
113 

Anti-Aliasing Issues in Image Composition 

Christopher D Shaw 
Mark Green 

lonathan Schaeffer 

Department of Computing Science 
University of Alberta 

Edmonton, Alberta, Canada, T6G 2H 1 
{ cdshaw, mark, jonathan } @alberta.uucp 

Abstract 

This paper describes a new parallel architecture for per­
fonning high-speed raster graphics. This architecture relies on 
an extension of the Z-buffer algorithm called Composition, due 
to Duff. Duff's algorithm proves to be too complex for our 
implementation technology, so modifications of Duff's algo­
rithm are introduced and evaluated experimentally. The two 
major issues addressed are anti-aliasing performance of the 
new algorithm where the rasters intersect in Z, and the anti­
aliasing performance of composition in scenes of high depth 
complexity. 

Resume 

Cet article decrit une nouvelle architecture param~le pour 
executer des graphics "rasters" a grande vitesse. Cette architec­
ture est en fait une extension de l'algorithme Z-buffer appele 
Composition propose par Duff. L'algorithme de Duff s'avere 
trop complexe pour notre application; On y introduit des 
modifications qui sont evaluees experimentalement Les deux 
points importants sont les performances d'anti-aliasing du 
nouvel algorithme ou les "rasters" intersectent en Z, et les per­
formances d ' anti-aliasing pour les compositions de scenes 
complexes de grande profondeur. 
Keywords: Image Quality, Parallelism, Computer Hardware 
Architecture, VLSI Implementation. 

1. Introduction 
With the steady increase in demand for higher and higher 

performance graphics, traditional designs utilizing a geometry 
pipeline and a fast rendering chip are starting to meet severe 
technological limits. Parallelism offers an escape from this per­
formance limit The method of graphics parallelization that we 
propose breaks up the graphics production task by object. The 
modeling task in a host processor distributes graphical objects 
(collections of polygons) to a number of independent general­
purpose Graphics Processors (GP). Each GP performs the 
geometry and rendering tasks on one graphical object without 
communicating with other GPs. Each GP creates a full 
coverage-enhanced raster which displays its graphical object 
on a transparent black background. Each GP could be as simple 
as a microprocessor or as complex as a geometry pipeline feed­
ing a rendering processor. 

The advantage of an object-based system is that the 
modeling and rendering computations can be all be performed 
independently on an object-by-object basis, thus allowing the 
possibility of linear speedup over N processors. One clear 
disadvantage of the object-level approach is the combination 
task that must be performed upon the N rasters that are pro­
duced by the N GPs. We have developed a VLSI architecture 
which solves this problem by implementing an anti-aliasing 

variation of Z-buffer called Composition [Duff85, Porter84). 
This architecture utilizes parallelism in a way that has not been 
adequately explored to date. In particular, while the Host-GP 
setup shown in figure I is not new, other methods that have 
been proposed until recently for combining the resultant rasters 
have been unsatisfactory. 

The object-level approach has been proposed before, 
namely by Weinberg [Weinberg81], and by Fussel & Rathi 
[FusseI82), A system like Weinberg' s has been implemented 
recently [Deering88], and an extension of Weinberg's system 
has appeared in [Schneider88), Each of the systems has disad­
vantages: Weinberg's system performs anti-aliasing, but does 
so at the expense of low data throughput due to the buildup of 
pixel contributions. Fussel and Rathi's system allows for rapid 
lock-step pixel production, but does not perform anti-aliasing 
due to its use of Z-buffer. Our system uses a hybrid Z-buffer 
approach which does not suffer unduly from either of these 
problems. 

Section 2 describes the Composition architecture, while 
sections 3 and 4 discuss what algorithms might be used to per­
form the Composition task. In section 5 we discuss various 
methods of simplifying Duff's composition algorithm for VLSI 
implementation. Sections 6, 7, and 8 report on experiments 
performed to evaluate in terms of image quality the various 
approximations. Section 9 discusses the effect of random depth 
order of independent rasters, and section 10 offers some opin­
ion on the quality of an image given the statistical results 
reported in section 8. 

2. The Composition Architecture 
We have designed a pipelined VLSI chip which performs 

the combination task upon the N rasters that are produced by 
the N GPs. The combination is performed by a binary tree of 
composition processors called Compositors. Each Compositor 
takes two rasters in the coverage-enhanced Z-buffer format, 
and composes this pair of rasters into one raster of the same 
format. Since the composition operation produces output in the 
same format as its input, we can take a pair of composed 
frames and compose them also. This composition process con­
tinues until one final raster is produced. Thus, for N rasters, we 
can form a tree of N-l Co~sitors. If M is the height of the 
tree, we can combine N=2 rasters into one final raster, as 
shown in figure 1. The output of the root Compositor feeds 
data to a frame buffer which displays the raster on a CRT. 

