
227 

Prisms and Rainbows: 
a Dispersion Model for Computer Graphics 

F. Kenton Musgrave 

Department of Mathematics 
Yale University 

Box 2155 Yale Station 
New Haven, Connecticut 06520 

Abstract 
Dispersion is the spreading of refracted light into 

its component colors or spectrum. A model of refrac
tion including dispersion is developed using the tech
niques of distributed ray tracing. Two models of the 
rainbow, one empirical or impressiOniStiC, the other 
purely physical, are developed using the results of the 
dispersion model. The problem of representing the 
spectrum of monochromatic colors using the rgb pri
maries of the graphics monitor is addressed. 
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1. INTRODUCTION 
Treatment of refraction in computer graphics has 

generally lacked dispersion, or the spreading of 
refracted light into its component colors or spectrum. 
While convincing simulations of transparent objects can 
be had without taking dispersion into account, the 
inclusion of dispersion makes available additional real
ism and beauty. We will present a dispersion model, 
within the ray tracing paradigm, and develop a physi
cal model of the rainbow based on that dispersion 
model. 

Modelling of dispersion entails the solution of at 
least two distinct problems: the integration and recon
struction of the power spectrum of light by frequency, 
and the display of the spectrum of monochromatic 
colors on a standard graphics display device. The ftrst 
problem may be treated as another aspect of the distri
buted ray tracing model of Cook4 et. al. or as an 
enhancement to the rendering equation of Kajiya. 11 The 
problem of reproducing monochromatic colors is in the 
realm of color science27 and an approximate solution 
can be had through the use of metamers, though this 
problem remains an open area of research. 

Perhaps the most spectacular example of dispersion 
at work in nature is the rainbow. The arc of the 
rainbow is a result of the geometry of the reflection 
and refraction · of light in raindrops; the wonderful 
colors of the rainbow are the result of dispersion of 
s~nligh.t in refraction through water. With a working 
dispersIOn model and some geometric optics, one can 
produce an efftcient rainbow model for use in ray-raced 

and Z-buffered rendering schemes. We will present 
two rainbow models, one impressionistic or empirical8 

and another purely physical and therefore, quite true to 
nature. 

2. PROBLEM STATEMENT 
The Cook-Torrance3 shading model takes into 

account the frequency of light waves in reflection from 
surfaces as a function of the index of refraction. 
What has been missing from the generally available 
literature is a model of refraction which takes into 
account the frequency of light. Such a dispersion 
model has been called for in previous research. l1 ,l3 
Some dispersion models have apparently been developed, 
but not published.9,25 Thomas23 published a brief 
description of a dispersion model, but did not develop 
atmospheric rainbows; unfortunately, Thomas' article 
remains obscure. The work presented here was 
developed independently of Thomas, and differs in most 
important respects. 

The model of dispersion developed here is an 
extension of distributed ray tracing24 and thereby uses 
the Monte Carlo integration techniques of Cook.6 

Integration of a continuous function by a ftnite number 
of point samples can lead to two types of aliasing, 
that of the frequency content of the signal being sam
pled and that introduced in the reconstruction of the 
signal from the samples. It is important to note that 
we are not concerned with the former type of aliasing, 
which is the result of sampling the signal at a rate 
below the Nyquist limit. Color metamerism generally 
obviates the need for very accurate reproduction of the 
exact curve of the power spectrum; nuances of the 
power distribution are important only in the interaction 
of light with attenuating media and reflecting surfaces 
and can safely be ignored in our model. What is 
important is our reconstruction of the spectrum from 
the point samples taken. As our approximation of the 
integral of the power spectrum will be a set of 
discrete samples, our reconstruction will be prone to 
appearing as a set of discrete, overlapping colors. 
This situation is analogous to that of temporal aliasing, 
where a moving ball may be sampled (imaged) at 
several points in time in an attempt to get motion blur 
and, upon reconstruction, appear as several overlapping, 
translucent circles. 
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In the case of dispersion, if we were to view a 
white disk on a black background through a prism, we 
might see several overlapping disks of different colors. 
We call this effect spectral aliasing, and use the jitter
ing technique of stochastic sampling to defeat it. 
Jittering is random placement of the actual sample 
points within fixed sample intervals, which intervals 
may themselves be regularly spaced. Jittering adds 
noise to the image and turns the distinct overlapping 
images into a speckled blur, which looks a bit like 
spray paint. 

The advantage of this noisy reconstruction of the 
image is that the human visual system tends to ,blur 
the noise together into a smooth continuum, whereas it 
actually enhances the sharp edges in the non-noisy 
images for a most displeasing effect. Such sharp 
discontinuities in intensity or color, or the rate of 
change thereof, manifest the phenomenon known as 
Mach banding. Mach bands are an artifact of the 
edge-enhancement caused by lateral inhibition in the 
retina.7 When constructing and sampling our representa
tion of the spectrum we must be aware of the poten
tial for trouble with color Mach banding. The practi
cal significance of this problem will be addressed in 
section 4.1. 

