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Abstract 

Although regular subdivision has been shown to 
be efficient at ray tracing scenes where objects are 
evenly distributed, such algorithms perform poorly 
when objects are concentrated in a small number of 
voxels. In this paper, a method is presented where 
voxels in a regular grid are examined and recursively 
subdivided depending on object density. This inte­
gration of regular and adaptive spatial subdivision 
methods allows images consisting of large regularly 
distributed objects and small dense objects to be ray 
traced efficiently. The parameters controlling the 
coarseness of the voxel grid, depth of adaptive subdi· 
vision trees, and maximum number of polygons per 
voxel are varied and their effects on execution time, 
subdivision time, and memory use are measured. 

Key Words: ray tracing, spatial subdivision, voxel, 
octree. 

1 Previous Work 

Speeding up execution time has been a major issue in the 
development of ray tracing since its inception. A naive ray 
tracer which tests every ray against every object in a scene 
for possible intersection will spend most of its time testing 
rays against objects with which they do not intersect. Rubin 
and Whitted [Rubin 80] determined that between 75% and 
95% of ray tracing time was spent performing such tests. 
Much research has been done to reduce the number of in­
tersection tests required to ray trace a scene. The major 
contributions follow. 

Rubin and Whitted used hierarchical bounding rectan­
gular parallelepipeds around the objects in a scene to re­
duce the number of intersection tes ts required to trace a ray 
through it [Rubin 80]. Rays are tested for intersection with 
the bounding volumes and are intersected with child volumes 
if they intersect the parent. Intersection tests are performed 
only for the objects bounded by leaf volumes with which 
a ray intersects. These hierarchical volumes must be con­
structed by hand for each scene, a time consuming process 
not suitable for animation. 

Vatti subdivided object space with a grid of equally sized 
cubes (voxels) [Vatti 84]. Objects in a scene are sorted into 
the grid and rays are traversed through it. Intersection tests 
are only performed for the objects which lie inside voxels 
through which a ray passes. 

Glassner and Kaplan subdivide space adaptively with 
an octree rather than a regular voxel grid [Glassner 84] 
[Kaplan 85]. This allows scenes with varying object densi­
ties to be rendered more efficiently than with a regular grid. 
Algorithms for rapid octree traversal are presented, whereas 
a similar algorithm for voxel traversal is lacking in Vatti's 
work. 

Fujimoto compares voxel and octree space subdivision 
methods for ray tracing polygonal objects and implicit sur­
faces (meta balls), and presents an incremental 3DDA algo­
rithm for rapidly traversing rays through regular voxel grids 
[Fujimoto 86]. 

Kay and Kajiya present a variation on the Rubin and 
Whitted hierarchical bounding volume algorithm [Kay 86]. 
Instead of rectangular parallelepipeds they bound their ob­
jects with arbitrarily tight fitting volumes which can quickly 
be intersected with rays. A comparison with Glassner's al­
gorithm is presented with results showing that the bounding 
volume algorithm is two to three times faster than the octree 
algorithm. 

Cleary and Wyvill perform an analysis of regular voxel 
subdivision and present a voxel skipping algorithm which is 
superior to the Fujimoto algorithm [Cleary 88] . Amanatides 
[Amanatides 87] independently develops a similar algorithm 
but does not optimise it to the extent of the Cleary algo­
rithm. 
Snyder and Barr combine regular subdivision and hier­
archical bounding volumes to ray trace tessellated surfaces 
composed of millions of objects [Snyder 87]. A voxelskipping 
algorithm similar to the Cleary method is used to traverse 
the voxel grid. This is an example of a hybrid of two methods 
which results in a faster algorithm than either one alone. A 
similar approach was taken by Jevans and Wyvill who com­
bined regular voxel subdivision and octree subdivision to ray 
trace implicit surfaces [Jevans 88]. 
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begin subdivide _ voxel 
{ 

recursion depth = recursion depth + 1 
if recursion depth < MAXDEPTH 

for each voxel 

where: 

if the number of polygons in ~he voxel > MAXP ( 
subdivide the voxel into N sub-voxels 
call subdivide _ voxel with the sub-voxel grid 

MAXP is the maximum number of polygons per voxel. 
N is the number of sub-voxels on a grid side. 
MAXDEPTH is the maximum tree depth. 

Figure 1; Recursive subdivision algorithm. 

Arvo and Kirk propose a five dimensional space subdivi­
sion technique that makes use of the direction of rays as well 
as the areas of space through which they travel [Arvo 87J. 
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2 Assumptions of Other Algorithms 

Adaptive spatial methods, such as the octree, are based on 
the observation that, in typical scenes , large areas of space 
are often empty while areas which contain objects of in­
terest are often quite densely populated. These algorithms 
typically require more computation than regular subdivision 
techniques [Fujimoto 86J since traversal of a ray through a 
scene requires many vertical octree traversals. These con­
tribute significantly to the execution time but get a ray no 
further along its path through a scene. 

Hierarchical object grouping methods assume that ob­
jects are constructed in a hierarchical manner or can be de­
composed in such a manner. They often require hand tun­
ing to sort objects into hierarchies. This can be very diffi­
cult when rendering objects which are composed of polygons 
generated in an arbitrary order. Such objects are often the 
result of special purpose modeling tools, scientific data .. or 
polygonal representations of functionally defined surfaces. 

Regular subdivision methods assume that objects are 
uniformly distributed throughout space and that one can 
afford to subdivide space finely enough to have an optimal 
number of polygons per voxel even in very dense areas. These 
methods can fail when rendering scenes which include small 
objects composed of many thousands of polygons, since there 
may not be sufficient memory available to adequately subdi­
vide the scene in these areas. The scenes that are rendered 
by the Graphicsland group at the University of Calgary of­
ten fall into this category. They are usually frames from 
animation sequences that have large regularly distributed 
background objects and a small number of dense foreground 
objects which can comprise up to ninety percent of the poly­
gons in the scene. 