In total, there are N-l Compositors, with the root of the 
tree producing the final raster picture of the entire model 
cr<;ated by the modeling subtask. Each Compositor takes a 
fixed amount of time to compose each pair of pixels, so the 
root Compositor can feed results to the frame buffer at a fixed 
rate. A concise description of the system is available in 
[Shaw88b], with more details in [Shaw88a]. With a change in 
the control structure, it is equally possible that this system 

Graphics Interface '89 



could be built as a linear pipeline, in a manner simiiar to 
Weinberg's proposal. In this configuration, each Compositor 
takes data from the previous pipe element and from its local 
GP. Each Compositor passes its results to the next in the pipe, 
and the last Compositor passes its results to the frame buffer. 
The advantage would be easy scalability to any number of pro­
cessors without much effort. The problem potentially lies in 
error accretion. The number of Compositors that a pixel must 
pass through is an average of !f in the linear setup versus Iog,jl 

with the tree arrangement. Since each Compositor approxi­
mates Duff's algorithm, errors may build up after a number of 
composition steps. From an error point of view, the fewer 
steps, the better, which is what the tree offers. We will address 
the error accretion issue later in this paper. 

Figure I: High-Level View of the Composition Architecture 

3. Which Algorithm? 
The algorithm to perform composition relies upon cover­

age information stored in each pixel much in the same way that 
the Z-buffer algorithm stores depth information. Two algo­
rithms have been developed and reported in the literature 
which use coverage data in two forms. Carpenter's A-Buffer 
system [Carpenter84] is an anti-aliasing version of Z-buffer. 
The coverage measure used is a bitmap of the pixel at subpixel 
resolution. Each bit of the bitmap indicates whether its fraction 
of the pixel is covered by a polygon from the source raster. The 
bitmap approach to coverage estimation has antecedents in 
work by Catmull [Catmu1l78] and Crow [Crow8!], which sug­
gest the use of subpixel information to perform anti-aliasing. 
Similarly, work by Fiume et al. [Fiume83] advocates enhanc­
ing Z-buffer with subpixel resolution information for the pur­
poses of parallel implementation on a shared-memory machine. 

However, the key restriction with A-Buffer is that each 
pixel's contributions must be sorted in order of depth, which is 
impossible in our architecture, since the Compositor combines 
arbitrary pairs of pixels. From an architectural perspective, A­
Buffer requires a two-stage setup like Weinberg's pipeline 
architecture. The first stage sorts a list of pixel data, and the 
filter processors perform the contribution calculation of A­
Buffer. 

Duff's composition method [Duff85] offers a slightly 
different approach to the coverage problem Duff stores an 
area component a with each pixel. a is a real number in the 
closed range [0.0 .. 1.0], where a value of zero indicates no cov­
erage and one indicates full coverage. When pixels for a source 
raster are produced, R, G, and B colour values are each multi­
plied by the coverage value for anti-aliasing. Thus, transparent 
black is where R, G, B and a all equal zero. . 

Aside from the addition of a, composition imposes a 
second change to Z-buffer organization, namely that Z values 

114 

are moved from the centre of each pixel to the pixel's corner. 
This means that the Z depth will be available to the four pixels 
that share each pixel corner (except at the raster's edges, of 
course). The composition takes pairs of rasters and composes 
the!I1 into one raster of the same format. To compose a number 
of Images, each image is composed with the destination raster. 
This movement of Z to the corner of the pixel requires that an 
extra row and column of Z's be supplied at the bottom and 
right edges of the raster in order to correctly process the last 
row and column. 

A depth sort of the pixel contributions will produce the 
best results, but Duff's experiments show that ignoring the 
order of composition causes no error in most situations, and 
only a small detriment to the picture quality in certain special 
cases. We will elaborate a little more on this issue later. 

The lack of a sort requirement means that composition 
does not suffer the unboundedness of A-Buffer. In fact, A­
Buffer cannot handle unsorted data at all, so Composition is the 
clear choice for our architecture. There is a trade-off however, 
since Duff's coverage measure does not include any positional 
information. 

4. Duff's Composition Algorithm 
With two rasters named Rasl and Rasl, two pixels 

piulR .. t and piulR .. 2 are composed by first comparing the four 
corner Z values of each pixel. If the comparisons all yield the 
same sign, then the pixel which is in front is the result pixeL 
However, as shown in three examples in figure 2, some pixels 
will intersect: that is, the Z comparison in some corners will be 
of the opposite sign of the Z comparison in other corners. In 
this case, we must determine the fraction ~, which is the cover­
age ratio between the two pixels. 

Z>O I-- ~2 --l Z~ Z>O Z>O ~ I- ~3 ~ Z>O 

T~ ~l;dI E~~r ~t T jl4 

J.. Ras2 .L .L ~t .L 
Ras2 J.. Rast R2 

Z<O Z~ z~ ~ Z>O I- ~2 ~ Z~ 

Figure 2: Three Examples of inlersecting Pixel Contributions 

~ is determined by finding the points of Z intersection 
along pixel edges which have corners of opposite sign. These 
intersection points yield a dividing line between the contribu­
tion of piulR .. t and the contribution of piulR .. 2. The number ~ is 
the fraction of the pixel taken up by piulR .. t • In the left example 
in figure 2, ~ would be the proportion of the pixel labeled 
Rasl, which equals about 30% of the pixel area. 

With ~ in hand, the following equations are evaluated to 
find the final values of piul. . Here just the equation for Red 
is shown, since the equation;{or Green and Blue are identical. 