Whatever colors we choose for representation, we 
will fail to accurately reproduce the spectrum. The 
graphics monitor has three primary colors with which 
to work, none of which is fully saturated. Even if 
we have three fuUy saturated or monochromatic pri
maries (as are available with laser raster projection 
systems), all other monochromatic colors can only be 
approximated, with varying degrees of desaturation . 
Our task, then, is to represent the entire visible spec
trum of monochromatic colors as best we can, using 
three desaturated primaries and avoiding Mach bands. 
Furthermore, the sum of the samples chosen to 
represent the spectrum must, at full intensity, be the 
value of full-intensity white. If not, image samples 
involving dispersion will be tinted and/or shifted in 
intensity. 

Given a working model of dispersion and an 
acceptable representation of the spectrum, one looks for 
applications. One striking application is a physical 
model of the rainbow. Rainbows are the result of the 
interaction of sunlight with very large numbers of rain
drops in the atmosphere. The sheer number of parti
cles (raindrops) involved, multiplied by the number of 
samples required to integrate the spectrum, makes a 
direct simulation of nature quite impractical. By 
modelling of the interaction of light with a single ideal 
raindrop, we can acquire a table of data which 
represents the situation in nature. This table may be 
used subsequently in the rendering process to replicate 
the effects of a rainbow in nature, with very good 
computational efficiency. We will describe such an 
approach in Section 4.3. 

3. PREVIOUS WORK 

3.1. Pbysics of Refraction 

Refraction is an effect of the differing speed of 
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light in dissimilar materials. The speed of light in a 
material determines its optical density which, surpris
ingly, is not exactly proportional to its mass density. 
As light slows down upon entering a medium of 
greater optical density, the wave trains are compressed. 
Thus, while frequency is preserved, wavelength is not. 
(It thereby behooves one to be careful not to use 
"frequency" and "wavelength" interchangeably when dis
cussing refraction and dispersion.) 

The angle of refraction, or the angle of the 
change in path for light, was related mathematically to 
the net change in index of refraction by Willebrord 
Snell (and, independently, by Rene Descartes) in 1621 
by SneU's Law:1. 19 

1'\1 sinSi = 1'\2 sinSI (1) 

where 1'\1 and 1'\2 are the indices of refraction of the 
two transmissive media, Sj is the angle of incidence 
and SI is the angle of transmission. As the refractive 
index 1'\ is a function of the frequency of the light 
ray, the angle of refraction is also a function of fre
quency. Thus arises dispersion. 

3.2. Pbysics of Dispersion 

The proportion of change of index of refraction 
with frequency in a material is termed dispersive 
power. The dispersive power w of a material is 
defined as the ratio of the dispersion between the F 
and C Fraunhofer lines'" to the mean deviation, i.e., 
the deviation for the D Fraunhofer line.20.2l.26 Thus 

w = (1'\r1'\c) 

(1'\D -1) 
(2) 

where 1'\F' 1'\c ' and 1'\D are the refractive indices of 
the material at the frequencies of the F, C, and D 
Fraunhofer lines, respectively. 

Just as optical density is independent of mass den
sity, dispersive power is independent of optical density. 
The reason is that dispersion is modulated by absorp
tion bands in materials, not by optical density. Note 
also that the plot of refractive index vs. frequency is 
not perfectly straight, but curved. This is an important 
factor in the development of a model of dispersion. 

There have been many attempts to formulate a 
quantitative relation of refractive index 1'\ to frequency 
or wavelength A" none entirely successful. The best 
known and most general is that of SeUmeier: 1 

b'A2 
1'\2 = I+L-- (3) 

c2 _'A2 

where b is a constant characteristic of the material, c 
is an idealized absorption wavelength of the material 
(corresponding to a spectral absorption band) where the 
index of refraction is infinite, and the summation is 
over all absorption bands in the material. Simpler 
equations which are suitable' for limited extents within 
the spectrum. are: 1 

a b c 
1'\ = -+-+-+ . . (Cauchy) 

'A0 A,2 'A4 

* The Fraunhofer lines are emission lines of hydrogen. They represent 
monochromatic light at various visible wavelengths: the C line is at 656.3 
nm (red). D is at 589.3 nm (yellow). and F is at 486.1 om (violet). 
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Figure 3.1 The dispersion curve at an absorption band. 

1+_b_ 
(c -A.) 
b c 

11 = a+-+-
A. 2-

1.. 2 

(Hartmann) 

(Conrady) 

11 = a +bA.2 +cL +dL 2 (Hertzberger) 

where L = (1..2-0.028)-', and a, b, c, and d are 
constants. These equations are all nonlinear, and 
values of the constants for various materials are not 
easily found in the literature. This will be a con
sideration in our development of a dispersion model. 

3.3. Rainbows 
Rene Descartes worked out the first scientifically 

accurate model of the rainbow in 1637.10,14 To do 
this, he assumed the raindrops to be spherical and 
traced rays through a circular, two dimensional 
representation - proof that ray tracing is hardly a new 
technique! Descartes' simulation is illustrated in Figure 
3.2. 

