depending upon the input from all known 
sensors. This gives the user much greater control over the 
response. 

Parameters for these nodes include: range of stimuli to 
which they are sensitive; forward scale factor to control how 
much to push on all motors to produce forward motion; revo
lute scale factor to control how much more to push on one 
motor to cause turning; and angular threshold which specifies 
how many degrees the objects orientation diverges from the 
goal direction. If the threshold is set to zero, even the slightest 
divergence causes a corrective turn and motion may appear 
jittery. On the other hand, if the threshold is set high, the 
object will follow a zig-zag path toward (or away from) the 
goal. 

Another very useful node is avoid, which acts much like 
hate nodes but passes output values that go up exponentially 
as objects approach. The sensory input for avoid nodes is 
assumed to be distance. 

A final important node is arbitrate. It was soon found 
that the importance of signals must be weighted for reasonable 
motion. For example, if an object is strongly attracted to a 
goal some distance ahead, but also trying to avoid an obstacle 
in the way, the signal to go forward to the goal should be 
turned off to prevent a collision from occurring. Parameters 
for the arbitrate node indicate how signals should be passed 
through. Typically, the presence of an avoid signal takes 
precedence over all other signals. 

Miscellaneous other nodes have been implemented. 
Some are simple, such as and, or, and not nodes. Network 
values are real, so these nodes respond as if a zero input is 
false, and any non-zero input is true. A random node is avail
able that occasionally produces a positive signal and can make 
motion less smooth as well as break up cycles which some
times happen when stable patterns are found. A history node 
alters its mapping according to the kind of signals it has 
already received. If it scales the signal up, it mimics a kind of 
habit formation, where the node reacts quicker to familiar sig
nals; if it scales down, it mimics accommodation, where the 
node becomes less sensitive to its input. 

2.4. Collision Response 
A void nodes attempt to avoid a collision with the nearest 

object within range. When many objects are close, this stra
tegy may fail and collisions can occur. A rather simplistic 
form of collision response has been implemented. When it is 
noted that forward motion will cause interpenetration, the 
object's velocity in the direction of the collision is removed 
(for inelastic collisions) or scaled and reversed (for elastic col-

3 

lisions). More realistic methods for collision response have 
been discussed elsewhere. 13 

3. Establishing Behaviors: the Notion Software 
Notion is an interactive, multiple-window, behavioral 

animation system that runs on Silicon Graphics IRISes. 
Notion provides three permanent windows, as well as several 
temporary ones. The three permanent windows are: 1) the 
graphics window, which shows the objects in the scene (see 
Figure 2); 2) the animation control window, which accepts 
user input concerning the animation state, e.g., starting and 
stopping, running under behavioral or keyframe control, size 
of time steps and present time, and display characteristics (see 
Figure 3); and 3) the active object window, which shows 
characteristics and values of the present active object picked 
by the user; some of the active object fields can also be 
interactively edited by the user (see Figure 4). Behaviorally 
generated animation can be stored as keyframes for replay. 
Motion may be three-dimensional, or clamped to a two
dimensional plane. 

In the graphics window, objects are drawn according to 
their geometric descriptions, and icons representing sensors 
and effectors appear automatically. Lines extending from the 
sensor/effector icons indicate graphically the intensity of 
stimulus and effect. It is possible to leave a trail along the 
object's prior path to more clearly represent their motion. 

Multiple input choices, including keyboard, sliders, and 
(for orientation) a virtual sphere,5 are available in temporary 
windows and can be used to alter the values in the window 
fields and the positions of graphical objects. 

A temporary window can be called upon to show the 
current network for the active object (see Figure 5). By 
default, sensor icons appear along a leftward column of the 
network window, effector icons similarly along the right. The 
user can move these icons about and add nodes and connec
tions between them. 

Picking a transfer function node calls up another tem
porary window (Figure 1) which indicates the current transfer 
function for the node. Transfer functions are defined by 
adding, deleting, and moving points about on a cartesian grid. 
The network window and the transfer function windows 
zoom, pan, and scroll to show all sections clearly. 