R • ....,.=~x(RR ... t +(l-<lR.,t)XRR ... V + 

(l-~) x (RR ... 2 + (l-~ ... v x RR ... t) 

a. ..... ~.,2+~ ... t-~ ... 2X~ .. t 
Ze ..... =Min(ZR .. t ,ZR .. 2) 

(1) 

(2) 

(3) 

After equations (1-3) are algebraically simplified, they 
amount to one minimum operation to calculate Z. one add, one 
subtract and one multiply for a, and eight multiplies, three adds 
and three subtracts to calculate R, G, and B. None of these 
operations are difficult to implement in YLSI, and with clever 
pipeline scheduling, two small pipelined multipliers can per­
form all the required multiplications at the same rate that data 
is input to the chip. 

However, ~ must be calculated from two or four interpola-

Graphics Interface '89 



tions of the Z intersection point along each edge of differing 
corner sign. An edge interpolation is called edge~, and each is 
the proportion of the edge taken by Rasl, calculated as fol­
lows: 

~_ IdiJhul l 
edge - I diffR4I 1 I + I diffR.,2 I 

(4) 

Here dif!R .. l is the difference between Rasl and Ras2 Z's in the 
corner where Rasl is nearest to the viewer. Conversely for 
dif!R.,2. 

5. Estimating ~ Without Floating Point 
The ~ calculation is substantial, since at least two edge~s 

must be evaluated to form ~, meaning that at least two divi­
sions must be performed for each pixel. Gate limitations in the 
gate array technology used to implement the Compositor pre­
clude a full floating point calculation. Division is a complex 
operation to implement, and should be avoided if at all possi­
ble. 

We have performed experiments over a number of raster 
composition situations using various approximation algorithms 
for ~. Each raster produced by an approximation was statisti­
cally compared to a reference raster produced by Duffs algo­
rithm. The remainder of the paper will describe how the experi­
ments were performed, the types of approximations used, and 
the statistical analysis used to evaluate the results. 

There are three aspects to estimating ~ without using 
Duff's algorithm. These aspects may be considered as 
independent axes and there is a Cartesian product of estimation 
procedures in which one "value" from each axis is chosen to 
form an estimation candidate algorithm. The purpose of a can­
didate algorithm is to perform the linear interpolation algo­
rithm without using division. 

The first axis is the pattern of estimation, which classifies 
where Z data is to be sampled in the pixel. One of these sam­
pling patterns has been discussed in the literature [Catmu1178] 
[Crow81]; we will introduce a different pattern specialized for 
the ~ estimation problem. 

The second axis is the quantity of data collected per sam­
ple. Thus, for a given pattern, more data can be collected to 
give more accurate results. 

The third axis is the model of estimation. A model 
abstractly describes how the estimation is to be calculated, but 
does not concern itself with implementation details. That is, a 
model tells how a particular set of pixel Z samples are to be 
combined into an estimate of ~, while a pattern tells where the 
pixel is to be sampled. For a given model, there may be many 
patterns collecting different amounts of data. 

5.1. Patterns of Data Collection 
. All of the patterns of data collection are based upon using 

corner Z comparisons, and the comparison of various combina­
tions of corner Z values. We will call these combinations of 
corner Z values aggregate comparisons, and the corner Z com­
parisons fundamental samples. For example, two types of 
aggregate comparisons considered were edge-midpoint and 
centre-pixel. The centre-pixel comparison is as follows: 

(Z(x .y) ... ,+Z(x-IJI) ... ,+Z(x JI-I) ... ,+Z(x-IJI-I) ... ,) - (5) 

(Z(x JI ) ... ,+Z (x-I JI ) ... ,+Z (x JI-I) ... ,+Z (x-I JI-I) •• ,,) 

Similarly, the left edge-midpoint comparison is generated by 
the following: 

Left Edge =Z(x-IJI) ... ,+Z(x-IJI-I) ... ,-Z(x-I.y) ... .-Z(x-IJI-I) ... , (6) 

The point to mention here is that each aggregate is a sam­
ple of the difference between Z contours of the two source pix­
els at a particular point on the pixel. Each sample therefore 

115 

requires the weighted sum of the corner Z values. Also, each 
aggregate sample is simple to calculate since it is simply the 
sum of at least two more fundamental samples. The easiest 
ones to calculate are those that are a sum of two fundamental 
samples. 

In terms of implementation, most patterns will use only 
the sign of the aggregate comparisons to generate ~ values. 
More data per sample can be collected, but the pattern remains 
the same. The pattern classes that were experimentally 
evaluated are: 
1) The NxN pattern, in which N 2 samples are collected at 

equally-spaced grid points within one pixel. For example, 
if N =2, the four corner samples are used. If N =3, the four 
corners, the four edge-midpoint aggregates, and the whole 
pixel aggregate is used. 

2) The edge-only pattern, in which samples in the NxN pat­
tern which lie only on a pixel edge are used. This implies 
4N-4 samples, which are fairly simple to calculate from 
fundamental samples. 