2 

3 

Figure 3.2 Descartes' raindrop. 

With his simulation, Descartes was able to accurately 
explain the angular size and position of the primary 
rainbow arc and some of the supernumerary arcs. 
(The supernumerary arcs which sometimes appear 
immediately inside of the primary rainbow arc are due 
to diffraction effects arising from the wave nature of 
light, and thus cannot be modelled using the geometric 
optics of a particle transport ray tracin~ paradigm. For 
more on this topic, see Nussenzvieg.1 ) Interestingly, 
an explanation for the color in the rainbow had to 
await Newton's discovery of dispersion some decades 
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later. Aside from the supernumerary arcs inside the 
primary rainbow arc, Descartes' raindrop remains an 
accurate and sufficient model of the rainbow. 

To recreate Descartes' simulation, we trace rays 
into the raindrop from the optical axis (ray I in Fig
ure 3.2) to the edge of the circle. This corresponds 
to a range of zero to one for the impact parameter; 
the value of this impact parameter uniquely determines 
the path of the ray through the raindrop. Upon imp
inging the the raindrop, the ray is refracted, reflected 
once for the primary arc or twice for the secondary 
arc, and refracted again upon exiting the drop. Arcs 
formed by higher-order internal reflections are deemed 
unimportant as they are too dim and/or appear close to 
the sun in the sky, and are therefore not visible. 

Note that all rays with an impact parameter 
greater than or less than that of ray 7 in Figure 3.2, 
the Descartes ray, emerge at an angle closer to the 
optical axis than that ray. Thus the Descartes ray 
marks a point of inflection in the change of emergence 
angle with impact parameter, and there is a concentra
tion of light energy being returned at this angle, which 
is approximately 42 degrees. This gives us a bright 
feature 42 degrees from the optical axis; it is disper
sion which spreads the bright feature into the spectrum 
of colors. Note also that the fact that all rays which 
are reflected exactly once inside the raindrop emerge at 
42 degrees or less, makes the sky appear lighter inside 
of the primary arc of the rainbow. Rays reflected 
exactly twice inside the raindrop emerge with a peak 
power at approximately 52 degrees, with the excess 
light emerging at greater angles. Thus the secondary 
arc appears at about 52 degrees; between the two arcs 
is a zone of darkness known as Alexander's band. 

To perform an accurate simulation of energy 
transfer in Descartes' raindrop, the Fresnel equation 
should be used to modulate the quantities of reflected 
and refracted energy. With an extInction coejJicient* of 
0, the Fresnel equation for reflection can be written:2 

rpa 
112cos9i +11,cos91 

112COs9j -11 ,cos91 
(4) 

11,cos9i -112COs91 
rpe 

11,cos9i +112COs91 
(5) 

2 2 
R = 

rpa +rpe 

2 
(6) 

where r pa is the reflection coefficient for the com
ponent of light which is polarized parallel to the sur
face, rpe is the reflection coefficient for the component 
polarized perpendicular to the surface, 11, and 112 are 
the refractive indices of the two materials, 9j is the 
angle of incidence, 91 is the angle of refraction, and 
R is the total reflectivity. Light not reflected is 
refracted in quantity 1 - R . 

The rainbow phenomenon exists as a cone in 
space which is unique for each point of view (and 
indeed for each eye of the individual observer); Figure 
• The extinction coefficient is a physical quantity specific to each 
material22 which varies with frequency. The specific values of 
this coefficient are often unknown for a given material, and it is 
generally set to 0, for the purposes of computer graphics lighting 
models. 
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Figure 3.3 The cone of a rainbow. 

3.3 is intended to illuminate this. Inspect it carefully 
for the following argument Since the geometry of 
reflection and refraction as discussed above gives us a 
spectrum appearing at an angle the same as that of the 
Descartes ray from the straight back direction to the 
light source, we would expect to see that spectrum in 
all (sunlit) raindrops viewed from that angle. The 
sun's rays can be assumed to be parallel, thus this 
effect appears to the observer as a circle of angular 
radius 42 degrees, since the observer is, by definition, 
at the apex of the cone. Naturally occurring rainbows 
actually constitute a cone of half-angle 42 degrees 
around the antisolar point and have an angular width 
of approximately 2 degrees. The secondary arc appears 
at a half-angle of 52 degrees. 

3.4. Computer Graphics 
As mentioned above, the Cook-Torrance shading 

model relates reflection to index of refraction and fre
quency through the Fresnel equation.22 A model of 
refraction relating index of refraction to frequency has 
been developed by Thomas23 and more recently by the 
author; 15.16 that work is extended here to include a 
physical model of the rainbow. 

The problem of integration and reconstruction using 
point samples has been addressed by Cook6 in his dis
cussion of the distributed ray tracing model.4 The 
dispersion model developed by the author is a straight
forward application of Cook's techniques. as an exten
sion to the repertoire of effects available through distri
buted ray tracing. 