This paper describes a generalisation of the octree method 
that extends adaptive space subdivision to orders greater 
than 23. The method employs both octree and regular subdi­
vision techniques to efficiently render scenes without making 
assumptions about them. 

Figure 2: A 2D Adaptively Subdivided Scene. 

3 Adaptive Subdivision 

The subdivision algorithm proceeds in a similar manner to 
an octree insertion algorithm except that the order is greater 
than or equal to 23. All polygons are initially read into the 
program and inserted into a single voxel. Figure 1 illustrates 
the recursive subdivision algorithm. 

Each voxel structure can contain either a list of objects 
inside that voxel if it is a leaf node, or a voxel grid subdi­
viding it further if it is an internal node. Octree methods 
usually use 8 pointers or a table of 8 indices to represent the 
23 subdivisions of a given node. As the order of a node grows 
beyond 23 it becomes impractical to store a pointer for each 
voxel in a sub-grid. Instead, only references to non-empty 
voxels are stored. 

A hash table of buckets is maintained in each subdivided 
voxel structure (see Figure 2). Each bucket points to a non­
empty child voxel which may in turn be subdivided. In order 
to speed up voxel lookup, a bit table which is large enough 
to contain one bit per voxel is stored with each hash table. 
To determine if a particular child voxel is non-empty the bit 
table is consulted. A non-zero bit table entry indicates that 
the voxel is non-empty and the hashtable must be indexed 
and searched for the voxel data structure. 
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Pearce showed that a one dimensional space results in 
faster voxel traversal and easier to generate hash table and 
bit table indices. In this implementation the one dimensional 
voxel grid traversal algorithm and hashtables presented in 
[Pearce 87] are used. 

4 Voxel Traversal 

4.1 Horizontal Traversal 

The Cleary voxel traversal algorithm is used and a sum­
mary follows for completeness [Cleary 88]. Consider Figure 3 
which shows the elements of this algorithm for the 2D case. 
At the start of each ray the following values are initialised: 
d[3], the distances along the ray to the nearest voxel bound­
ary in the x, y, and z directions ; delta[3], the distances along 
the ray between voxel boundaries in the x, y, and z directions; 
and the small variable, which indicates the closest voxel to 
the ray's origin. The voxel in which the ray originates is also 
found at this point. 

The algorithm proceeds as outlined in Figure 4. The 
traversal iteration loop checks the state of the current voxel. 
If it is a non-empty leaf node; the ray is intersected with 
the objects that lie in the voxel. Should the ray intersect an 
object, the properties of the ray and the surface with which 
it intersects are passed to a shading routine. If the voxel 
is empty or the ray does not intersect any of the objects 
that lie inside it, then the next voxel is determined and the 
algorithm loops . 
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dy <dx. 
Ray will travel from voxel ij to i,j-l. 

Figure 3: Elements of the Cleary Traversal Algorithm. 

The next voxel into which the ray will travel is indicated 
by the small variable. d[small] is incremented by positive 
or negative delta[small], the new value for small is deter­
mined by examining the d[i]s, the ray's position in the voxel 
grid, indicated by the indexlD and index3D[3] variables, is 
updated, and the algorithm loops. 

In Pearce's implementation of Cleary's algorithm, bound­
ing polygons are placed around the scene and, when a ray 
intersects a bounding polygon, the ray is known to have left 
the voxel grid. The hybrid algorithm presented here does not 
use this method since rays are traced through many small 
sub-voxel grids, and the overhead of finding a ray-polygon 
intersection each time a ray leaves a subdivided voxel would 
be large. Instead, a 3D index is used to determine when a 
ray leaves a voxel grid. A ray is determined to have crossed 
a sub-voxel boundary when an index becomes negative, or is 
incremented beyond N - l. 

The main difference between this and the Cleary and 
Pearce implementations is the termination test. There are 
two indices which are incremented to determine the next 
voxel. The variable indexlD indexes into the hash table of 
voxels. The variable index3D(3) is used to determine if the 
ray has emerged from the N 3 divided voxel. 

Graphics Interface ' 89 



begin traverse _ voxel_grid 
{ 

initialise d[3] , delta[3], small, index3D[3], 
indexlD, indexinc[3] 

while true { 
if voxel not empty { 

if not a leaf node ( 

} 

call traverse _ voxel_grid with sub_grid 
if ray intersected an object 

return 
} else ( 

intersect ray with all objects 
if ray intersected an object 

shade ray and return 

if dir[small] < 0.0 ( 
index3D[small]-= I 
indexlD -= indexinc[small] 

} else { 
index3D[small] += I 
indexlD += indexinc[small] 

} 
if index3D[small] < 0 or index3D[small] >= N 

return 
d[small] += delta[small] 
if d[O] < dEl] 

small = 0 
else 

small = I 
if d[2] < d[small] 

small = 2 

(array notation: [0] = x, [J} = y, [2] = z direction) 
where: 

d[ 3] is the distance along the ray from its origin to the 
fIrst voxel boundary. 

small is an index into d[ 3] indicating the closest voxel 
boundary (ie. the next voxel the ray will enter). 

delta[3] is the distance along the ray between two 
voxel boundaries. 

dir[3] is the direction vector of the ray. 
index3D[3] is the index of the ray in the 3D grid. 
indexlD is the index of the ray in the ID grid. 
indexinc[3] is the amount to increment indexlD when 

the ray moves to a new voxel. 