5.2. Quantity of Data Collected Per Sample 
Traditional graphics algorithms sample a geometrical 

model in some sort of grid pattern to find which geometrical 
primitive is visible at the sample point. In this context, quan­
tity of information is unimportant. In the context of sampling 
the Z contour, however, gathering more information per sam­
ple is useful since we are sampling to find the line of intersec­
tion of exactly two planes by interpolation. Thus, instead of 
simply using the sign of the comparisons at each sample point 
(i.e. the most significant bit), we can use the most significant N 
bits of each sample as a basis for approximation. 

However, a naive implementation of multi-bit samples 
will not work unless the Rasl and Ras2 Z values differ in the 
N most significant bits. In other words, there is a magnitude 
problem. This can be solved by shifting all the differences left 
until the largest difference is fully "shifted in". Circuitry for 
this task is found in the mantissa normalization section of all 
floating point processors. However, integrating similar circui­
try in a Compositor will be impractical, since we need to 
simultaneously normalize four numbers by the same amount. 

5.3. Models of Approximation 
There are two basic models of evaluating ~ given a certain 

collection of samples. Each model rests on the concept of 
attaching a weight to a sample or set of samples, then manipu­
lating the weighted samples in some way. In the following 
sections, 3x3 or 3x3 edge-only patterns with one bit samples 
will be used to illustrate each model. 

5.3.1. Contribution Model 
The contribution model simply assigns weights to each 

sample. If a given comparison results in Rasl being closer, 
then the weight for that sample is added to the total. For a 
whole pixel, the sum of all weights equals one. The advantage 
of this model is that it is simple to implement. The challenge is 
to pick meaningful weighting values, as evaluated by experi­
mentation. Note that the contribution model performs a pixel 
filtering at subpixel resolution in much the same way as Crow 
mentions in [Crow81]. 

5.3.2. Linear Intersection Model 
At its simplest, the linear intersection model derives the 

final ~ value from a Duff evaluation using various edge~' s. 
That is, imagine a line intersection that would yield corner, 
edge-midpoint, and whole pixel comparisons of the particular 
given type, then generate the ~ value by using canonical edge~ 
values that suit the given situation. To maintain consistency, 
the canonical values chosen for the edge~'s are always the 

Graphics Interface '89 



same for a given (left, edge-midpoint, right) set of comparisons 
per edge. 

RI R2 

f f 
Real Est 

! * 
RI R2 

R2 R2 R2 

Figure 3: Real vs. Approximation Using Linear Intersection Model 

For example, figure 3 shows a pixel which has been sam­
pled in a 3><3 edge-only pattern with one bit samples. In this 
pixel, Rasl is nearer in the top left corner, and Rasl is nearer 
in the rest of the corners. The solid line shows the intersection 
of the two rasters. The R ( 1,2) labels at the four ed~es of the 
pixel show the results ot the edge-midpoint comparisons. The 
dashed line shows the estimated intersection. In this case, the 
canonical Left edge ~3/4, and Top edge ~3/4. This is used to gen­
erate /3=9/32. 

This is not to imply that we must use edgel3=3/4 whenever 
(left, edge-midpoint, right) = (Rasl, Rasl, Ras2). Experiments 
were done to evaluate the performance of composing various 
pictures using other canonical values for edge~. 

Clearly, the linear intersection model is best suited to 
edge-only sample patterns, since it is an analogue of the algo­
rithm that Duff uses to generate ~. NxN sample patterns do not 
fit this model. 

6. Experimentation 
As mentioned in section 5, a number of candidate algo­

rithms were developed by picking one "value" from each of the 
three "axes" of pattern, quantity, and nwdel. Each candidate 
was then evaluated by running it on a representative sample of 
raster pairs with intersecting Z values. The composed candidate 
raster was then compared with a reference raster composed by 
Duff's algorithm. However, a visual comparison is not 
sufficient, since colour effects and other differences distort the 
picture enough that small differences in picture quality are 
impossible to reliably distinguish. 

Therefore, a "raster difference" was performed, in which 
corresponding R, G and B pixel values are compared in a pair 
of rasters. If any of the values are different at a given location, 
then the absolute value of the difference is stored in a histo­
gram data structure. From this, the minimum and maximum 
difference and standard deviation are reported. Standard devia­
tion is measured by taking the sum of the squares of the 
differences divided by the number of pixels which differed in 
the picture. Standard deviation proved to be the most accurate 
performance metric. That is, the best pictures had the least 
standard deviations when compared to rasters composed by 
Duff's algorithm. 

7. Experimental Rasters 
The experiment performed was fairly simple. For each 

candidate algorithm, try the algorithm on the following sets of 
experimental rasters. Two classes of experimental rasters were 
used: 

The first, called the chevron class, was simply a pair of 
monochromatic rasters that were composed together to observe 
a candidate algorithm's performance with respect to the slope 
of the line of intersection. Both images consisted of one square 
monochromatic polygon which filled a frame buffer measuring 
64><64 pixels. The first source raster was a white square with Z = 
10000, Red, Green and Blue = 255, and 0;=1.0. 