A model of atmospheric rainbows has been alluded 
to in the literature,5 but not presented in detail. A 
physical model of the rainbow requires a fair amount 
of development work. Fortunately. the development 
work being done. the results are easy to include as an 
added feature in a rendering program. 

4. SOLUTION 

4.1. Sampling in the Frequency Domain of Light 
To model dispersion. we must integrate the power 

spectrum of light at each sample point in the image 
where there occurs dispersive refraction, such as on the 
surface of a glass prism. The integral of the power 
spectrum can be expressed 

800 

IT = fI(A) dA 
3io 

(7) 
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where IT is the total illuminance at the given point in 
space and I (A) is the illuminance at wavelength A at 
that point. As we need only integrate the power spec
trum of transmitted light at dispersive surfaces, since 
only transmitted or refracted light is dispersed, the 
integral we are interested in can be stated 

800 

It = 3LT(A) dA (8) 

where It is now the illuminance by transmitted light at 
a point in space on the boundary of a change in 
refractive index, and T (A) is the illuminance by the 
transmitted light at wavelength A. 

As previously stated. we ' will approximate this 
integral using a set of point samples. We perform 
stochastic antialiasing of our integral by jittering6 the 
samples. If a sample 1 at frequency A represents the 
power in the spectrum over an interval of width 6/, 
the jittering consists of adding a random offset 
61 (X - 112) where X is a random variable of uniform 
distribution in the range [0 .. 1]. The net effect is to 
randomly place the sample 1 somewhere within the 
interval A-6112 to A+6112. 

The fact that we take point samples in the fre
quency continuum of light implies that we are also 
taking point samples of the continuum of the dispersion 
curve, as index of refraction is a function of fre
quency. Thus we face the choice of whether to jitter 
the frequency (and therefore the color) of the rays or 
the refractive index of the material, or both. Given 
that the the jittered sample at frequency 1 needs to be 
translated into R (f), the value of the refractive index 
function R at I. we will prefer to jitter a linear func
tion R over a nonlinear function for reasons of compu
tational efficiency. as linear interpolation is in general 
quicker to evaluate than nonlinear interpolation. 

This may motivate us to contrive piecewise linear 
approximations to the spectrum and the dispersion 
curve. It is unlikely that the viewer of the final 
image will be able to discriminate between a physically 
accurate nonlinear model and a computation ally efficient 
linear approximation; furthermore, since the dispersion 
curve is specific to a given material, to be true to 
nature one would need to tabulate data for every dis
tinct material to be rendered. We therefore employ a 
(one-piece) linear approximation to the dispersion curve 
for our rendering dispersion model. 

The refractive index and dispersive power for sur
faces can be input parameters. Thus one can specify 
a polygon with an associated refractive index of, for 
example, 4.2 and a dispersive power of perhaps 0.5, 
both of which are outlandish in terms of the "real" 
world, but viable within our model. It is interesting 
to create situations and materials which cannot exist in 
our everyday experience; this is part of the power of 
computer graphics. 

The issue of which quantity to jitter, refractive 
index or color, or both, should be evaluated in the 
light of computational efficiency. The reason for jitter
ing samples is to avoid spectral aliasing, however, it 
has been our experience that spectral aliasing is not a 
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significant problem in any but deliberately pathological 
scenes. That is, the distinct overlapping images of dif
ferent colors are simply not readily visible unless the 
dispersive power is unrealistically high. When jittering 
is deemed desirable, we jitter the frequency of the ray 
and derive, in a pre-rendering operation, a constant Cs 

for each refractive surface s in the scene: 

w (T) - 1) - 1) 
0.76 

(9) 

where w is the dispersive power, T) is the refractive 
index at the far red end of the spectrum, 0.76 is the 
proportion of the spectrum that lies between the C and 
F Fraunhofer lines. This constant Cs when multiplied 
by the the frequency of a sample gives the refractive 
index at that frequency, for use in calculations of pro
pagation of refracted light. (Note that this assumes 
that frequency is specified in the range [0 .. 1].) Thus 
the cost of jittering is reduced to one floating point 
multiplication per surface encountered, plus the negligi
ble preprocessing cost of evaluating Cs for each 
relevant object in the scene and the cost of interpolat
ing the color of the final sample. 

4.2. Representing tbe Spectrum 
To reproduce the spectrum, we must simulate the 

entire gamut of monochromatic colors using only the 
three desaturated primaries of the graphics monitor. 
Furthermore, the integral of each of the red, green, and 
blue curves of our simulated spectrum must be unity, 
or the reconstruction of an image from our samples 
will be tinted, darkened, or overdriven. We refer to 
this as the swnming to white criterion. 

