
47

A GRAPHICAL QUERY LANGUAGE FOR HYPERTEXT
DATABASE SYSTEMS

Richard Gary Epstein
Department of statistics / computer

and Information systems
The George washington university

Washington, DC 20052

Abstract

This paper presents a semantic data
model for the implementation of hypertext
database systems. The data model provides
a framework for improving the
functionality of hypertext systems. An
important part of the model is its user
interface, called the 11 informatics
calculus". Based upon the notion of a
functional query language, this is a
graphical query language with powerful
facilities for expressing relationships
and constructing new object classes from
those provided within the database.

1. Introduction
There is a growing consensus

regarding the functionality which must be
built into the next generation of
hypertext systems [1,2,3,4,5]. This paper
discusses that functionality and proposes
a framework for achieving it. That
framework is the information resource data
model [6,7]. "Informatics calculus" refers
to the user interface which is an
important part of the model. That
interface takes the form of a graphical,
functional programming language .

2. The next generation of hypertext
Halasz [8] lists seven capabilities

which should be incorporated into the next
generation of hypertext systems,
capabilities which are absent from
existing systems. The basic insight behind
the information resource data model is
that many of these capabilities can be
achieved if one designs hypertext systems
around formal data models. A similar
notion is put forward in Akscyn et al.
[9], who assert that user interfaces must
be designed from the "inside-out", the
inside being the data model and the
outside being the user interface. The
following paragraphs present those
capabilities in Halasz' s list which are
most relevant to the current paper.

1. Search and query. Halasz notes
that the browsing mechanism which is
characteristic of hypertext is an
inadequate mechanism for performing

searches. The informatics calculus query
sub language was designed to enable users
to specify the information they want
based upon perhaps complex relationships
within the database.

2. Composites. Halasz notes that
hypertext systems lack a "composition
mechanism", a means of "representing and
dealing with groups of nodes and links as
unique entities separate from their
components" ([8] , p. 843) . The
informatics calculus query sublanguage
provides this capabilty in a very natural
manner. Users can specify arbitrary
collections of nodes, links and individual
information fields within nodes using an
algebra of functional forms. This algebra
of functional forms treats links as data
on a par with text, pictures, numbers and
strings.

3. Computation in (over) Hypermedia
Networks. Halasz notes that the database
accessing mechanisms in hypertext are not
integrated with computational mechanisms.
The informatics calculus combines database
access and database computations in one
coherent framework. The informatics
calculus expresses computations (such as
finding the average of a set of numbers)
and queries (such as retrieving all
objects satisfying a given condition) in
terms of the application of functional
combinators to functions.

4. Extensibility and Tailorability.
Halasz notes that the generic nature · of
the data model which is implicit in
hypertext (nodes and links) does not
permit users to easily tailor systems to
their particular perceptions. The
information resource model is closely
related to the semantic data model of
Hammer and McCleod [10] and can be
classified as a semantic data model.
Semantic data models are designed to
capture user perceptions. Furthermore, the
functional programming framework of the
informatics calculus is inherently
extensible, allowing implementors and
users to introduce their own functions and
applications into the algebra of
functional forms.

Graphics Interface '89

5. Virtual structures for Dealing
with Changing Information. Halasz notes
that existing hypertext systems are
inflexible. Hypertext links are links
between objects rather than classes of
objects. This is due to the fact that
there is no support for the database
notion of "virtual structures". The class
concept is an example of a "virtual
structure". The information resource model
is a traditional database data model in
that the most significant structures are
virtual. Particular objects are instances
of their classes and the kinds of links
between objects are determined by the
classes to which they belong. The
informatics calculus data update
sublanguage takes advantage of this and
allows the user to manipulate links en
masse. virtual structures also provide a
basis for implementing database "views".

3. An object-oriented data model for
hypertext

In this section we will sketch the
basic properties of the information
resource data model. The information
resource data model is based upon Hammer
and MCCleod's semantic data model [10] and
Shipman's functional data model [11].
These, in turn, have led to object
oriented models, such as the design model
presented in Kroenke and Dolan [12] and
the implementation model presented in
Andrews and Harris [13].

This paper uses object-oriented
terminology which is closely related to
the terminology employed by Kroenke and
Dolan. Their terminology is based upon
the terminology software engineers employ
in discussing "object-oriented design"
[14]. This paper alters the Kroenke and
Dolan terminology somewhat to bring it
into conformance with the terms employed
in object-oriented programming languages,
such as Smalltalk [15].

object-oriented concepts are closely
related to the concepts of the functional
data model. The functional data model
provides the computation formalism behind
the informatics calculus user interface.
Table 1 provides a dictionary of object
oriented terms and the equivalent
functional terms.