Figure 4: Pseudo-code for the ' Cleary Traversal Algorithm. 

4.2 Vertical Traversal 

When a ray is traversing a voxel grid and encounters a voxel 
which is not a leaf node, a downward traversal must be made 
into the subdivided voxel. First, the point at which the 
ray intersects the subdivided voxel grid must be determined. 
From this the initial sub-voxel in the child's voxel grid can 
be found. The new grid is then traversed by calling the hor­
izontal traversal routine, traverse_voxeLgrid, recursively. 

Since the origin, slope, and distance along the ray are 
known, the intersection of the ray with the sub-voxel grid 
can be found with one division, one subtraction, two mul­
tiplications, and three additions (see Figure 5). A further 
optimisation can be had by noting that the delta[3] values 
can be scaled by the relative size differences between the 
parent and the child voxel grid instead of being recalculated. 
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temp = min[ oldsmall] - ori[ oldsmall] 
scale = temp / dir[ oldsmall] 
for (a = 0; a < 3; a++) ( 

if(a != oldsmall) 
intersect[ a] = ori[ a] + scale * dir[ a] 

else 
intersect[ a] = ori[ a] + temp 

where: 
min[3] 

max[3] 

is the coordinates of the "lower left" corner 
of the current voxel grid 
(stored in the voxel data structure). 

is the coordinates of the "upper right" corner 
of the current voxel grid 
(stored in the voxel data structure). 

oldsmall is the previous value of the small variable. 
ori[ 3] is the ray's origin (its intersection with this 

voxel grid). 
intersect[ 3] is the ray's intersection with the sub-voxel 

grid and will be its new origin for 
downwards traversal. 

Figure 5: Calculations for a vertical traversal. 

Upward traversals do not require inverting these opera­
tions since the old values are stored at each recursive down­
ward traversal call. When the traversal of a ray through a 
child's sub-voxels returns and has not intersected an object, 
the parent's horizontal voxel traversal continues where it le~t 
off. If a successful intersection is recorded, the current ray IS 

terminated and secondary rays are spawned. 

5 Ray-Object Intersectio n 

When a ray enters a non-empty leaf voxel it must be checked 
against all objects in the voxel for intersection. Once this 
is performed for each object in the voxel, any intersection 
points must be sorted by distance along the ray to determine 
which intersection is the closest to the ray 's origin. 

To avoid rechecking a ray for intersection with an object 
that lies in two adjacent voxels, the result of the last ray­
object intersection calculation is stored inside each object. 
Each ray is uniquely numbered and the intersection result is 
tagged with this number. When a ray is to be tested against 
an object, the ray's tag and the tag stored in the object are 
compared as in [Arnaldi 87). If they match, then the result 
stored in the object is used instead of being recalculated. 
While this requires more memory than a simple list of ob­
jects, it avoids the problem of intersecting a ray with the 
same object more than once. 

6 Subdivision Metho ds 

The adaptive voxel mechanism presented in this paper lends 
itself to many subdivision schemes and can be used as a 
test bed for comparative studies. 
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No Subdivision. A naive ray tracer can be simulated by 
setting the maximum depth of the subdivision tree to 
O. No subdivision overhead will be incurred. 

Octree. A traditional octree data structure can be en­
forced by setting the size of the voxel grids to 2 on 
a side. Traversal of this data structure is not as effi­
cient as the traversal mechanism presented by Glassner 
[Glassner 84], because the code to initialise variables 
for voxel traversal is unnecessary for traversal of a 23 
grid. 

Regular Voxel Subdivision. A voxel grid structure can 
be enforced by setting the maximum depth of the sub­
division tree to 1. Traversal of this data structure is 
done with the Cleary voxel traversal mechanism and 
does not suffer from the overhead of vertical traversal. 

Adaptive Voxel Subdivision - Fixed Resolution. This 
data structure is the result of set t ing the resolution of 
the voxel sub-grids to a constant value (i.e. constant 
N) before rendering. The problem with this method is 
that of determining a value for N. When ray tracing ir­
regularly distributed scenes, this method performs bet­
ter than a simple voxel grid , but does not adapt well 
to very large variations in object densities throughout 
a scene. 

Adaptive Voxel Subdivision - Variable Resolution. 
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Each time a sub-voxel grid is to be generated, the res­
olution of the grid (N) is determined by the number 
of objects that lie inside it. This method can adapt to 
variations in object density in a scene better than the 
fixed resolution method, although a means for deter­
mining N at each subdivision must be developed . 

1 Subdivision On-The-Fly 

Many previous subdivision methods require a scene to be 
subdivided in a pre-processing step. This approach is nec­
essary for regular subdivision and is usually used in octree 
methods. Pre-processing the scene can be wasteful if rays 
are never traversed through large portions of it. 

Our implementation of adaptive voxel subdivision does 
all subdivision on-the-fly. When a ray enters a voxel that 
has not been subdivided and requires it, the subdivision 
routine is called. This method only subdivides the voxels 
through which rays pass, and can greatly reduce subdivision 
time for complex scenes. On-the-fly subdivision also allows 
for garbage collection of least recently used voxels, enabling 
machines with limited amounts of memory to render very 
complex scenes. 

8 Results 

The ray tracer was tested empirically using several test scenes 
which represent typical images rendered at the University of 
Calgary. A series of images of randomly placed cubes created 
with differing distributions were also rendered . 

All rendering was performed on a SUN 4/280 at a reso­
lution of 512 by 512 pixels without anti-aliasing. For each 
image, N, MAXP, and MAXDEPTH (as defined in Figure 
1) were varied and the cpu time (in minutes) and memory 
use (in megabytes) measured. Garbage collection was dis­
abled so that the total amount of memory required could be 
measured. Fixed grid resolutions were used to simplify our 
initial reference measurements. 

