
9

ESCIM: A System for the
Investigation of Meaningful Motion

Siew Hong Yang
Colin Ware

School of Computer Science
University of New Brunswick

P.O. Box 4400
Fredericton, New Brunswick

CANADA E3B 5A3
bitnet: cware@UNB.ca

Abstract
A language is described whose purpose is the investiga­

tion of meaningful motion using Stimulus Response anima­
tion techniques. The language is capable of adjust ing the
shape, size and velocity of an actor in real-time computer
animation. Some results are presented showing how it is pos­
sible to generate such behaviours as chasing, avoidance and
hitting using this animation technique. A set of primitives
are presented which we find invaluable in the control of size,
stretch and velocity parameters when attempting to produce
fluid and meaningful interactions.

[(eywords: Motion Control, Animation.

Introduction

Stimulus Response (S-R) animation is computer animation
achieved by giving objects in a simulated environment rudi­
mentary sensory capabilities and the ability to respond to
other objects in the environment. Responses typically take
the form of movement 9r shape change which secify the state
of the objects in the next display frame. This simulated en­
vironment is placed in a loop, each cycle of-which generates
images based on the previous states. By this mechanism the
environment evolves over time and its creators can observe
the "social" interactions which take place. (Willhelms, 1987;
Lethbridge and Ware, 1987, Marion, et. al. 1984).

One of the most interesting challenges for S-R animation
is the discovery of simple rules for synthesizing purposeful
behaviour, or more precisely, for creating the impression of
purposeful behaviour (we do not wish to credit our programs
with intentionality, only with the appearance of intentional­
ity) . This would seem to be a difficult task but for the work
of psychologists such as Michotte(1963) and Basi li(1976) who
have shown that it is possible to induce such apparently
complex percepts as hitting, pushing, and aggression with
remarkably simple motions. The brain, apparently, is quite
ready to attribute purposeful intentions to simple geometric
objects given certain simple motion paths. There is also the
work of "synthetic psychology" (Braitenberg, 1984) which

appears to show that high level concepts such as love and
hate may be more easily synthesized than deduced by an
analysis of human (or animal) behaviour.

The ESCIM (Expressive Shape Control In Motion) is a
software system designed to make it easy to test the effect
of simple S-R rules on perceived behaviour. The system is
a direct successor to the PAM (Perceived Animate Motion)
system (Lethbridge and Ware 1987; Lethbridge and Ware, in
press) which we briefly describe first. Like ESCIM, PAM is
implemented on a Silicon Graphics IRIS Workstation. PAM
is a low-level T2 S-R control system which means that PAM
generates sequence of animation frames by making the re­
sponses of its actors a function of the previous two environ­
ment frames. In contrast to high-level systems, actors in
PAM respond directly by changes in position to changes in
their environment. PAM is also a two dimensional system
capable of controlling only planar environments. Pam's lan­
guage includes structures called Partial Response Functions
which define the response tendencies of an actor caused by
the states of its stimulus objects and also itself. The val­
ues returned by P art ial Response functions are combined
(by weighted summation) to produce the actual Behaviour
Functions. A disadvantage of PAM's language is that it pro­
hibits partial responses which involve a relation with more
than one stimulus object. Thus the user cannot tell a goalie
to stay between the goal and the ball, for example in a sim­
ulated hockey game. Although the partial responses to the
ball and to the goal can be summed to produce something
which looks similar. Despite such limitations PAM achieved
its goal which was to demonstrate that with simple deter­
ministic behaviour functions , a rich and interesting set of
behaviours such as pulling, pushing, escaping, and chasing
can be produced. Moreover, given the existence of the cor­
rect primitives, it can be relatively easy to produce smooth
natural motion.,

Building on the success of the PAM system, ESCIM is
a new S-R animation system that provides better extensi­
bility and flexibility, that uses a more readable language,
that a llows responses in the form of shape change and colour
change as well as position change, and that works in a 3-
D space. Like it 's predecessor, ESCIM also only allows re­
sponses based on two previous time frames (T2), but unlike

Graphics Interface '89

PAM, ESCIM abandons the idea of a stricly heirarchical Be­
haviour funcition in favour of a more general language based
on a rich library of stimulus and response functions.

Software Overview

The basic goal of ESCIM is to allow the rapid prototyping of
S-R animations. As such, it is of paramount importance that
it be capable of producing animation in real-time. The idea
is to investigate meaningful motion, not the animation of
complex rendered objects. To achieve this rapid prototyping
of animations we used a two stage approach. First the ani­
mation script, written in the ESCIM language, is complied
into a linked list of trees containing pointers to functions.
At the second interpretive stage this structure is traversed
to produce the real time animation. If, because of especially
complex S-R functions, the animation is still slow, then the
output of the interpreter can be sent to a file as a set of graph­
ics primitives. This file can subsequently be "played back"
by a simple program which reads the graphics commands
and executes the appropriate graphics primitives. Thus, the
software system of ESCIM consists of a compiler, a function
library, a display interpreter and a postdisplay processor.