According to the information resource
model (using the object-oriented terms) a
database is a collection of object
classes. object classes are either scalar
(STRING, NUMBER, DATE, etc.) , hyper
(DOCUMENT, PICTURE, VIDEO, etc.), or
schema (classes defined by the database
designer in a particular database schema) .
Each class consists of objects which are
instantiations of that class. All objects
in a class share a common set of
properties. Properties can either be
single-valued or multi-valued (yielding
the "arity" of the property). The set of
values that a given property can acquire
is called its value class. Properties can

48

either be scalar (the value class is a
scalar class), hyper (the value class is
a hyper class), or schema (the value class
is a schema class). Subclasses are classes
which inherent all the properties of their
superclasses, but may have additional
properties of their own.

The next section will present a
sequence of informatics calculus exampl7s.
These will be based upon the soc~al
studies database schema given in Table 2.
This database schema includes three schema
classes (STATES, PERSONS and INDUSTRIES)
and one subclass (POLITICAL PERSONS). The
schema says, for example, that GOVERNOR is
a single-valued schema property of tl?-e
class STATES whose value class ~s
POLITICAL_PERSONS. BIOGRAPHY is a single-
valued hyper property of the class PERSONS
whose value class is DOCUMENT. An arity of
1 indicates a single-valued property and
an arity of M indicates a multi-valued
property. An identifier is a property
which uniquely identifies an object within
a class.

Table 3 presents the functional data
model schema which is equivalent to the
object-oriented schema of Table 2. When
we describe the semantics of informatics
calculus expressions in terms of
functional composition, cartesian product
and so forth, we are actually referring to
the functions given in Table 3.

4. The informatics calculus query
sub1anguaqe

The informatics calculus was inspired
by Buneman's functional query language
(FQL) for the functional data model [16].
Buneman applied Backus' notion of an
applicative language [17] to a database
context. Buneman expressed database
queries by combining functions
(representing entity classes, attributes
and predicates) using a small set of
functional combinators (composition,
Cartesian product, and iteration).

The ihformatics calculus extended the
FQL formalism in several important
regards. The informatics calculus
expresses functional combinators using a
visual metaphor, thus producing a language
which is user-oriented. The underlying
data model was extended to support multi
media, something which was not possible in
Buneman's stream-oriented language.
Intrinsic functions (called functionals
and functors) were introduced to enable
users to express important computations,
such as computing averages and sorting
objects. Finally, the formalism was
extended to include a database update
sUblanguage.

Informatics calculus expressions take
the form of a "mosaic" , as shown in
Figure 1. A mosaic consists of a
collection of rectangular boxes called
"tiles". Each tile contains a class,
predicate, property, functional, functor
or some other meaningful function. The

Graphics Interface '89

49

Table 1. Correspondence between functional and object
oriented terms.

object-oriented functional

(object) class entity class

object entity

property function (attribute)

value class range of function (attribute)

scalar property scalar attribute

schema property entity-valued attribute

subclass w/inheritance subclass w/inheritance

Table 2. A Social Studies information resource specified
in terms of classes and their properties.

class STATES
identifier NAME

property: arity: value class:

NAME 1 STRING
REGION 1 STRING
POPULATION 1 NUMBER
GOVERNOR 1 POLITICAL PERSON
INDUSTRIES M INDUSTRIES
HISTORY 1 DOCUMENT

class INDUSTRIES
identifier NAME

property: arity: value class:

NAME 1 STRING
HISTORY 1 DOCUMENT
STATES M STATES

class PERSONS
identifier NAME

property: arity: value class:

NAME 1 STRING
AGE 1 NUMBER
SPOUSE 1 PERSONS

subclass POLITICAL_PERSONS of PERSONS

property: arity: value class:

PARTY 1 STRING

Figure 1. A mosaic consisting of six tiles.

< "til es"

<

I I <

Graphics Interface '89

spatial arrangment of tile~ in a mc:>saic
determines the manner in WhlCh functlonal
combinators, such as composition and
cartesian product, are applied to the
functions that the tiles represent.

We will now present a sequence of
informatics calculus e xamples. The
underlying formalism treats cl~sses ~s
functions which can be composed wlth thelr
properties. vertical j uxtaposi tion denotes
functional composition. Predicates are
defined in such a way that functional
composition of a class with a predicate
yields a subset of thE7 original c~ass.
composing a class wlth a predlcate
corresponds to the select opera~ic:>n of the
relational algebra. The composltlon of an
class with a schema property behaves like
the join operation of the relational
algebra. The composition of an class with
a scalar or hyper property is related to
the project operation of the relational
algebra.