As we work within the rgb color space, we 
should restate equation (9) in terms of the rgb vectors : 

800 

I,~ = 3L R (A) T(A) dA (10) 

800 

3L G (A) T(A) dA (11) 

800 

I,. = 3LB(A)T(A) dA (12) 

where R (A), G (A), and B (A) are the values of the R, 
a, and B tristimulus functions for the metameric color 
used to represent the co10r of monochromatic light of 
wavelength A. When sampling at a particular fre
quency then, we are actually taking three (red, green, 
and blue) samples of T(A) . The distribution of the 
samples should be tailored to the shape of the tris
timulus curves used 'in the representation of the spec
trum, with care taken to assure that 

,. ,. ,. 
LR(A;) = LG(A;) = LB(A;) (13) 
;=1 ;=1 ;=1 

where A; is the wavelength of the i,k sample, and 
R (A;), G (A;), and B (A;) are the red, green, and blue 
values, respectively, of sample A; . This equality is 
necessary in order to have the samples (at their max
imum intensity values) sum to white in the rgb color 
space of the graphics monitor. 
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4.2.1. Linear Spectrum Model 
A simple representation of the spectrum, given 

these constraints, is shown in Figure 4.1. This model 
has the advantage of being piecewise linear, for fast 
interpolation of color, and it provides a reasonably 
good perceptual representation of the spectrum. It has 
the disadvantage of using a significant portion of the 
power available to the red primary, in the approxima
tion of violet with magenta. Violet is of higher fre
quency than is available with an rgb monitor and 
therefore cannot be directly reproduced; magenta is a 
visually acceptable substitute. A problem with the 
magenta representation of violet is that edges which are 
blurred by dispersion such that they should appear with 
the color sequence yellow-orange-red-black, actually 
appear greenish-yellow-red-black. This is because in a 
white-to-black transition of this sort, the first color to 
be subtracted out from the sum is violet. When violet 
is represented as a sum of equal quantities of red and 
blue, the subtraction of violet leaves a surplus of 
green. This is a subtle effect, and escapes the notice 
of most viewers. 

If1 1 11'] I I I lJHJ red 

i J I ld1 1 1 I 11'] I I I I green 

J I I I I I ld1 1 I 1 11'] bluu 

o 1 3 4 6 7 B 9 10 11 12 13 14 

FREOUENCY 

SUM: -g 1 
~ 

Figure 4.1. The rgb curves of the linear spectral representation. 

Another potential drawback of this representation ot 
the spectrum is the pronounced discontinuities in the 
first derivative of the rgb curves. While this has the 
potential for causing color mach banding, such an 
effect has only been observed in deliberately pathologi
cal scenes. Yet another problem found is that the red 
band in the spectrum appears too narrow, again because 
Some of the red energy is used to display violet. The 
final problem is that the ro11off of red and violet to 
black is too steep and short; the entire curve bears no 
resemblance to the response curve of the human visual 
system. 

Despite the above drawbacks, we have found this 
to be a viable representation of the visible spectrum. 

We sample the representation of the spectrum at 
l3 intervals centered on the vertical lines in Figure 
4.1. This provides a good basis for reconstruction of 
the spectrum and preserves the summing to white pro
perty. However, when jittering we encounter the 
problem that ' the samples may longer sum to white. 
The noise added by uncorrelated jittering of the 13 
samples will generally skew the sum; in practice this 
appears as a faint colorful noise, faint enough to not 
be objectionable or even usually noticeable. (fhis 
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problem could be defeated by correlating the jittering 
of the 13 samples, but this is computationally expen
sive.) Furthermore, about half the time the sum of jit
tered samples of a full intensity white point will 
exceed unity. If the sum is not clamped to unity at 
the high end, overflow will occur and the color of the 
summed samples is likely to wrap around to black. 
This problem is defeated by clamping the sum, at 
minimal computational cost. 

4.2.2. Empirical Spectrum Model 
A more rigorous approach to the construction of 

the representation of the spectrum is currently under 
development. This approach involves taking the xyz 
coordinates of the monochromatic spectral colors and 
performing the appropriate linear transformation into rgb 
values. Construction of the transformation matrix 
requires information about the chromaticity coordinates 
of the specific monitor on which the spectrum is to be 
displayed.19 We use as input the xyz coordinates of 
monochromtic colors weighted by the spectral radiant 
power distribution of the CIE standard illuminant B, 
which is designed to emulate direct sunlight (the light 
source for rainbows). The following graphs are piece
wise linear between samples taken at 10nm (nanometer) 
intervals from 380 to 770 nm.27 

As our rgb primaries are not fully saturated, we 
expect that at all points in the spectrum at least one 
of the rgb values will be negative. This is indeed 
what we see in the curves of Figure 4.2. The sum 
of these curves, with negative values included and with 
negative values clamped to zero, are shown in Figure 
4.3. A more accurate approximation to the spectrum, 
without negative values, could be attained be limiting 
the xyz input values to the color gamut of the moni-
tor. 

r 

Figure 4.2. The rgb curves of the empirical spectral representation. 

Figure 4.3. Summed rgb values, with and without negative values. 