Developed in the UNIX programming environment, the
parser component of the compiler has been generated using
the yacc software development utility. Given an input script
describing the desired animation scenes, this parser produces
a linked hybrid-node structure which is formed from two dif­
ferent types of nodes: conditional and response function. A
conditional node can contain a conditional expression which
incorporates a pointer to a stimulus function (to be evalu­
ated at run time) . The conditional node also, has an if and
an else pointer that can point to another conditional node
(and hence allows nested if-then-else structure in the sys­
tem) or to a response function node. A response function
node contains a pointer to one of the response functions in
the function library and it can be linked to another node of
the same type or to a conditional node. Other components
of the ESCIM compiler are a a scanner and an error handler.
The scanner generates a listing file which may contain error
messages and warnings from 'the error handler.

Once the input script is parsed and checked to be error
free, and the linked hybrid-node structure is created, the
display interpreter is called to traverse the linked structure
and hence to invoke functions in the function library. The
function library contains both the stimulus and the response
functions that are used for computations and for performing
responses; these functions define the sensing and responding
abilities of the actors. The response functions act directly on
the stored parameter values (velocity, size, etc.) of whatever
objects are specified. Whether a given response function is
called or not depends on values returned by the stimulus
function, (or functions) as specified by the ESCIM script.
Once the end of the linked list is encountered, the display
interpreter uses the modified object parameters and invokes
IRIS graphics routines to generate the new graphic display
frame. Following this a time frame is said to be elapsed and

10

the whole linked node structure is re-traversed.
Despite the emphasis on real-time performance, ESCIM

will slow down if either many objects or complex S-R func­
tions are envoked. For these occasions the output of the
real-time animation can be saved in a file of graphics prim­
itives subsequently played back. Since during playback no
calculation of S-R functions is needed the result is a con­
siderable speedup. An additional advantage of operating in
this mode, is that as the frames are saved, a depth sorting
of objects is done. This causes objects to be displayed in the
correct order for hidden object removal (this is not done in
the normal real-time display).

The Language

The ESCIM language is free-format and structural; semi­
colons are used as statement separators, An ESCIM input
script contains the following blocks, with those blocks em­
braced by '<' and '>' being optional:

< color definitions>

< environment controls>

< static object declarations>

(actors declarations)

< initializations >

(behaviours)

Optional color definitions are defined using the following
syntax:

define <color name> <color map index>
Environment controls provided in the ESCIM system are

as follows:

Environment Control Function
deLviewport defines screen area

for displaying the image
deLperspect defines a perspective

projection
deLortho defines an orthogonal

projection
defJookat defines a line of

sight and twist angle
deLpolar defines viewer position

in polar coordinates
deLcolor initializes a color

map color
deLmouseobj attaches the 6-D

mouse to an object

These optional control functions are invoked in the same way
as functions in C and defaults are used if not provided.

The reserved words "static" and "actor" are used to be­
gin static object and actor blocks. Two types of objects are
currently defined in the ESCIM system, namely cube and
ellipsoid. There is only a single version of the ellipsoid, ren-

Graphics Interface '89

dered using a series of filled circles. However, a cube can
also be filled, open at the front or unfilled. Reserved words
"ellipsoid", "fabox", "fbox" and "box" are used to declare
an ellipsoid, a filled cube, a front-opened cube and a unfilled
cube respectively along with nine parameters: position in 3-
D (3 parameters), orientation (3 parameters), stretch factors
(2 parameters), and size (1 parameter).

The optional initialization block provides a way of giving
each actor a starting velocity. This block shares the response
functions of the behaviour block. The word "init" is reserved
to identify the block.

Behaviour Definition

The "behave" reserved word starts the behaviour block. Two
types of statement are defined: (1) an if-then-else condi­
tional structure, and (2) a response function call. The if­
then-else structure is a follows:

<stmt> ::= if <eond expr> then
<stmt>

else
<stmt>

endif;
if <eond expr> then

<stmt>
endif;
<response fen name> «parameters» ;

Parentheses are optional between the "if' and "then" re­
served words. Four kinds of conditional expressions are de­
fined. Note that these have stimulus functions embedded in
them.

<eond expr>::= <stim fen > < reI op> <scalar>
<stim fen> < reI op> <stim fen>

11

I
I
I

< scalar> < reI op> < stim fen >
<eond expr> <bool op> <eond expr>

The relational operators are '<', '<=', ">', '>=', ' = ' and
' <> ', while the boolean operators are '&' and 'I' for logical
and and or respectively. The system is designed to make it
easy to add new functions to the environment. Some of the
stimulus and response functions which we have installed so
far are listed in the tables below.