* * * 
Behavioral animation is achieved by setting up the 

appropriate network and transfer functions, placing objects of 
interest under behavioral control, and setting animation con
trol to go. Networks are synchronized, in the sense that there 
is an internal clock which, each time step, calculates new 
values. The sensors are set once at the beginning, then the 
nodes are pulsed until their data stabilizes (up to a maximum 
number of pulses), and then the effector values are calculated. 
Thus, a network consisting of a sensor, two nodes in sequence, 
and an effector will require two time steps for the stimulus of 
the sensor to reach the effector and cause a response. The user 
can set the actual motion (and display) time step to be any 
integral multiple of the network time step, as it may be desir
able to give the network time to settle before producing new 
motion values for display. 

Graphics Interface '89 



4. Sample Behavior Patterns 

4.1. Path Finding in Two Dimensions 

Figure 5 shows the networks for an object that is 
attracted to blue cubes but desires to avoid collisions. Figure 
2 shows the motion produced by this network. Considerable 
variation in the actual paths taken can be produced by chang
ing parameters associated with sensors, nodes, and effectors. 
For example, changing the range over which the avoidance 
reaction occurs will prevent the objects from moving between 
the eight obstacles and force them to take the long way around 
to the goal white cube at the upper right. 

4.2. Attraction and Avoidance in Three Dimensions 

Figure 6 shows a similar attraction/avoidance behavior in 
three dimensions. The tall blocks are obstacles that do not 
move. The two cubes are attractors that cycle the cubes due to 
constant forces being applied to their effectors. The 
tetrahedrons are objects with senses. The tetrahedron that 
cycles in the center of the obstacles is attracted to everything 
except other tetrahedrons. The other tetrahedrons are attracted 
only to the moving cubes. 

s. Discussion and Conclusions 

The purpose of this system is rather to devise a useful 
tool for animating and exploring behavior, than to exactly 
simulate biological circuits. Very early it became clear that 
senses and nodes should be as high-level and sophisticated as 
possible, in order to simplify the user's task of building net
works. This involves a conceptual move away from low-level 
Braitenberg vehicles and similar connectionist systems such 
as McCullough-Pitts neurons,12 logic circuits, and neural nets. 
15 

Behavioral animation is not expected to be the answer to 
all problems of specifying animation, any more than are any 
of the many other techniques such as key-positioning, 
hierarchical control, inverse kinematics, or dynamics. The 
ideal animation system should contain all of these tools. 
Behavioral control might be best used for generating group 
behaviors, or finding paths through an environment. Once a 
possible pattern is devised, other techniques could be brought 
in to refine the motion. Behavioral control is one tool among 
many to aid the animator in bringing his or her own vision to 
life. 

References 

1. Norman I. Badler, Kamran Manoochehri, and Graham 
WaIters, "Articulated Figure Positioning by Multiple 
Constraints," IEEE Computer Graphics and Applica
tions, vol. 7, no. 6, pp. 28-38, June, 1987. 

2. Ronen Barzel and Alan H. Barr, "A Modeling System 
Based on Dynamic Constraints," SIGGRAPH '88 
Conference Proceedings, vol. 22, no. 4, pp. 179-188, 
August, 1988. 

3. Valentino Braitenberg, Vehicles, Experiments in Syn
thetic Psychology, The MIT Press, Cambridge, Mas
sachusetts, 1984. 

4 

4. Lynne Shapiro Brotman and Arun N. Netravali, "Motion 
Interpolation by Optimal Control," SIGGRAPH '88 
Conference Proceedings, vol. 22, no. 4, pp. 309-315, 
August, 1988. 

5. Michael Chen, S. Joy Mountford, and Abigail Sellen, "A 
Study in Interactive 3-D Rotation Using 2-D Control 
Devices," SIGGRAPH '88 Conference Proceedings, vol. 
22, no. 4, pp. 121-130, August, 1988. 