Properties can be combined using
cartesian product. cartesian product is
denoted using horizontal juxtaposition.
When the cartesian product of properties
is composed with a class, the result is
similar to proj ection over two or more
attributes in the relational data model.
These basic capabilities define an
important subset of the informatics
calculus query sublanguage.

Example 1 presents an informatics
calculus query which yields the names of
the states in the northeast which have a
Democratic governor as well as the names
and ages of the governors. In this
example, the class STATES is first
composed with the predicate

REGION is "NORTHEAST"
This has the effect of selecting those
states X which satisfy the constraint:

REGION (X) = "NORTHEAST"
The second predicate

PARTY of GOVERNOR is "DEMOCRATIC"
involves the derived property

PARTY of GOVERNOR
A derived property is a property which is
computed using the properties which are
native to the database schema. This second
predicate has the effect of selecting
those states X whi.ch satisfy the
constraint:

PARTY (GOVERNOR (X » ="DEMOCRATIC"
For each state X that satisfies the two
constraints, the query of example 1 will
yield the following values:

NAME(X), NAME(GOVERNOR(X»,
AGE(GOVERNOR(X»

The informatics calculus requires
that all classes and properties be given
in upper case and all reserved words of
the language be given in lower case. The
reserved word "of", for example, denotes
functional composition (much like the
symbol "0" in mathematics) .

Informatics calculus queries can be
assigned names. The query of example 1 has
been given the name NE_DEM_ STATES. The
name is shown in a name tile at the upper
left corner of the query.

50

Example 2 illustrates how ,hyper
properties (pictures, documents, vldeos,
etc.) are presented in the result part of
an informatics calculus query. The result
part of a query appears below the query
when the query is evaluated. Hyper
property values are presented as menu
elements (shaded boxes in our example). A
menu element represents the infort?ation
implicit in the relevant do~ument, plcture
or video. The user would pOlnt at the menu
element in order to gain access to the
indicated document.

The query of Example 2 asks f07 the
names of states in the northeast wlth a
population of at least 3 million. In
addition, the query request~ the ~ames and
histories of the industrles ln those
states. The HISTORY property has the value
class DOCUMENT and thus, the histories of
the various i~dustries are displayed as
menu elements.

Example 3 illustrates how the
informatics calculus handles schema
property values. In this case, th~ query
asks for the names of states ln the
northeast that have a Democratic govenor,
and it also requests access to the
governor objects as such, that is, ,without
specifying particular propertles of
interest. The governors are displayed as
menu elements in the result part of the
query . These menu elements are labelled
with the identif i er specified for the
class PERSONS (i. e., the person's name).
The user can acce ss all of the information
relating to a particular governor by
pointing to the menu element for that
governor.

Example 4 illustrates how
computations are incorporated int~ the
informatics calculus functlonal
programming framework. The reserved word
"first" denotes an informatics calculus
selecting functor. This functor acts upon
a scalar property (which could be a
derived property) and it converts that
scalar property into a predicate which is
true only for those obj ects which rank
first in terms of the given property. For
example, the functor

first / POPULATION
applied to a set of sta~es, would sel7ct
that state which ranks flrst by populatlon
(perhaps more than one state if there is
a tie). The functor

first / AGE of SPOUSE of GOVERNOR
applied to a set of states, would select
that state (in the given set) whose
governor has the oldest ~pouse, th~t is,
the state X which ranks flrst accordlng to
the value of the function

AGE(SPOUSE(GOVERNOR(X»).
Consequently, the query of example 4 first
selects those states in the northeast that
have a population above 4 million and a
Democratic governor. Then, the query
s elects that state (among those remaining)
whose governor has the oldest spouse. The
query then requests the name of that state
and the name of the governor of that
state.

Graphics Interface '89

51

Example 1. Accessing the names of states in the northeast that
have a Democratic governor, as well as the names and ages of the
governors.

NE DEM STATES
11

STATES

PARTY of GOVERNOR is "DEMOCRATIC"

REGION is "NORTHEAST"

NAME GOVERNOR

NAME I AGE

Example 2. Accessing the names of states in the northeast
wi th a popUlation above 3,000,000, as well as the names and
histories of the industries for those states.