Stimulus Function Function Description
timetoreach calculate the number of time frames

for one object to reach another

distance calculate the nearest distance
between two objects

changedist calculate the changed distance
between two objects

velocity return the current velocity of
an object

volume return the volume of an object

sIze return the major axis length
of an object

Response Function Function Description
add speed increase or decrease the

magnitude of velocity
against cause one object to move

in opposite direction to the other
gravity cause an object to be under

the influence of gravity
invisible cause the image of an object

not to be displayed
away /towards cause one object to

move away from or towards another
orbit cause one object to dodge

around another
mulspeed adjust velocity of an object

with a multiplier
reflect reflect an object away from

another
setvelocity give an object a velocity
squash shorten an object in the

direction of another
stretch stretch an object in its

direction of movement
stretchvel cause an object to stretch

as its velocity changes
stretchdist stretch an object according to

its distance from another
withdir/withvel cause one object 's direction/

velocity to be that of another

Space prohibits a detailed discussion of these various stim­
ulus and response functions. However, to give a flavour we
detail two of the response fuctions and show how they can
be used in an animated sequence.

stretehvel (ObjName, Norm Vel, wt} makes the shape of an
object dependent on its velocity

Stretch = 1 + wt(Current V el- Norm V el)/ Norm Vel

Where Norm V el is a parameter which determines the
veloci ty for which the stretch factor will be 1.0, that
is, it will not be stretched or compressed. The weight­
ing factor, wt determines the degree of stretch. The
Stretch factor which is returned by this function is
used to generate a degree of stretch in the direction of
the object's motion .

stretehdist(Objl, Obj2, NormDist,wt} makes the shape of
an object dependent on its distance from another ob­
ject.

Stretch = 1 +wt(CurrentDist-N ormDist)/ N ormDist

Where N ormDist is a parameter which determines the
distance for which the stretch factor will be 1.0.

Graphics Interface '89

Expressive Animation

The purpose of the ESCIM package is to enable us to test the
hypothesis that, given the right primitives, it is easy to create
expressive and animate motion. We present the following
examples to illustrate successively how chasing, avoidance,
and hitting can be achieved, and how they can be made
expressive through the use of stretch and size control.

Chasing and Avoidance

The basic chasing algorithm is as follows (leaving aside the
object definitions and color definitions). This animation
script is presented in the ESCIM language.

/* if the chaser is getting close * /
if (distance(chaser, avoider) < 0.3)

/* The avoider accelerates. * /
addspeed (avoider ,0.03)
1* The avoider turns away from the chaser.
Direction is weighted 0.3 away from the chaser * /
away (avoider ,chaser ,0 .3);
1* Because this is a friendly chase the chaser slows.
Newvelocity = oldvelocity times 0.7 */
mulspeed(avoider ,0.7);

endif;
/* if the chaser is far away * /
if (distance(chaser,avoider) > 0.5) */

/* the avoider can relax and slow down * /
mulspeed(chaser, 0.70);
1* the chaser accelerates to catch the avoider. * /
addspeed(chaser, +0.02);

endif;
1* The chaser tends to move towards the avoider. * /
towards(chaser, avoider, 0.4) ;

This is a basic chasing algorithm, it produces an endless
catchup/ avoid cycle. The point is that it looks like chasing,
not like a following or pushing or pulling which have other
algorithms. The chase algorithm above is sufficient, however,
it is not very useful because it is not contained - the chase
quickly escapes the boundary of the screen. In practice, some
kind of wall avoidance is necessary such as

if (distance(avoider,walls) < 0.26)
away(avoider,walls , 0.4)
addspeed(avoider, +0.01)

endif

Because the chaser follows the avoider we do not have to
worry about it getting lost.

While the animation described is convincing it has li ttle
pizazz. To make it more expressive we add the following

1* the chaser elongates when going fast
and squishes up short when going slow * /
stretchvel(chaser, 0.05 , 0.5);
/ * the avoider elongates when going slowly
and squishes up short when going fast * /
stretchvel(avoider, 0.14, -1.2);

12

The effect of these velocity dependent stretch functions is
hard to describe verbally. But it is clear that the animation
produced is more lively and "animate" and it is also clear
that swapping the stretch functions for the two actors gives
a result which is less like chasing and less expressive. The
finding that shape change enhances the percept is in accor­
dance with the observation of Michotte (1963) that having an
object change shape as it moved makes it much more likely

that that object will be perceived as animate. Figure 1 is a
diagram which illustrates the motion cycle and the effect of
stretch, although this in no way illustrates the perception of
chasing.

........
en
Q)

El
<1l

t!::
Q)

>
'in

en
8 tj
u
::s
~ .

Q)

.5
H

Hitting

o
o

o

o Figure 1

o
o

00
o 0 o 0 o 0

o 0
o 0

Positioll

There is more than one way to move an object from A to B.
It can be chased, if it is animate; if it is inanimate, it can be
hit like a volleyball.