Note: timing results may suffer from a 2 to 3 percent 
error due to defficiencies in the SUN4 timing mechanisms. 
Table entries with a * indicate that sufficient memory was 
not available to render the images without garbage collec­
tion. 

Randomly distributed cubes. A series of test scenes 
were generated by distributing 1000 cubes in a 10 by 
10 by 10 volume using four different distribution func­
tions: negative exponential, normal, poisson, and uni­
form. As expected, regular subdivision ran faster and 
used less memory than the adaptive method, which in 
turn ran faster and used less memory than the octree 
method. However, these images do not represent the 
vast majority of scenes found in computer animation. 

Teapot. A typicalimage in computer graphics, illustrating 
smooth shading, reflection, and shadowing. The teapot 
occupies most of the scene, allowing regular subdivision 
techniques to perform well on the image. This is not 
a typical animation scene as there is only a small and 
simple ground plane as a background. 

Temple with teapot. This scene is becoming more typi­
cal in computer animation. Large background objects 
and small, dense foreground objects make up the scene. 
This image illustrates the advantage of the adaptive 
subdivision technique, as it outperforms both regular 
subdivision and octree methods. 

Lumpy. This scene from a new Graphicsland film, "Lumpy's 
Quest for Sev" , exemplifies a typical animation se­
quence. The scene features a large, well distributed 
background, many smaller more complicated foreground 
objects, and several very small and complicated focal 
objects. There are a great many secondary rays in­
volved in rendering this image since there are eight 
light sources which require shadow rays to be fired. 
Rendering this scene, the adaptive algorithm greatly 
outperforms both the octree and regular subdivision 
methods. 
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Uniform distribution. 6,000 polygons. 
262,144 initial rays. 0 secondary rays. 262,144 total 
1,293 minutes to render with no subdivision. 

Teapot in a temple. 44,479 polygons. 
262,144 initial rays. 183,500 secondary rays. 445,644 total 
16,446 minutes to render with no subdivision. 
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Teapot. 2049 polygons. 
262,144 initial rays. 473,117 secondary rays. 735261 total 
1,202 minutes to render with no subdivision. 

Lumpy. 5460 polygons. 
262,144 initial rays. 1,457,101 secondary rays. 1,719,245 total 
7,752 minutes to render with no subdivision. 
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MAXP Depth 1 Depth 2 Depth 3 Depth 4 Depth 5 Depth 6 MAXP Depth 1 Depth 2 Depth 3 Depth 4 De pth S Depth 6 
Sub: OAm 0.5m 0.5m O.Sm O.SIll a.5m Sub: 0.3m OAm OAm OAm OAm OAm 

100 Ren: 636.6m 303.6m 119.7m 92.2m 90.9m 90.9m 100 Reo : 63.Sm SS.Om S5.Srn 5S.9m 55.Sm 55.0m 
Mem: 0.7Mb 0.9Mb 1.2Mb 1.6Mb 1.6Mb 1.6Mb Mcm : 0.7Mb 1.1Mb 1.1Mb 1.1Mb 1.1Mb 1.1Mb 
Sub: OAm 0.5m O.Sm O.Sm O.Srn O.Sm Sub: 0.3m OAm OAm 0.101 OAm OAm 

50 Reo: 649.2m 30SAm 11O.Sm 71.7m 70.SIO 70 .Sm SO Ren: 64.7m 36.7m 36.7m 36.3m 36.3m 36.3m 
Mem: 0.7Mb 0.9Mb 1.3Mb 2.2Mb 204Mb 204Mb Mcm: 0.7Mb 2.2 Mb 2.2Mb 2.2Mb 2.2Mb 2.2M b 
Sub: OAm O.Sm O.Sm O.Sm 0.6m 0.6m Sub: 0.3m O.4m O.5rn O.Sm O.Srn O.Sm 

10 Ren: 626.5m 300.6m 107 .0m 60.3m S6.Sm 56.Sm \0 Reo: 64 .2 m 26.6m 27. lm 27.lm 26.6rn 26.6m 
Mem: 0.7Mb 0.9Mb 1.6Mb 4.1Mb 10.3M b 13.SMb Mem: 0.7Mb 4.9Mb S.5Mb S.SMb S.SMb S.5Mb 

Table 1: Normal Dish. N=2 Table 2: Normal Distr. N = 1 0 

MAXP Depth 1 .Depth 2 Depth 3 Depth 4 Depth 5 Depth 6 MAXP Depth I Depth 2 Depth J Depth 4 Depth S Depth 6 
Sub: 0.3m 0.3m 0.3m 0.3m 0.3m 0.3m Sub: OAm OAm OAm 0.3m 0.3m 0.3m 

100 Ren: 25.3m 24.9m 25.Sm 24.5m 24.5m 24.5m 100 Ren: IS.3m IS.3m IS.3m IS.3m IS.7m IS.7m 
Mem: O.SMb O.SMb O.SMb O.S Mb O.SM b 0.8Mb Mem: 1.0Mb 1.0Mb 1.0Mb 1.0Mb 1.0Mb 1.0M b 
Sub: 0.3m 0.3m 0.3m 0.3m 0.3111 O.31l1 Sub: 0.3m OAm 0.301 0.3m 0.3m OAm 