STATES

REGION is "NORTHEAST"

POPULATION> 3,000,000

NAME INDUSTRIES

NAME HISTORY

CONNECTICUT INSURANCE document

FIREARMS document

MASSACHUSETTS HIGH TECHOLOGY document

SOUVLAKI

NEW YORK BASEBALL

FINANCE

Our final informatics calculus
example illustrates that one query can
refer to another. The informatics
calculus query BIG NE DEM STATES of
Example 5 gives the names,-populations and
names of governors for states in the
northeast that have Democratic governors,
whose list of industries includes the
insurance industry and whose popUlation is
above the national average popUlation for
states. The predicate

POPULATION > AVE POP
refers to a second query -; whose name is
AVE_POP. AVE_POP is declared with the type
restriction 1 (NUMBER) , indicating that it
computes a single number and can thus be
used on the right hand side of a predicate
whose left hand side denotes a single
valued property whose value class is a
NUMBER. Also note that the predicate
NAME of INDUSTRIES includes

"INSURANCE"

document

document

document

is true if the set NAME of INDUSTRIES for
a given state includes the string
"INSURANCE".

5. Different perspectives on informatics
calculus

In this section we will view several
alternative ways of viewing the
informatics calculus.

1. A menu generating system. The
informatics calculus allows the user to
generate menus of nodes, data and links in
a hypertext database which is designed
around the information resource model.
These menus provide gateways into the
hypertext system, gateways which help the
user to overcome the cogni ti ve overhead
and disorientation problems described by
Conklin [lJ. In other words, these user
generated menus provide the user a means

Graphics Interface '89

52

Example 3. Gaining access to all Northeast Democratic
governors without specifying particular properties of
governors.

NE_DEM_GOVS

STATES

PARTY of GOVERNOR is "DEMOCRATIC"

REGION is "NORTHEAST"

NAME GOVERNOR

CONNECTICUT O'NEILL

MASSACHUSETTS DUKAKIS

NEW YORK CUOMO

VERMONT KUNIN

Example 4. Finding out which northeast Democratic governor in
a state with a population above 4,000,000 has the oldest spouse.
Give the name of that governor and the name of his / her
state.

NE_DEM_GOV_OLD_SPOUSE 11

STATES

PARTY of GOVERNOR is "DEMOCRATIC"

REGION is "NORTHEAST"

POPULATION> 4,000,000

first / AGE of SPOUSE of GOVERNOR

NAME

of managing the complexity of connections
in a hypertext system.

2. A menu-driven system. In terms of
the basic interaction styles for
interactive systems [17,18], the
informatics calculus interface is designed
as a menu-driven system. The informatics
calculus user constructs mosaics by making
choices in a system of menus. In this
context, the mosaics are not just
queries. They provide significant visual
feedback to the user concerning the
choices made thus far. The mosaics not
only help the user to manage complexity
(the query language aspect), they also
provide temporal and spatial orientation
with respect to the information retrieval
task (the visual feedback aspect) .

3. Informatics calculus as a
specification language. The informatics
calculus provides a framework for formally
specifying the construction of new classes

GOVERNOR

NAME

from the collection of classes contained
in a database schema. The functional
combinators (Cartesian product and
functional composition) correspond to
snipping and pasting operations with
respect to classes. Thus, the informatics
calculus plays a role in object-oriented
databases similar to the role played by
the relational algebra in relational
database.

For example, the query of Example 6
can be viewed as specifying a new class,
BIG NE DEM STATES, which contains
information-extracted from the STATES and
POLITICAL_PERSONS classes.

6. properties of a tiling editor
The informatics calculus user would

construct mosaics using a "tiling editor".
The tiling editor would be a menu-driven
system which would provide the user with
essentially three kinds of menus:

1. Tiling operator menus. These would
allow the user to choose from a small set

Graphics Interface ' 89

53

Example 5. A query (BIG_NE_DEM_STATES) which utilizes
the value of another query (AVE_POP).

I AVE_POP: 1 (NUMBER)
11

STATES

POPULATION

average

BIG_NE_DEM_STATES 11

STATES

PARTY of GOVERNOR is "DEMOCRATIC"

NAME of INDUSTRIES includes "INSURANCE"

REGION is "NORTHEAST"

POPULATION >

NAME POPULATION

of fundamental tiling operators.
2. Function menus. These ~ould

provide users with a menu of functl.ons,
functors and functionals which could be
inserted into a particular tile depending
upon the context.

3. Help menus. These would provide
users with various kinds of help,
including roadmaps of the underlying
database schema.

The existence of a small collection
of fundamental tiling operators is
essential to the success of the
informatics calculus as a viable u~er
interface. Preliminary work on the desl.gn
of a tiling editor indicates that there
are indeed only a few fundamental
operators, few enough so that. they ~ould
be conveniently expressed el.ther l.n a
function key or mouse-driven interface.
Table 3 provides a list of partial list of
fundamental tiling operators and how they
might be assigned to function and cursor
keys.