The script for hitting has the following algorithm.

/ * If the chaser would strike the ball before next frame * /
if (timetoreach(chaser, ball) < 0.5)

1* the chaser stops * /
mulspeed(chaser,O.Ol)
1* and the ball takes off * /
addspeed(ball ,0.1);
/* in a direction away from the chaser * /
away(ball ,chaser, 1.0);

endif;
1* If the chaser is far away * /
if (distance(chaser,ball) > 0.5) */

/* the chaser accelerates for the next hit * /
addspeed(chaser, +0.02);

endif;

Graphics Interface ' 89

1* The chaser always moves towards the ball. * /
towards(chaser, avoider, 0.6);
/* finally, because the atmosphere is viscous,
the ball always slows

mulspeed(ball, 0.93)

This example provides a perfectly good, if somewhat ex­
pressionless, example of one blob, clearly animate, chasing
and striking another blob, which is clearly inanimate. To
make the example more expressive we make the chaser com­
press as it gets closer to the ball.

stretchdist(chaser,ball, 0.08, 0.2)

This makes the chaser look as though it is compressed by
the impact. The hitting example is illustrated graphically in

figure 2.
An important point here is that there is no attempt here

to physically model the collision of one body with another,
as in the work of Terzopoulos and Witkin (1988). We arc
trying to show that an appropriate percept can be generated
with simple functions, at a low cost and without any under­
standing of physics or the behaviour of volleyball players.

o 0
o 0

o 0
0 0

00
o
o
o
o

Figure 2

o
o

o
o

Posit ion

Discussion

With stimulus-response animation and the appropriate prim­
itives it is possible to generate simple rules and watch fairly
elaborate and compelling social interactions evolve before
one's eyes. In some simple programmed environments , changes
in behavioural rules may change social interactions, some­
times in dramatic ways, other behaviours are robust and
survive large parameter changes. Playing with these systems
is fun and we advocate it for its own sake.

There are also obvious applications in computer anima­
tion for the control of the behaviour of background actors,
such as flies , or birds Reynolds (1982, 1987). It may not be
necessary to have direct control over such actors, but they
can be made to respond to other actors whose motion is

13

controlled using other techniques .
Another possibi lity is to use motion metaphors to con­

vey information about the state of a system. Disney style
character animations convey a vaste amount of visual infor­
mation and it seems likely that some of the techniques might
be adaptable to data display. This area remains la rgely un­
explored by interface designers, but it is clear tha t the way
in which an object moves can convey important information
such as liveness causality, and intent ionality. All of t hese
are concepts which may be hard to express using static tech­
niques. Often, when objects are shifted from one place to
another on a screen it is useful to have them move from A
to B, rather than disappear at A and reappear at B , which
can be confusing. Motion gives the perception of object con­
tinuity. However, as we have seen there are many ways of
moving an object other than linear interpolat ion over t ime.
An object can be pushed pulled, hit, prodded or chased into
position , and all of these modes are perceptually distinct and
can be used to convey information about dominance, conti­
nuity object constancy and control. Our plan is to use the
ESCIM system as a vehicle for studying the use of motion
metaphors using S-R animation techniques.

References

Basili J .N ., 1976, Temporal and spatial contingencies in the
perception of social events, Journal of Personality and
Social Psychology, 33, 680-685.

Braitenberg, 1984, Vehicles: Experiments in Synthetic Psy­
chology, The MIT Press, 1984.

Lethbridge, T.C. and Ware, C. 1987, Animation Using Be­
havior Functions, Proceedings of 1987 Workshop on
Visual Languages Linkoping, Sweden, Also to appear
in S.K. Chang, Ed. Visual Languages, Plenum Press.

Lethbridge, T.C. and Ware, C. (in press), A Simple Heuris­
tically Based Method for Expressive Stimulus Response
Animation. Computers and Graphics.

Marion , A., Fleisher, K. and Vickers , M. 1984, Towards Ex­
pressive Animation For Interactive Characters, P roc.
Graphics Interface 84 , 17-20.

Michotte, A. 1963, The Perception of Causality. Methuen,
1963.

Reynolds, C.W. 1982, Computer Animation with Scripts
and Actors , Computer Graphics, 16, 289-296.

Reynolds, C.W. 1987, Flocks, Herds, and Schools: A Dis­
tributed Behavioural Model, Computer Graphics, 21,
25-34 .

Terzopoulis, D, and Witkin , A., 1988, Physically-Based
Models with Rigid and Deformable Components. P ro­
ceedings of Graphics Interface '88, 146-154.

Wilhelms, J . 1987, Towards Automatic Motion Cont rol.
IEEE Computer Graphics and Applications, 7, 11-22.

Graphics Interface '89