116 

The second chevron source raster was a blue square with 
5000 < Z < 15000, Red = 0, Green = 0, Blue = 120, and 0;=1.0. 
The varying Z's created intersections in a chevron pattern, with 
the upper half of the 64x64 raster having intersections of posi­
tive slope, and the bottom half being a mirror image of nega­
tive slope. The left half of figure 4 shows an example com­
posed image, where the viewer is looking down the Z axis at 
the X -Y plane. The right half of figure 4 shows a profile of the 
image, where Z is the horizontal axis and Y is the vertical axis. 
The Z contour of the blue square, shown by the solid lines, is 
"corrugated", while the Z contour of the white square shown by 
the dashed line is flat. This image exposes all possible types of 
intersections: positive and negative slope, and Rast above and 
below the intersection line. 

White 

Figure 4: The Chevron Test Image 

The slopes of intersection used ranged from 0.0875 (acute 
chevron) to 11.4 (obtuse), in equal intervals of 5 degrees. Care 
was taken to avoid "nice" slopes like 1, since even Z-buffer 
looks good at slope 1. The slopes used are listed in table 1. 

Table 1: Chevron Slopes Tested 

Degrees Slope Degrees Slope 
5.00 0.087489 50.00 1.191754 

10.00 0.176327 55.00 1.428148 
15.00 0.267949 60.00 1.732051 
20.00 0.363970 65.00 2144507 
25.00 0.466308 70.00 2.747477 
30.00 0.577350 75.00 3.732051 
35.00 0.700208 80.00 5.671282 
40.00 0.839100 85.00 11.430052 

The second test raster set was a group of 8 mono­
chromatic rasters which were composed in arbitrary order so as 
to demonstrate the algorithm's ability to handle both the inter­
section of random depth-ordered cases and the intersection of 
more than two rasters in one pixel. The final composed result 
of the 8 mono rasters was a pinwheel. 

Figure 5: The Pinwheel Test Image 

Each of the 8 rasters was a unique colour generated by 
setting R, G, and B to either 0 or maximum (255). This colour 
choice guarantees that any two rasters will have at least one 
colour channel that differs by 255, which is important for sta­
tistical purposes. The Z contour in this case was a simple plane 

Graphics Interface '89 



set up in such a way that maximum gradient from the centre of 
the raster was in a unique direction for each raster. Figure 5 
shows an example of the final composed result of these 8 ras­
ters. 

Since there is 8-way symmetry, the range of slopes for the 
upper intersection of the red section of the pinwheel lies from 5 
to 40 degrees in steps of 5 degrees. The first column of table 1 
shows the slopes used. These slopes represent a range of data 
that one can expect in real pictures. 

8. The Candidate Algorithms 
We will group the candidates according to model. The 

first model to consider is Linear Intersection. The pattern in 
this case is edge-only, with N equal to 2 or 3 for a total of four 
or eight samples respectively. Each sample pattern was tried 
with I, 2, and 3 bits per sample. This yields 6 major candi­
dates. However the 3x3 edge-only sample pattern with one bit 
per sample can be subdivided into a number of minor candi­
dates which differ in the values of the canonical values of 
edge~s used. A total of six variant edge~s were used. The pur­
pose of these variants was to test for the best values for the 
canonical edge~s. 

We did not use canonical edge~ values for the 2 and 3 bit 
sample because with more bits per sample, the linear interpola­
tion algorithm can be used directly but with reduced precision. 
For the 2x2 pattern, the result is similar to Duff's algorithm 
with N-bit Z values. With the 3x3 pattern, the interpolation can 
take place on either the left or right half of a pixel edge, since 
the Z planes cross in one half only. 

Table 2 shows the performance of all of the candidate 
algorithms except for the 3x3 pattern with one bit samples. The 
numbers listed for each candidate are the minimum, maximum, 
and arithmetic mean of the standard deviations for the chevron 
and pinwheel pictures. Table 3 shows the performance of the 
candidate algorithms with the 3x3 pattern using one bit sam­
ples. The two extra columns list the canonical edge~s used. 
For the pinwheel figures, about 90 pairs of rasters were compo­
sited for each candidate algorithm. For the chevron picture, 16 
raster pairs were tested. The algorithms labelled in the Name 
column will be referred to again later. 

Table 2: Picture Performance - Linear Model 

Bill per o,cvron Pinwheel 

Name Pattern Sample Min Mu Mean Min Mu Mean 

2x2 1 22.22 35.58 26.51 21.87 35.63 25.02 

2><2 2 12.29 20.32 16.04 12.68 21.66 15.38 

2><2 3 6.85 12.53 9.38 5.52 17.30 8.91 

A 3x3 2 6.76 15.36 11.15 7.75 15.87 11.04 

B 3x3 3 2.48 9.35 6.24 4.99 13.43 6.80 

Table 3: Picture Perfonnance - Linear Model Using Canonical edgejlS, 3x3 

Pattern, I bit per sample. 