SO Reo: 24.5m 24.Sm 24.Sm 24.9m 2·1.,)m 2·t.9m 50 Reo: IS .7m IS.3m IS.3m IS.3m IS.3m IS.3m 
Mem: O.SMb O.SMb 0.8Mb O.S Mb 0.8 Mb O .S~t h M ern: 1.0Mb 1.0Mb 1.0Mb 1.0Mb 1.0Mb 1.0Mb 
Sub: 0.3m 0.9m 0.9m O.9m O.gm a.gm Sub: OAm S.Sm 8.6m 8.6m 8A m 8 Arn 

10 Reo: 24.9m 24.9m 24.9m 24.9m 24.9m 2'I .Sm 10 Reo: IS .3m 16.6m 16.6m 16.6m 16.6m 16.6m 
Mem: O.SMb IS.5Mb IS.5Mb lS.S Mb IS.SMb lS.5 Mb M ern: 1.0Mb Ill.3Mb 111.3Mb \I 1.3M b 1I1.3Mb 111 .3Mb 

Table 3: Normal Distr. N=20 Table 4: Normal Distr. N=40 

MAXP Depth 1 Depth 2 Depth 3 Dcpth -1 Ur pt.h 5 J) ('plh 6 

Sub: OAm O.Sm O.Sm 0.6m O.Gm a.Gm 

100 Ren: 263.4m 69.Sm 32.3m 28.401 27 }lnl 27.1m 

Mem: 0.7Mb 0.9Mb 1.2Mb 1. 7Mb I.nlb 1.7Mb 
Sub: OAm O.Sm 0.5m 0.6m a.6m a.6m 

so Reo : 261.3m 69.001 27 .1m 24.0m 22 .7m 22.3 m 
Mem: 0.7Mb 0.9Mb I.ntb 204Mb 3 . 1 ~ l b 1.1 ~lh 
Sub: OAm O.5m O.Sm 0.6m O. fm O.'m 

10 Ren: 26·1.3m 66 .Sm 27.lm 20.501 2 0 })!l\ 21.0111 
M em: 0.7Mb 0.9~ t b 1.6 ~ lb 4.2Mb II.T ~ t b 19.6Mh 

MAXP Depth I Depth 2 De pth 3 Ucplh 4 Oeplh 5 Depth 6 
Sub: OAm O.Srn O.Srn 0.5m O.SIO O . .''illl 

100 Re o: IS .3m 14.lm 13.6m 13.6 01 14.1111 1-I.Om 
Mem: 0.8Mb 2.2Mb 2.2Mb 2.2Mb 2.2~lb 2.2Mb 
Sub: OAm O.Srn O.Sm O.Sm 0.5m 0.601 

SO Reo: l4Am IUm IUm 12.2m 11.8m 12 .2m 
Mem: 0.8Mb 4.0Mb 4.0Mb 4.0Mb 4.0Mb 4.0Mb 
Sub: OAm 0.6m 1.110 1. 101 l.lm 1.0m 

10 Reo: IS.7m 10.SIO 10. 1111 10 .Sm 10 . .110 1O . lm 
Mem: 0.8Mb 8. IMb 9.3Mb 9.3Mb 9.3Mb 9.3Mb 

Table 5: Poisson Dislr. N=2 
Table 6: Poisson Dist r. N = 10 

MAXP Depth I Depth 2 Depth 3 U('pth 4 Depth ,) lJepth 6 MAXP Depth I Depth 2 Depth 3 Depth 4 Depth S Depth 6 
Sub: O.3m O.4m OAm DAm O.311l DAm Sub: OAm OAm OAm DAm OAm OAm 

100 Reo: 9.2m S.7m 9.2m 8.7tn 8.7111 8.3 rn 100 Ren: 7Am 7Am 7.9m 7.4m 7Am 7.Hm 
Mem: 0.9Mb 0.9~lb 0.9Mb 0.9 Mb 0.9 Mb 0 .9~lb Mem: 1.3Mb 1.3Mb 1.3Mb 1.3Mh 1.3Mb 1.3Mb 
Sub: DAm 0.9m 0.9m a.9m 0.911\ 0.9m Sub: OAm OAm DAm DAm OAm OAm 

SO Ren: S.3m 7.9m 7.9m 8.1m 8.3111 8. 7m SO Ren: 'Am 7Am 7.4 01 7 .f/m 7.9m 8.3m 
Mem: 0.9Mb 7AMb 7AMb 7.4Mb 7.4Mb 7AMb f!. lem: 1.3Mb 1.3Mb 1.3Mb 1.3Mb 1.3Mb 1.3Mb 
Sub: OAm 6.0m 5.9m 5.9m 5.8m 5.7m Sub: 00410 · · · · · 10 Reo: 10.lm 9.6m S.7m 9.201 8.3 rn 8.3m \0 Reo : 8.3rn · · · · · Mem: 0.9Mb 94.2Mb 94.2Mb 94.2Mb 94.nlb 9-1.2~ l b Mem: 1.3Mb · · · · · 

Table 7: Poisson Dislr. N=20 Table 8: Poisson Distr. N= 40 

MAXP Depth 1 Depth 2 Depth 3 Depth 4 Depth S Depth 6 MAXP Depth 1 Depth 2 Depth 3 Depth 4 Depth S Depth 6 
Sub: OAm OAm OAm O.t1m DAm OAm Sub: 0.3m 0.3m O.3m 0.3m 0.3rn 0.301 

100 Reo: S2S.6m 15S.6m S9.lm 91.3m 90.0m 89.Gm 100 Ren: 33.6m 33.6m 33 .601 33.6m 33.6m 33.6rn 
Mem: 0.7Mb 0.9Mb 1.5Mb I .SMb I.SMb 1.5Mb Mem: 0.8Mb 0.8Mb 0.8Mb 0.8Mb 0 8Mb 0.8 Mb 
Sub: OAm OAm OAm OAm OAm O.4m Sub: 0.3m 0.3rn 0.3m 0.3m 0.3m O.:J rn 