Note that the curves in Figure 4.3 have a local 
minimum in the cyan area of the spectrum. These 
curves do not give an acceptable representation of the 
spectrum on a monitor calibrated for perceptually linear 
contrast response; the cyan and yellow colors appear 
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far too dark. When adjusted. with a gamma correction 
of 2.5 to 3.0, however, the zero-clamped curve gives a 
good representation of the spectrum. Note also that 
the area under the zero clamped curves should be nor
malized to meet the summing to white requirement. 

4.3. Rainbow Models 

4.3.1. Impressionistic Rainbow Model 
We have developed two models of the rainbow, 

one very simple and impressionistic or empirical, the 
other comparatively complex and purely physical. The 
former model entails using the 13 colors of our sam
ples of the linear spectrum model to create 13 different 
colors of fog which compose a rainbow. The fog 
function is simply an asymptotic replacement of some 
percentage r of the color value computed at the end 
of the ray, with the color value of the fog, based on 
the distance that the ray has traveled: 

(14) 

where h is a constant, d is the distance, and t is the 
transmittance constant; note that t has red, green, and 
blue components, usually equal. As that distance goes 
to infinity, the percentage of replacement goes to 100. 
The 13 colored fogs are invoked in concentric rings 
(cones, actually) around the antisolar vector, e.g., the 
vector from the light source to the eye point. This 
vector corresponds to the ray from the observer to the 
antisolar point in Figure 3.3. Each ring is a band of 
some angular width, at some angular offset from the 
antisolar vector. We construct the rainbow by taking 
the dot product of each ray traced, with the antisolar 
vector; this dot product gives us the cosine of the 
angle between the two vectors. This cosine is then 
used as an index into a table of the 13 colored fogs. 
The indexing function can be parameterized to vary the 
width and angular placement of the rainbow. The fol
lowing C code segment implements this parameterized 
rainbow: 

index = ( OOT(ray direction, antisolar ray) 
- rainbow angle) • rambow width; 

if Uiller option) - -
- index += jitter(delta); 

if ((index >= 0) && (index < FREQUENCIES» 
Fog = Rainbow[(int)index); 

else Fog = NULL; 

where "ray_direction" and "antisolar_ray" are vectors, 
"Fog" and "Rainbow[)" are pointers to structures for 
the "fog" type, and the other variables are floating 
point type. The constant "FREQUENCIES" is equal to 
13; the function call "jitter(delta)" returns a random 
value of uniform distribution in the range [
delta/2 .. delta/2] . 

The jitter option turns a rainbow composed of 
concentric bands of color to a more attractive "fuzzy'· 
rainbow. This jittered rainbow can look fairly realistic, 
particularly when supersampling is employed to soften 
the noise introduced by the jittering. Note that this 
scheme only jitters the index to the table of colored 
fogs, and not the color of the fog itself; an improve
ment would be to add such color jittering. 

Graphics Interface '89 



4.3.1. Physical Rainbow Model 
The above approach is ad hoc and is not really 

based on a dispersion model, but it uses the spectral 
representation of our dispersion scheme. A more 
rigorous and complex approach, yielding a more realis
tic result, is to recreate Descartes' simulation using 
dispersion. We will have to integrate Descartes' rain
drop over the visible frequencies of light; this entails 
ray tracing Descartes' raindrop at a variety of frequen
cies and summing the results. Clearly it is inefficient 
to ray trace Descartes' raindrop for every ray spawned 
in the process of rendering a scene; fortunately we can 
do much better than this. We need only perform the 
integration over frequency of Descartes' raindrop once, 
in a preprocessing step, to build a table of fogs simi
lar to that used in the our simpler rainbow model. 
This table will need to have a relatively large number 
of entries, as a real rainbow is an illumination effect 
that covers most of the sky, though mostly to a very 
subtle degree. Thus we have entries for a large 
number of angular displacements, over a 180 degree 
range. (In practice, no fog might be required in the 
10 degree interval of Alexander's band, as no light is 
returned there by refraction.) 

The ftrst step in implementation of the physical 
model is to generate an algorithm for ray tracing Des
cartes' raindrop. This means calculating the angle of 
emergence and energy attenuation factor for rays which 
are reflected once and twice inside the raindrop, as a 
function of the impact parameter. The angle of emer
gence of a given ray is determined by the geometric 
optics of reflection and refraction in a sphere, while 
the energy transfer is determined by the physics of 
reflection and refraction of light as it interacts with 
air/water boundaries. 

The geometric optics of Descartes' raindrop are 
illustrated in Figure 4.4. 

Figure 4.4 The geometric optics of pescartes' raindrop. 

Note that we can take advantage of the equality of 
angles 91 and 92; Once this geometry is established, 
it is straightforward to program an algorithm to trace 
the required rays. 