Chevron PU.wheel 

Name edgejll edgejl2 Min Mu Mean Min Mu Mean 

0.375 0.625 17.07 40.35 24.83 17.14 38.13 22.17 

0.333 0.667 14.68 34.40 21.53 14.95 32.61 19.n 

C 0.25 0.75 13.97 28.12 18.44 13.37 27.50 18.44 

0.20 0.80 15.42 29.90 20.13 15.49 30.50 20.OS 

0.15 0.85 19.35 35.33 24.01 19.45 36.93 23.24 

0.125 0.875 21.69 39.93 26.89 22.26 41.32 25.85 

117 

Not too surprisingly, the best performance is achieved by 
the algorithm that takes the most and deepest samples. The best 
variant algorithm in table 3 has the canonical edge~s at the 
midpoint between the samples. This corresponds to the situa­
tion where the linear intersection algorithm is given two Z 
differences of equal magnitude and opposite sign. 

Using the best candidate of table 3 to compare with table 
2, the means of the standard deviations reduce by a factor of 
approximately 0.6 for every extra bit added to sample depth in 
the 2x2 pattern. For the 3x3 pattern, the same effect holds: add a 
bit to each sample to reduce the mean error to 0.6 times its 
current value. 

Interestingly enough, increasing the number of samples is 
only marginally less effective: Going from 2x2 to the 3x3 edge­
only pattern reduced the mean standard deviation by a factor of 
0:695 for one or two bits per sample, and by 0.668 for three 
bIts per sample. In terms of hardware trade-offs, it is clear that 
unless a narrow bit-width divider can be built for less than 15% 
more cost than an adder, collecting more samples per bit is not 
worth the bother. Considering the requirement for normaliza­
tion circuitry, the divider option is clearly not viable. 

The second model to consider is the Contribution model. 
T~o patterns are useful in this context: either edge-only pattern 
wlth N equal to 2 or 3 for a total of four or eight samples, or 
the square pattern with N equal to 3 for nine samples. Each 
sample pattern was tried with only 1 bit per sample since the 
contribution model does not do any interpolation between sam­
ples. 

There are therefore three major candidates: the first is the 
2x2 pattern, the second is the 3x3 edge-only pattern with 5 vari­
~ts, and ~e third majo: candidate is the 3x3 square pattern 
With 5 vanants. Each vanant uses a different set of weights for 
the three sample positions. Table 4 shows the performance of 
all of the candidate algorithms in a similar manner to table 3. 
The "Corner", "Edge", and "Centre" columns indicate the 
weights used. 

Again, more samples give better results, although it is a 
mild surprise that adding the centre weight should decrease the 
best-case mean by a factor of 0.659, especially since the 
improvement by going from the 2x2 pattern to the edge-only 
3x3 pattern is 0.592. 

There are two candidates tied for first place with the 3x3 
square pattern, based on the chevron results. The slightly worse 
candidate (named D) implements a 3x3 Bartlett filter [Crow81], 
while the better candidate increases its centre weight at the 
expense of the corner weights. The third place candidate 
expands the centre weight at the expense of the edge weights in 
comparison to the Bart1ett scheme, but to less effect. The 
fourth-place candidate is a box filter with equal weights every­
where, and the last candidate has the greatest weights on the 
pixel periphery. 

In terms of hardware, the easiest candidate to implement 
is the Bart1ett filter, since all the weights are negative powers 
of two, and all the samples are I bit. Once the samples have 
been generated, a compact adder circuit can calculate the 
approximate ~. The best one-bit-sample linear intersection can­
didate (algorithm C in table 3) had a mean only 1 less than the 
Bartlett filter candidate. Since some nontrivial hardware must 
calculate the linear intersection from the two edge~s, clearly 
the Bart1ett filter is best given tight hardware constraints. 

9. The Effect of Depth Order 
There are three aspects to consider with respect to how 

approximations of the Composition operator handle randornly­
ordered polygon data. The first is the problem of error accumu­
lation mentioned in section 2. The second aspect is how pixels 
or groups of pixels in areas of high depth complexity might be 
wrongly calculated. The third issue is how the algorithm han­
dles anti-aliased edges on a transparent black background in 

Graphics Interface '89 



118 

Table 4: Picture Perfonnance - Contribution Model 

Name Pauem Corner Edge Centre 
2X2 .25 - -

3><3 .0625 .1875 -
3><3 .0833 .1667 -
3><3 .111 .1388 -
3><3 .125 .125 -
3><3 .1667 .0833 -
3><3 .05 .125 .3 

D 3><3 .0625 .125 .25 
3><3 .0625 .09375 .375 
3><3 .111 .111 .111 
3><3 .125 .1035 .0858 

- the source raster in areas of high depth complexity. 
The first issue is easy to solve, since error buildup can 

occur in only two situations: either there is a pixel intersection 
in Z. causing an approximate ~ to be used, or there is an anti­
aliased edge of partial coverage being composed over a non­
transparent pixel. Clearly the ~ approximation is our only con­
cern, since this is the only source of error; our algorithm does 
accurate calculations with a, so therefore erroneous new pixel 
values will not arise due to the numerical inaccuracy of a­
based calculations. 

So, the only source of error is the ~ approximation. This 
can hurt us if the final resultant pixel has more than one surface 
visible in it. In other words, three or more surfaces must inter­
sect at the same pixel(s). If only two surfaces are visible in the 
final raster, then they could only have undergone one pixel 
blending step as the component rasters passed from Composi­
tor to Compositor. Therefore error will build up in pixels 
where three or more planes intersect. However, these cases will 
be rare, and the only way that it will be noticed is if the three or 
more surfaces intersect over a large body of pixels, say in a 
straight line. 