50 Ren: 532.6m 15S.Sm 70.3m 67.7m 69.0m 67 .3m SO Reo: 38.0m 38.0m 38 .001 3S .0m 38.0m 38 .5111 
Mem: 0.7Mb 0.9Mb 2.0Mb 2.0Mb 2.0~tb 2.0~tb M ern: 0.8Mb 0.8Mb 0.8Mb 0.8Mb O.8 Mb 0.8 Mb 
Sub: OAm OAm 0.101 0.5rn 0 .. 5m 0.5111 Sub: 0.3m OAm OArn OAm OAm OAm 

10 Ren: 52S.6m IS2.9m 63.8m SS.Sm .59.0m GB.5rn 10 Reo: 38 .001 35.0m 35.001 35.010 35Am 3·". Om 
Mem: 0.7Mb 0.9Mb 2.0Mb 7.0Mb 8.8Mb 9.n lb Mem: 0 8Mb S.9Mb S.9Mb S.9Mb S.9~tb 5.9~lb 

Table 9: Uniform Dislr. N=2 Table 10: Uniform Distr. N=IO 

MAXP Depth 1 Depth 2 Depth 3 Depth 4 Depth S Depth 6 MAXP Depth I Depth 2 Depth 3 Depth 4 Depth S Dep th 6 
Sub: 0.3m OAm OArn 0.3m OAm 0.4m Sub: 0.401 0.4m 0.101 0.101 OAm OAm 

100 Ren: 17.0m 17.0m 17.9m 17.Sm 17.0m 17 .001 100 Reo: \I.8m I1.Sm 11.8m II.Sm 11 .801 11.8111 
Mem: 0.9Mb 0.9Mb 0.9Mb 0.9Mb 0.9Mb 0.9Mb M em: 1.0Mb 1.0Mb 1.0Mb 1.0Mb 1 .0~ lb 1.0Mb 
Sub: OAm 0.3m OAm 0.3m O.:Im O. ~lm Sub: OAm OAm OAm OAm DAm 0.3m 

SO Ren: 17.0m 17.Sm 17.0m 17.5m 17.5m 17.0m SO Ren: II.Sm 11.8m I1. Sm 11.8m 11 .8m II. Sm 
Mem: 0.9Mb 0.9Mb 0.9Mb 0.9Mb 0.9Mb 0.9Mb Mem: 1.0Mb 1.0Mb 1.0Mb 1.0Mb 1.0Mb 1.0Mb 
Sub: 0.3m O.Sm O.Sm O.Sm O.Sm 0.5m Sub: OAm 1.5m 1.5m 1.5m I.Sm 1.5m 

10 Ren: 14 .Sm IS.3m IS.3m IS .3m 1.5.3m 15.3rn 10 Reo: 11 .801 12.2m 11.8m 11.8m 12.2111 12 .2m 
Mem: 0.9Mb 4.0Mb 4.0Mb 4.0Mb 4.0Mb 4.0Mb M em: 1.0Mb 10.7Mb 10.7Mb 10 .7Mb 10.7Mb 10 .7Mb 

Table 11: Uniform Disk N=20 Table 12: Uniform Distr. N=40 
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MAXP Depth 1 Depth 2 Depth 3 Depth 4 Depth 5 Depth 6 

Sub: O.lm O.lm O.lm O. lm O.lm O.lm 
MAXP Depth 1 Depth 2 Depth 3 Depth 4 Depth 5 Depth 6 

Sub: O.lm O.lm O.lm O.lm O.lm O. lm 

100 Ren: 325.5m 209.3m 12So4m 109.2m 107.5m 106.6m 100 Ren: 56.8m 36.3m 36.3m 36.3m 36.3m 35.8m 

Mem: 0.3Mb OAMb 0.6Mb O.SMb O.SMb O.SMb Mcm: 0.3Mb 0.6Mb 0.6Mb 0.6Mb 0.6 Mb 0.6Mb 

Sub: O.lm O.lm O. lm O.lm O.lm O.lm Sub: O.lm O.lm O.1m O.lm O. lm O.lm 

50 Reo: 323.3m 201.4m 102.2m 70.Sm 65.5m 65.lm 50 Reo: 55.9m 27.9m 27.9m 27.9m 27.9m 27 .9m 

Mem: 0.3Mb 0.5Mb 0.7Mb 1.0Mb 1.4Mb 1.5Mb Mem: 0.3Mb 0.9Mb 0.9Mb 0.9Mb 0.9Mb 0.9Mb 
Sub: O.lm O.lm O.lm O. lm O.lm O.lm Sub: O.lm O.lm 0.2m 0.6m 0.6m 0.6m 

10 Ren: 325.1m 203.2m 101.3m 63.Sm 57.2m 56 .Bm 10 Reo: 56 .8m 24.5m 24.5m 21.5m 21 .5m 24 .5m 
Mem: 0.3Mb 0.5Mb 0.7Mb 1.3Mb 2.7Mb 5.2Mb Mem: 0.3Mb 1.7Mb 6.5 Mb 7.0Mb 7.0Mb 7.0Mb 

Table 13: Teapot N=2 Table 14 : Teapot N = 1 0 

MAXP Depth 1 Depth 2 Depth 3 Depth 4 Depth 5 Depth 6 
Sub: O.lm O.lm O.lm O.lm O.1m O.lm 

lOO Reo: 27.9m 25.3m 25.8m 25.Sm 25.Sm 25.8m 
Mem: 0.3Mb 0.9Mb 0.9Mb 0.9Mb 0.9Mb 0.9Mb 