7. Summary
The information resource model

represents a proposal for accomplishing a
melding of hypertext and state of the art
database technologies. The informatics
calculus, the query language of the
information resource model, illustrates
how database query languages can help
hypertext users manage. complexity. The
informatics calculus l.S a menu-driven
system, where the informatics calculus
mosaics give the user visual feedback
concerning the current state of the
information retrieva l task being
formulated.

AVE POP

GOVERNOR

NAME

References
1. Conklin, J. (1987)
Introduction and Survey",
20(9), pp. 17-41.

"Hypertext: An
IEEE COMPUTER,

2. Yankelovich, N. et
"Intermedia: The Concept
Construction of a Seamless
Env i ronment" . .",I2,E",E"-,E"---"C",o"-,m!.!Jp",u,,..t",,",,,e,,,-r ,
81-96.

al. (1988)
and the

Information
21 (1), pp.

3. Marchionini, G. and Shnediderman, B.
(1988) "Find i ng Facts vs . Browsing
Knowledge in Hypertext Systems", IEEE
Computer, 21(1), pp. 70-80.

4. Yankelovich, N., Meyrowitz, N. and van
Dam, A., (1985) "Reading and writing the
Electronic Book", IEEE Computer, 18(10),
pp. 15-29.

5. Wegner, P., (1984) "Capital-Intensive
Software Technology", IEEE Software, 1 (3) ,
pp. 7-45. [Especially part 3 on knowledge
engineering.]

6. Epstein, R. G. (1988) "Informatics
Calculus: A Graphical, Functional Query
Language for Information Resource
Systems", doctoral dissertation,
Department of Computer and Information
Sciences, Temple University.

7. Epstein, R. G. (1988) "The Informatics
Calculus: A Graphical, Functional Query
Language for Information Resources", RIAO
88 Conference Proceedings, pp. 667-690,
March 1988, Cambridge, MA.

Graphics Interface '89

8. Halasz, F. (1988) "Reflections on
Notecards: Seven Issues for the Next
Generation of Hypermedia Systems" ,
Communications of the ACM, 31(7), pp. 836-
855.

9. Akscyn, R., Yoder, E., and McCracken,
D. (1988) "The Data Model is the Heart of
Interface Design", in CHI '88 Conference
Proceedings, pp. 115-120, May 1988,
Washington, D. C.

10. Hammer, M. and McCleod, D. (1981)
"Database Description with SDM: A
Semantic Data Model", ACM Transactions on
Database Systems, 6(3), pp. 351-386 .

11. Shipman, D. (1981) "The Functional
Data Model and the Data Language DAPLEX",
ACM Transactions on Database Systems,
6(1), pp. 140-173.

12. Kroenke, D. and Dolan, K. (1988)
Database Processing, SRA, chicago.

13. Andrews, T. and Harris, C. (1987)
"combining Language and Database Advances
in an Object-Oriented Development
Environment", OOPSLA '86 .

54

14 . Abbot, R. (1983) "Program design by
informal English descriptions",
-"C",o,""m!!Jm",u",n",~=-' c"""a...,t",i",o"",n...,s"---,o""f"---,t",h",e=-....lA",C,,-M,,,, 2 6 (11), pp .
882-894.

15. Goldberg, A. and Robson,
Smalltalk-80: The Language
Implementation, Addison-Wesley,
MA.

D. (1983)
and its
Reading,

16. Buneman, P., Frankel, R., & Nikhil,
R. (1982) "An Implementation Technique
for Database Query Languages" , ~
Transactions on Database Systems, 7 (2) ,
pp. 164-186.

17. Backus, J. (1978) "Can programming be
liberated from the von Neumann style? A
functional style and i ts algebra of
programs", Communications of the ACM,
21(8), pp. 613-641.

18. Foley, J. D., Wallace, V. L., and
Chan, P., (1984) "The Human Factors of
Computer Graph i cs I nteract i on Techniques",
IEEE Computer Graphics and Applications,
4(11), pp. 13-48.

19. Shneiderman, B. (1987) Designing the
User Interface, Addison-Wesley, Reading,
MA .

Table 3. Some fundame ntal tiling operations.

Operator: Function or cursor key:

Backtrack (undo previous
operation)

Split current tile vertically

Split current tile hor i zontally

Change current tile to neighbor

Remove current tile boundary

"Color in" current

Evaluate

Retrieve mosaic from catalog

Save mosaic in catalog

F1

F2

F3

cursor keys

F4, followed
by cursor key

input string

F7

F8, follwed
by mosaic name

F9, followed
by mosaic name

Graphics Interface '89