6. David Forsey and Jane Wilhelms, "Manikin: Dynamic 
Analysis for Articulated Body Manipulation," Graphics 
Interface' 88, June, 1988. 

7. AlIen Van Gelder, 1988. Personal Communication. 

8. Michael Girard and Antony A. Maciejewski, "Computa
tional Modeling for the Computer Animation of Legged 
Figures," SIGGRAPH '85 Conference Proceedings, vol. 
19, pp. 263-270, July, 1985. 

9. James K. Hahn, "Realistic Animation of Rigid Bodies," 
SIGGRAPH '88 Conference Proceedings, vo!. 22, no. 4, 
pp. 299-208, August, 1988. 

10. Paul M. Isaacs and Michael F. Cohen, "Controlling 
Dynamic Simulation with Kinematic Constraints," SIG
GRAPH '87 Conference Proceedings, July, 1987. 

11. James U. Korein and Norman I. Badler, "Techniques for 
Generating the Goal-Directed Motion of Articulated 
Structures," IEEE Computer Graphics and Applications, 
vo!. 2, no. 9, pp. 71-81 , November, 1982. 

12. W. S. McCulloch and W. H. Pitts, "A Logical Calculus 
of Ideas Immanent in Nervous Activity," Bulletin of 
Mathematical Biophysics, vo!. 5, pp. 115-133, 1943. 

13. Matthew Moore and Jane Wilhelms, "Collision Detec
tion and Response for Computer Animation," 
SIGGRAPH '88 Conference Proceedings, vo!. L.L., no. 4, 

pp. 289-298, August, 1988. 

14. Craig W. Reynolds, "Flocks, Herds, and Schools: A Dis
tributed Behavioral Model," SIGGRAP H '87 Conference 
Proceedings, vol. 21, pp. 25-34, Association for Comput
ing Machinery, July, 1987. 

15. David Rumelhart, James McClelland, and the PDP 
Research Group, Parallel Distributed Processing, 
Volumes 1 & 2, The MIT Press, Cambridge, MA, 1986. 

16. Demetri Terzopoulos, John Plait, Alan H. Barr, and Kurt 
Fleischer, "Elastically Deformable Models," SIG
GRAPH' 87 Conference Proceedings, July, 1987. 

17. Jane Wilhelms, "Using Dynamic Analysis for Anima
tion of Articulated Bodies," IEEE Computer Graphics 
and Applications, vol. 7, no. 6, June, 1987. 

18. Jane Wilhelms, "Dynamics for Computer Graphics: A 
Tutorial," Computing Systems, pp. 63-93, USENIX 
Association, Winter, 1988. also UCSC Computer and 
Info. Sci., Tech. Report UCSC-CRL-87-5 

19. Andrew Witkin, Kurt Fleischer, and Alan H. Barr, 
"Energy Constraints on Parameterized Models," SIG
GRAPH '87 Conference Proceedings, (Anaheim, CA, 
July, 1987). 

20. Andrew Witkin and Michael Kass, "Spacetime Con
straints," SIGGRAPH '88 Conference Proceedings, vo!. 
22, no. 4, pp. 159-168, (Atlanta, GA, August, 1988). 

Graphics Interface '89 



21. David Zeltzer, "Motor Control Techniques for Figure 
Animation," IEEE Computer Graphics and Applica
tions, vol. 2, no. 9, pp. 53-60, November, 1982. 

5 

Figure 1. Transfer Functions 

Figure 2. The Graphics Window 

Graphics Interface '89 



6 

Figure 3. The Animation Control Window 

Figure 4. The Active Object Window 

Graphics Interface '89 

- - - --- - - -



7 

Figure 5. The Network Window 

Graphics Interface '89 



8 

Figure 6. Three Dimensional Attraction/Avoidance Behavior 

Graphics Interface '89 