MAXP Depth 1 Depth 2 Depth 3 Depth 4 Depl.h 5 Depth 6 
Sub: O.lm O.lm O.lm O.lm O.lm O.lm 

100 Reo: 23.1m 23.1m 23 .1m 23 .1m 23.1m 2~.lm 

Mem: 0.5Mb 0.5Mb 0.5Mb 0.5Mb 0.5Mb 0.5Mb 

Sub: O. lm O.lm 0.2m O.lm O.lm 0.2m Sub: O.lm O.1m O.lm O.lm O.lm O.lm 

50 Ren: 28 .4m 23.6m 23.1m 23.6m 23.6m 23. Jm 
Mem: 0.3Mb 304Mb 304Mb 3.4Mb 304Mb 304Mb 

50 Ren: 23 .1m 23.1m 23.1m 23 .1m 23 . lm 23.1m 
Mem: 0.5Mb 1.8Mb 1.8Mb 1.8Mb 1.8Mb 1.8Mb 

Sub: O.lm OAm 22.2m 22.Sm 22.1m 22.1m Sub: O.lm 6.6m · · · · 
10 Reo: 28.1m 23.1m 24.5m 23.1m 23.1m 23.1m 10 Ren: 23 .1m 26.6m · · · · 

Mem: 0.3Mb 11.9Mb 16.1Mb 16.1Mb 16.1Mb 16.1Mb Mem: 0.5Mb 186.4Mb · · · · 
Table 15: Teapot N =20 Table 16: Teapot N=40 

MAXP Depth I Depth 2 Depth 3 Depth 4 Depth 5 Depth 6 
Sub: 20 .Sm 21.6m 22.6m 22.8m 23Am 23.6m 

lOO Ren: 3S09.Sm 27S9.2m 2055.2m 1649.8m 1370.1m 762.0m 
Mem: 5.0Mb 5.0Mb 5.2Mb 5.8Mb 6.8Mb 6.9Mb 
Sub: 20.2m 22.2m 23.1m 23Am 23.5m 23.5m 

50 Ren: 37SI.Sm 2852.lm 2104 .1m 1649.S m 1433.0m 762.0m 
Mem: 5.0Mb 5.0Mb 5.2Mb 5.9Mb 7.2Mb 7.8Mb 
Sub: 20.0m 21.4m 22.0m 22.5m 23.0m 23.0m 

10 Ren: 3753.9m 2796.2m 2062.2m 1679.6m 1356.2m 762.0m 
Mem: 5.0Mb 5.0Mb 5.2Mb 6.0Mb 7.5Mb 9.3Mb 

MAXP Depth I Depth 2 Depth 3 Depth 4 Depth 5 Depth 6 
Sub: 17.3m 17.6m 17.9m 17.9m 17.9m l7.8m 

lOO Reo: 1551.9m 363 .5m 55 .9m 55.9m 62.9m 55.9 m 
Mem: 4.9Mb 6.7Mb 8.7Mb 8.7Mb 8.7Mb 8.7Mb 
Sub: 16.8m 17.1m 17.2m 17 .2m 17.2m 17.2m 

50 Reo: 1558.9m 356.5m 55.9m 55.9m 55.9m 55.9 m 
Mem: 4.9Mb 6.8Mb 8.9Mb 9.3Mb 9.3Mb 9.3Mb 
Sub: 0.9m l7.1m 17.3m J8Am J8.4m IS. lm 

10 Reo: 1557.9m 356.5m 55.9m 55.9m .55.9m 55.9m 
Mem: 4.9Mb 7.0Mb 13.0Mb 37.1Mb 37.1Mb 37.1Mb 

, 

Table 17: Teapot in a Temple N=2 
Table I S: Teapot in a Temple N=IO 

MAXP Depth 1 Depth 2 Dept h 3 Depth 4 Depth 5 Depth 6 
Sub: 16.7m 17Am 17Am l7.5m 17.6m 17.701 

lOO Ren: 1230.3m 69.9 m 69.9m 69.9m 69.gm 69.9m 
Mem: 5.1Mb 13.7Mb 14.6Mb 14.6Mb 14.6Mb 14.6Mb 
Sub: 16.8m 17.9m 18.1m l7 .9m 17.9m I 7.9 m 

50 Reo: 1244.3m 69.9m 62.9m 62 .9m 62.9m 62.9m 
Mem: 5.1Mb 17.2Mb 22.1Mb 22.1Mb 22 .1Mb 22.1Mb 
Sub: 18.1m 17.6m 19.0m 19.1m 18.9m 18.9m 

10 Reo: 1223.3 m 69.9m 48.9m 48 .9m 48.9m 48.9m 
Mem: 5.1Mb 18.6Mb M.2Mb 54.3Mb 54.ntb M .3Mb 

MAXP Depth I Depth 2 Depth 3 Depth 4 Depth 5 Depth 6 
Sub: l7 .1m 19.2m 19.2m 18.9m 18.9m IS.8m 

100 Ren: 1153Am 35.0m 35 .0m 35.0m 35.0m 35.0m 
Mem: 5.7Mb 16.1Mb 16.4Mb 16.4Mb 16.4Mb 16.4Mb 
Sub: 16.6m 27. 1m 26.9m 26.9m 26.9m 27 .1m 

50 Reo: 1104.5m 35.0m 35.0m 35 .0m 35.0m 35.0m 
Mem: 5.7Mb 39.7Mb 39.7Mb 39.7Mb 39.7Mb 39.7Mb 
Sub: 16.6m 48.5m · · · · ID Ren: 1097.5m 41.9m · · · · 
Mem: 5.7Mb 159.5Mb · · · · , 