For the purposes of computer graphics, we are 
generally not concerned with the polarization of light, 
and generalizations of the Fresnel equation for non
polarized light are usually employed. For this simula
tion, however, we are more interested in physical vera
city than computational efficiency, so we choose the 
formulation of the equation as it appears in equations 
4, 5, and 6. Note that the orientation of polarization 
to the surface is preserved through reflections and 
refractions in a spherical raindrop. 
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Also in the interest of physical accuracy, we use 
a nonlinear approximation of the dispersion curve of 
water in our rainbow simulation. Using actual meas
urements of the refractive index of water at various 
frequencies l2 we derive constants a and b of Cauchy's 
equation for refractive index, getting a = 1.3239 and 
b = 3116.3. The ftrst two elements of the Cauchy 
series 

b a +
')..2 

(15) 

give a good approximation to the dispersion curve of 
water with the derived values of a and b: over the 
wavelength range from 405 to 670 nanometers, the cal
culated values of 'T\ agree with measured values to 
within plus or minus 0.0001, or 0.8 of one percent. 
We use a refractive index of 1.0003 for air. 

Our ftrst implementation of the physical rainbow 
model uses samples taken at 13 ftxed, evenly spaced 
frequencies or wavelengths. (We relax our rigor in the 
use of "frequency" and "wavelength" here, as the visi
ble spectrum is usually specifted by wavelengths of 
light in a vacuum.) We trace 50,000 rays per 
wavelength, over the range of impact parameters. For 
each wavelength sampled, the intensities of the emerg
ing rays are summed by angle of emergence in a 
linear array of 1800 buckets. The intensities in each 
bucket are then multiplied by the rgb vector of the 
representative color for that wavelength and added to 
buckets of a similar array of rgb intensities by angle. 
After all wavelengths have been sampled, the results in 
the rgb array are normalized and inverted for use in 
the fog function. Unlike the ad hoc rainbow model, 
the fogs used are not themselves colored, but rather 
their transmittances, t in equation (14), are unequal in 
red, green, and blue. Thus the fogs have no intrinsic 
color, but red, green, and blue values at ray endpoints 
are replaced at independent rates per unit distance. 
This prevents unnecessary ftltering by attenuation of 
colors behind the rainbow. 

Our ftrst approach evidences signiftcant spectral 
aliasing. Spectral alia sing is accentuated in the rain
bow model, as the bright feature at the Descartes ray 
is quite narrow and pronounced for a point light 
source, resulting in thin concentric rings of color in the 
rainbow. The rings are more widely spaced and there
fore more evident in the violet end of the spectrum, 
as the dispersion curve is steeper at shorter 
wavelengths. 

A second implementation employs spectral antialias
ing. Again we sample at 13 distinct frequency inter
vals, but we jitter the samples within the intervals. 
This approach requires that we multiply the intensity of 
the ray by the interpolated rgb value for its speciftc 
frequency, and store that vector in the rgb array 
immediately, rather than using an intermediate storage 
array, as the colors of individual rays will vary. This 
has the effect of blurring and merging the rings pro
duced by discrete sampling. 

Again, the process described above yields the rain
bow produced by a point light source, thus the rings 
of color produced by spectral aliasing are quite narrow 
and distinct. In nature rainbows are produced by the 
sun, which has an angular diameter of approximately 
one half of one degree. Convolution of the ftnal rgb 
tables with a (one dimensional) kernel which represents 
the disk of the sun spreads each of the rings over one 
half a degree of angle. The kernel we use is ftve 
entries wide, correspondin~ to the fact that our fog 
samples are taken at 111(1 degree intervals. Since the 
entire angular width of the rainbow is approximately 
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two degrees, this blurs the rings. t<?ge.ther well enough 
to provide very good spectral antlallasmg. If the area 
under the curve of the semicircular kernel is normal
ized, there will be no net change in the density of the 
fog tables after the convolution. 

We employ another feature of our rainh?w models. 
In nature, rainbows are rarely perfect arcs, ~ fact one 
most often sees only a portion of the full raInbow arc. 
Rainbows are modulated by two factors: shadows of 
the clouds from which the rain is falling, and the dis
tribution of the falling rain itself. In an effort to 
make our rainbows look more natur~, we modulate 
intensity of the rainbow with Perlin'sl "ChaosO" t~x
ture. This is a solid or procedural texture whIch 
takes a vector as input and returns a stochastic scalar 
quantity with a 1/f2 power spectrum. The vector we 
pass to the texture is the ray direction; we use the 
scalar value returned to modulate the transmittance of 
the rainbow fogs. The frequency content of the 
ChaosO function can be parameterized for varying 
effects, and the texture can be scaled on a vertical or 
slanted axis to simulate sheets of falling rain. 

5. CONCLUSION 
A model of dispersive refraction within the disi?

buted ray tracing paradigm has been implemented, ~lth 
good subjective results. The problem of representing 
the spectrum of monochromatic colors within the rgb 
color space has been addressed, but not solved to final 
satisfaction; further work is called for here. 

Physical and empiricaVimpressionistic models of the 
rainbow have been developed, using the above results. 
In contrast to the dispersion model, the rainbow models 
are relatively efficient to render, because of their tabl~
lookup implementation. The rainbow models are SUIt
able for Z-buffer rendering schemes, as well as ray 
tracing. 