·The pinwheel test case helps illustrate the situation with 
full-coverage high depth complexity pixels. An experiment 
was performed to compose the 8 source rasters in 8 arbitrary 
orders. The algorithms used were Duff's linear intersection, 
plus the approximate algorithms A through D from the above 
tables. 

The result was visually indistinguishable no matter which 
order the 8 source rasters were composed in. Statistics were 
collected to compare all of the composed rasters which used 
the same algorithm. The reason for this being that the same 
algorithm should yield similar results and therefore small raster 
differences. Significantly, the mean standard deviation was 
similar for the 5 algorithms tested, as shown in table 5. 

Table 5: Performance In Areas Of High Depth Complexity 

Pauem Bits Model Algorithm MeanStdDev 
Duff Duff 9.75 

3><3 2 Linear A 13.89 
3><3 3 Linear B 13.85 
3><3 1 - Linear C 16.27 

3><3 1 Contribution D 13.12 

The final issue is how compoSItIOn performs when a 
number of rasters are combined in arbitrary order that have 
anti-aliased edges with a<l. Consider three 3><3 pixel rasters A, 
B, C in order from nearest to farthest. A has an anti-aliased 
edge through the middle column, and B and C are mono-

Chevron Pinwheel 
Min Max Mean Min Max Mean 

40.49 67.19 49.61 40.38 64.61 44.13 

26.14 35.62 29.38 27.00 34.56 29.51 
27.61 38.08 30.14 26.25 35.93 28.86 
27.36 43.36 32.03 27.42 39.52 29.75 
27.34 43.85 32.84 27.38 41.28 30.09 
29.83 51.19 37.57 30.0 48.55 33.91 

14.13 32.21 19.36 13.84 32.04 16.66 
14.70 31.34 19.40 14.65 30.57 17.16 
16.40 32.68 21.29 15.93 33.28 18.82 
21.47 37.57 26.33 21.24 35.32 24.13 
23.18 40.61 28.81 22.92 38.71 25.58 

/IX 
y z 

Raster A--~'/ 

Figure 6: Two rasters A and C. A has two columns by three rows and is at 
least depth. The right column is an anti-aliased edge. The dashed lines about 
A show Z=-. The doned diagonal line is the edge being sampled. Raster C 
is at greatest depth. with Z = constant throughout. 

/IX 
y Z 

Raster AC 

RasterAC ---~\~ __ ~ 

Figure 7: Rasters AC and B. AC is the result of composing A and C. The 
centre column of pixeis of AC pass through the centre column of B, inter­
secting at the dashed line. The final Z contour result of composition does 
not reflect the partia1fiUing due to a coverage. 

chromatic at constant depth. Figure 6 shows rasters A and C 
before composition. There are two columns of shaded pixels in 
A, with the right edge of the right column shown dashed to 

Graphics Interface '89 



indicate that it is at infinite depth. The a's indicate coverage for 
the three partially-shaded pixels of A. The vertical dotted lines 
are parallel to the Z axis on the periphery of raster A. 

Figure 7 shows raster AC, formed by composing rasters A 
and C. AC has a cliff-like Z contour with Z values equal to 
those for A on the left and Z values equal to those for C on the 
right of the cliff. The cliff face is a blended colour determined 
by using A's a values. After the a-blending process, the new 
a=l for all raster AC. However, the cliff is parallel to the Y 
axis, which means that when the anti-aliased edge of A contin­
ues into the next column, the cliff suddenly jumps into that 
column. 

In figure 7, when B is composed with AC, the resulting 
raster will form a straight intersection along the cliff face of 
AC, shown as a dashed line across the cliff face. This arises 
from picking up constant Z differences between A and B on the 
left and C and B on the right, yielding constant ps for all three 
cliff pixels. In situations where the anti-aliased edge of A con­
tinues into the next column, the intersection line between AC 
and B suddenly changes, giving rise to a jagged artifact at the 
pixel of the column change. 

The solution is to only compose objects that are in adja­
cent depth order, which requires that the modeling task in the 
host processor be prepared to swap object descriptions around 
from GP to GP. However, our experience indicates that the 
aliasing artifacts are not terrible, so in most applications this 
can be ignored. That is, the aliasing is noticeable, but not 
nearly as bad as what Z-buffer would produce. Secondly, as 
more and more rasters are composed between A and C such 
that each new raster is visible at the edge of A, the aliasing 
does not get too much worse. 

A second problem also exists with pre-anti-aliased edges, 
and that is co-ordinated edges. If two anti-aliased edges meet, 
problems occur at the meeting point. Normally this is not a 
problem, except if the two edges are part of the same object 
that is being rendered by two separate GP's, then the aliasing 
will be apparent. A similar high-level solution is used: ensure 
that the modeling task informs the GP's of any coordinated 
edges, and the GP's can output coordinated edges at full alpha 
coverage and colour. This way, any intervening rasters will not 
disturb the coordinated edge, and the other coordinated edge 
will blend properly since it is at the same depth, colour and 
coverage. 