Table 19: Teapot in a Temple r-.=20 Table 20: Teapot in a Temple N=40 

MAXP Depth 1 Depth 2 Depth 3 Depth 4 Depth 5 Depth 6 
Sub: OAm 0.5rn 0.5rn 0.6m 0.6m O.Gm 

lOO Reo: 5360.0m 398S.1m 1924.1m S37.1m 522.5m 394.9m 
Mem: 0.7Mb 0.7Mb 0.8Mb 1.1Mb 1.4Mb 1.6Mb 

MAXP Depth 1 Depth 2 Depth 3 Depth 4 Depth 5 Depth 6 
Sub: 0.3m 0.3m 0.3m 0.3m O.3m 0.3m 

100 Reo: 1539.7m 216.7m 195.7m 194 .0m 194 .0m 194.0m 
Mem: 0.7Mb 1.1Mb 1.2Mb 1.2Mb 1.2Mb 1.2Mb 

Sub: OAm 0.5m 0.5m 0.6m 0.6m 0.6m Sub: 0.3m 0.3m DAm 0.5m Oo4m 0.5m 
50 Ren: 5365.2m 3991.6m 1946.Sm S33.6m 477.1m 344 .3m 50 Ren: 1536.2m 131.1m 10S.3m IOS.3m 110.1m 1l0. lm 

Mem: 0.7Mb O.SMb 0.9 Mb 1.2Mb 1.7Mb 2.3Mb Mem: 0.7Mb 1.5Mb 2.0Mb 2.4Mb 2.4Mb 204Mb 
Sub: OAm 0.5m 0.5m 0.6m 0.6m 0.6m Sub: 0.3m DAm 0.9m 3.8m 4.7m 5.0m 

10 Ren: 5354 .7m 4005 .6m 1936A m 828.4m 454.1m 300.6m 
Mem: 0.7Mb 0.8Mb 1.1Mb 2.0Mb 4.0Mb 7.0Mb 

I 

10 Reo: 1532.7m 129.3m 97 .9m 101.3m 101.3m 101.3m 
Mem: 0.7Mb 2.7Mb 11.0Mb 22.8Mb 24.7Mb 25.0Mb 

Table 21 : Scene from Lumpy N =2 Table 22: Scene from Lumpy N=10 

MAXP Depth I Depth 2 Depth 3 Depth 4 Depth 5 Depth 6 
Sub: 0.3m 0.4m 0.4m Oo4m Oo4m OAm 

MAXP Depth 1 Depth 2 Depth 3 Depth 4 Depth 5 Depth 6 
Sub: 0.3m 2.8m 2.Sm 2.Sm 2.8m 2.Sm 

lOO Ren: 505.lm 120.6m 1l8.8m 1l7.1m 1l3.6m 113.6m 100 Reo: 251.7m 96.1m 96.1m 96.1m 96.1m 94.4m 
Mem: 0.8Mb 204Mb 2.5Mb 2.5Mb 2.5Mb 2.5Mb Mem: 1.2Mb 7.3Mb 7.3Mb 7.3Mb 7.3Mb 7.3Mb 
Sub: 0.3m OAm 0.5m 0.5m 0.5m 0.5m Sub: 0.3m 5.2m 6.9m 7.0m 7.0m 7.0m 

50 Reo: 520.8m 103.1m 101.3m 101.3m 103.lm 106.6m 50 Ren: 24604m 9404m 94.4m 94.4m 9404m 94.4m 
Mem: 0.8Mb 2.7Mb 3.2Mb 3.2Mb 3.2Mb 3.2Mb Mem: 1.2Mb 14.5Mb 16.8Mb 16.SMb 16.8Mb 16.8Mb 
Sub: 0.3m 0.6m 55.3m 120.6m 138.5m 174.3m Sub: 0.3m 6.7m · · · · 10 Ren: 512.0m 99.6m 99.6m 101.3m 99.6m 103.1m 10 Ren: 248.2m 92.6m · · · · 
Mem: 0.8Mb 10.2Mb 60.3Mb 74.4Mb 78.0Mb 82.5Mb Mem: 1.2Mb 45.4Mb · · · · 

Table 23: Scene from Lumpy N =20 Table 24: Scene from Lumpy N=40 
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9 Conclusion 

The results indicate that this hybrid of adaptive and regular 
spatial subdivision is useful for speeding up the rendering 
of typical scenes used in animation. It avoids the problems 
of generating object hierarchies, the excess vertical traversal 
of octrees, and the extreme memory requirements of regular 
voxel methods. 

Cleary shows through a rigorous theoretical analysis that 
regular voxel subdivision methods can reduce ray tracing 
overhead to less than 130% of the minimum required to inter­
sect every ray with one object and perform shading calcula­
tions [Cleary 88]. His analysis assumes that there is sufficient 
memory available to subdivide a scene to the required level, 
and that the objects in the scene are uniformly distributed 
t hroughout the object space. Adaptive voxel subdivision 
performs nearly as well as regular subdivision when the ob­
jects are uniformly distributed, and can maintain that level 
of performance when scenes are not so evenly constructed. 

Since the speed of rendering varies with the resolution of 
the voxel grids and the depth of the trees, and since these 
vary from scene to scene, a method of determining the opti­
mal resolution and tree depth for a given scene is required. 
One approach we are investigating analyses the distribution 
of objects in a voxel grid and determines whether a grid 
should be subdivided at a finer resolution, or whether cer­
tain voxels need to be recursively subdivided, and at what 
resolution. This is part of a research effort at the Univer­
sity of Calgary to develop a ray tracer that will perform well 
with any type of scene, and will not require hand tuning to 
achieve optimum performance. 
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