Acknowledgements 

This work is an extension of graduate work undertaken 
at the University of California at Santa Cruz (where the rain
bow is the National Bird). There I am deeply grateful to 
many, particularly my advisor Lew Hitchner, for their help, 
guidance, and companionship. The physical rainbow model 
was developed with the assistance of Heath Erskine, Kirby 
Hawkes, Miguel Garcia, Tom Adams, and Mike Loteazka of 
the Greater New Haven State Technical College. The (decid
edly non-fractal) work at Yale was carried out with the kind 
forbearance of Benoit Mandelbrot and was funded in part 
through the Office of Naval Research Contract #NOOO14-88-
K-0217. Computations were performed in parallel through 
the auspices of the Yale Computer Science Department using 
C-Linda on the Encore Multimax. That system is supported, 
in part, by NSF grants DCR-8601920 and DCR-8657615. 

References 

1. R. M. Besancon, The Encyclopedia of Physics, Van 
Nostrand Reinhold Company, New York, 1974. 

2. Max Born and Emil Wolf, Principles of Optics, 
Pergamon Press, Oxford, 1980. 

3. Robert L. Cook and Kenneth E. Torrance, "A 
Reflectance Model for Computer Graphics," Com
puter Graphics, vo!. 15, no. 3, pp. 307-316, 
August, 1981. 

4. Robert L. Cook, Thomas Porter, and Loren Car-
penter, "Distributed Ray Tracing," Computer 
Graphics, vo!. 18, no. 3, pp. 137-145, July, 1984. 

234 

5. Robert L. Cook, "Shade Trees," Computer Graph
ics, vo!. 18, no. 3, pp. 223-230, July, 1984. 

6. Robert L. Cook, "Stochastic Sampling in Computer 
Graphics," ACM Trans. on Graphics, vo!. 5, no. 
1, pp. 51-72, January, 1986. 

7. T. N. Cornsweet, Visual Perception, Academic 
Press, New York, 1970. 

8. Alain Fournier, "Modelling Natural Phenomena," 
SIGGRAPH Course Notes, 1987. 

9. Alain Fournier, personal communications, 1987. 
10. R. Greenler, Rainbows, Halos, and Glories, Cam

bridge University Press, Cambridge, 1980. 
11. James T. Kajiya, "The Rendering Equation," Com

puter Graphics, vo!. 20, no. 4, pp. 143-150, 
August, 1986. 

12. G. W. C. Kaye and T. H. Laby, Tables of Physi
cal and Chemical Constants, 14th Edition, p. 95, 
Longman Group Ltd., London, 1973. 

13. Mark E. Lee, Richard A. Redner, and Samuel P. 
Uselton, "Statistically Optimized Sampling for Dis
tributed Ray Tracing," Computer Graphics, vo!. 19, 
no. 3, pp. 61-67, July 1985. 

14. M. Minnaert, The Nature of Light and Colour in 
the Open Air, Dover, New York, 1954. 

15. F. Kenton Musgrave, "A Realistic Model of 
Refraction for Computer Graphics," Masters Thesis, 
University of California at Santa Cruz, Santa Cruz, 
California, September, 1987. 

16. F. Kenton Musgrave, "A Realistic Model of 
Refraction for Computer Graphics," Modelling and 
Simulation on Microcomputers 1988, conference 
proceedings, pp. 37-43, Society for Computer Simu
lation, San Diego, Feb. 1988. 

17. H. Moyses Nussenzveig, "The Theory of .the Rain
bow," Scientific American, pp. 55-65, Apnl, 1977. 

18. Ken Periin, "An Image Synthesizer," Computer 
Graphics, vo!. 19, no. 3, pp. 287-296, July, 1985. 

19. D. F. Rogers, Procedural Elements for Computer 
Graphics, Mc Graw Hill, New York, 1985. 

20. G. G. Slyusarev, Aberration and Optical Design 
Theory, Adam Hilger Ltd, Bristol, 1984. 

21. James P. C. Southall, Mirrors, Prisms, and Lenses, 
MacMillan Company, New York, 1933. 

22. Ephraim M. Sparrow and R. D. Cess, Radiation 
Heat Transfer, pp. 64-68, McGraw-Hill, New York, 
1978. 

23. 

24. 

25. 
26. 

27. 

Spencer W. Thomas, "Dispersive Refraction in Ray 
Tracing," Visual Computer, vo!. 2, no. 1, pp. 3-8, 
Springer International, January, 1986. 
Turner Whitted, "An Improved Illumination Model 
for Shaded Display," CACM, vo!. 23, no. 6, pp. 
343-349, June, 1980. 
Turner Whitted, personal communications, 1987. 
Robert W. Wood, Physical Optics, MacMillan 
Company, New York, 1911. 
G. Wyszecki and W. S. Stiles, Colot Science: 
Concepts and Methods, Quantitative Methods and 
Formulas, Wiley-Interscience, New York, 1967. 

Graphics Interface '89 