10. Picture Quality 
We stated earlier that picture quality judgment was too 

hit-and-miss to be left to one's visual capabilities. While this is 
still true, it is worth noting that there is a rough correspondence 
between the standard deviation and jaggedness when an 
approximation raster is compared against a Duff-produced ras­
ter. Rules of thumb, which seem to work well in this context, 
are that standard deviations less than 15 are "perfect" visually, 
deviations of 15-30 yields pictures that are "good" but have 
flaws on close examination, deviations of 30-45 indicate pic­
tures with readily detectable flaws, while 45 or more indicates 
a more or less aliased picture. Z-buffer yields a standard devia­
tion of 128. 

We are in the process of preparing a video tape which 
illustrates the effects of out-of-depth-order compositing in a 
dynamic environment, multiple planes visible in a pixel, and 
the pinwheel picture spinning. 

11. Conclusion 
We have addressed the major anti-aliasing issues that 

confront our Compositor architecture. They are the p approxi­
mation, random depth order intersection, and the issue of anti­
aliased edges in the source rasters. 

119 

The p approximation we will use is a 3><3 Bartlett scheme 
to sample the Z contour of two intersecting raster planes. This 
algorithm has the advantages of fairly high picture quality, and 
an inexpensive implementation. Higher-quality solutions 
would take up too much VLSI resources for the small improve­
ment in picture quality. 

Except for the rare case when multiple planes intersect in 
a line of pixels, our approximation is believed to be immune 
from error buildup. In our opinion, the probability of three or 
more planes intersecting in more than one pixel is extremely 
low, and therefore not worth worrying about unduly. In the 
more common case of three or more planes intersecting at a 
point, only the one pixel at that point can be wrong, probably 
in an area of high scene complexity. 

Future directions for research lie in two areas. The first 
area is the exploration of object-level parallelism for graphics 
modeling and production. The other area is for possible gen­
eralizations of the Compositor architecture. 

We are currently in the process of building a Compositor 
chip. 

References 

Carpenter84. 
L. Carpenter, The A-Buffer, an Antialiased Hidden 
Surface Method, Computer Graphics (Proceedings of 
SIGGRAPH '84) Voll8, N03, (July 1984), pp. 103-108, 
ACM SIGGRAPH. 

Catrnull78. 
E. C. Catrnull, A Hidden-Surface Algorithm with Anti­
Aliasing, Computer Graphics (Proceedings of 
SIGGRAPH '78) Vol12, N03, (August 1978), pp. 6-11, 
ACM SIGGRAPH. 

Crow81. 
F. C. Crow, A Comparison of Antialiasing Techniques, 
IEEE Computer Graphics & Applications Voll, Nol, 
(January 1981), pp. 40-48, IEEE Computer Society. 

Deering88. 
M. Deering, S. Winner, B. Schediwy, C. Duffy and N. 
Hunt, The Triangle Processor and Normal Vector 
Shader: A VLSI System for High Performance Graphics, 
Computer Graphics (Proceedings of SIGGRAPH' 88) 
Vo/22, N04, (August 1988), pp. 21-30, ACM 
SIGGRAPH. 

Duff85. 
T. Duff, Compositing 3-D Rendered Images, Computer 
Graphics (Proceedings ofSIGGRAPH '85) Voll9, N03, 
(July 1985), pp. 41-44, ACM SIGGRAPH. 

Fiurne83. 
E. Fiume, A. Foumier and L. Rudolph, A Parallel Scan 
Conversion Algorithm with Anti-Aliasing for a 
General-Purpose Ultracomputer, Computer Graphics 
(Proceedings of SIGGRAPH '83) Voll7, N03, (July 
1983), pp. 141-150, ACM SIGGRAPH. 

Fussel82. 
D. Fussel and B. D. Rathi, A VLSI-Oriented 
Architecture for Real-Time Raster Display of Shaded 
Polygons, Graphics Interface '82,1982, pp. 373-380. 

Porter84. 
T. Porter and T. Duff, Compositing Digital Images, 
Computer Graphics (Proceedings of SIGGRAPH '84) 
Voll8, N03, (July 1984), pp. 253-259, ACM 
SIGGRAPH. 

Graphics Interface '89 



Schneider88. 
B. Schneider and U. Claussen, PROOF: An Architecture 
for Rendering in Object Space, Third Eurographics 
Workshop on Graphics Hardware, Sophia-Antipolis, 
France, September 1988, pp. 31-40. 

Shaw88a. 
C. D. Shaw, The Image Composition Architecture: A 
Highly Parallel Graphics System, University of Alberta 
Master's Thesis, Edmonton, Alberta, August 1988. 

Shaw88b. 
C. D. Shaw, M. Green and J. Schaeffer, A VLSI 
Architecture for Image Composition, Third 
Eurographics Workshop on Graphics Hardware, 
Sophia-Antipolis, France, September 1988, (Available as 
U of A Tech. Report 89-1). 

Weinberg81. 
R. Weinberg, Parallel Processing Image Synthesis and 
Anti-Aliasing, Computer Graphics (Proceedings of 
SIGGRAPH '81) Voll5 , N03, (August 1981), pp. 55-61, 
ACM SIGGRAPH. 

120 

Graphics Interface '89 


