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Abstract 
An algorithm is presented for rendering parametric 
spline patches using adaptive subdivision. Criteria for 
the termination of subdivision are chosen to allow 
large approximating polygons whenever their .use do~s 
not result in visible errors in patch boundanes or 10 

lighting anomalies. User specified tolerances can be 
used to specify the size of acceptable boundary and 
lighting errors controlling the speed and the quality of 
the rendering. 
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Introduction 
A number of algorithms exist for rendering parametri
cally defined curved surfaces. The purpose of such 
algorithms is to display surfaces that are smooth ~th 
in their interior and along silhouette edges, while 
expending a reasonable amount of computation. The 
two most common methods of displaying such surfaces 
are subdivision[ 4], [5], [10] and forward differ~nc
ing[12], [19]. For each of these methods there IS a 
speed/accuracy tradeoff. Because high performance 
graphics workstations can render polygons very 
quickly, the dominating cost is in finding the polyg~ns 
to draw, rather than drawing them. Choosmg 
polygons smaller than screen pixels gives a high degr~e 
of accuracy , with a correspondingly high cost. For t~s 
reason a number of systems choose the polygon size 
based on the local curvature of the surface, in order to 
draw flat regions using as few polygons as possible. 
Adaptive methods vary the parametric step size within 
a patch so that small polygons are only dra",:n. where 
needed. When adjacent sub-patches are subdiVided to 
different levels (either recursively or using forward dif
ferencing with different step sizes), cracks may appear 
between the two patches. Figure 1 shows an exag
gerated view of how this can happen. 

Figure 1: The patch to the left is subdivided more deeply 
than the patch to the right. As a result, a crack appears in 
the polygonal approximation . 

This paper describes an adaptive subdivision 
scheme with screen-space crack prevention. Three 
principles guide the algorithm development. Fir~t , the 
criteria for terminating subdivision should be directly 
related to visible phenomena. Thus the factors that 
determine when a patch boundary is suitable for linear 
approximation do so within a screen-space tolerance. 
Secondly the speed/quality tradeoff should be under 
user con~rol. Edge error tolerance for a high-quality 
picture is set to avoid approximation errors larger than 
a half pixel thereby eliminating any visual evidence of 
error but the user is free to increase the maximum 
edge' error for faster previewing. To con'trol lighting 
discontinuities with this approximation, a second 
parameter determines when the patch is considered flat 
enough for polygonal approximation. The third prin
ciple is simplicity. No complex data structures are 
needed as the algorithm recursively renders each patch 
separately without the need to pass boundary informa
tion between patches. 

The body of the paper can be logically divi.ded 
into three parts. First, section 2 outlines prevIous 
work related to our algorithm. Secondly, section 3 
describes the algorithm itself, and section 4 describes a 
pitfall related to the way in which polygons are 
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sometimes rendered that may cause the algorithm to 
appear to be working incorrectly. Finally, section 5 
discusses results and performance issues. 

1. Previous Work 
There are three contexts in which crack prevention 
arises. First, cracks can appear in surfaces rendered 
using forward differencing if the step size in adjacent 
patches differs. Secondly, and most relevant to this 
paper, they may appear when adaptive subdivision is 
used to render surfaces. Thirdly, some surface-surface 
intersection algorithms use adaptive subdivision, and 
must avoid errors resulting from cracks. 

Scanline algorithms[9], [11] can avoid cracks by 
. keeping adjacency information explicitly. While scan
line algorithms are asymptotically efficient when 
implemented in software, they cannot use hardware 
polygon rendering to full advantage. 

Algorithms based on forward differencing can 
render polygons that are all guaranteed smaller than a 
pixel [19], or approximately uniform in size [12], [18]. 
If they are approximately pixel-sized, visible cracks 
are unlikely. An alternative method [6] is to choose 
the step size based on the curvature, so that larger 
polygons can be used for patches of low curvature 
without introducing significant errors. In this case 
cracks may appear when different step sizes are chosen 
on two sides of a boundary. The remedy proposed by 
Filip et al. is to move points that lie on a patch boun
dary to the nearest vertex of a piecewise linear 
approximation of the boundary. Because the approxi
mation to the boundary depends only on the boundary 
itself (and not the adjacent surfaces), vertices on both 
sides of the boundary are moved to points along the 
same curve, even if information about both patches is 
not available when either patch is rendered. 

Adaptive subdivision was first proposed by Cat
mull [4], who suggested subdividing until all patches 
are less than one pixel in size. In this case cracks are 
completely avoided. A number of authors have sug
gested using a flatness measure, rather than screen
space size, as the stopping criterion for subdivision. 
(We defer discussion of specific flatness measures to 
section 3.4.) Adaptive methods using polygons larger 
than pixels need some means of preventing cracks if 
they are to give visually pleasing renditions. 

Several strategies for crack prevention in the 
context of adaptive subdivision have been proposed. 
Nyddeger solved the problem by retaining a complete 
data structure of the subdivided control graph, and 
then inserting filler polygons wherever cracks were 
detected [14] . Clark uses Catmull's basis [4], subdivi
sion of which requires fewer operations than the Bezier 
basis, and involves computing midpoints and then 
correcting them. Once a given edge satisfies the 
straightness test, the midpoint of the line segment con
necting the edge endpoints is used in further 
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subdivisions (the correction is omitted). Our method 
is similar, but provides more accurate shading than the 
straight line approximation. 

Side B 

(a) (b) 

(c) (d) 

Figure 2: Lighting errors due to unequal sampling across 
patch boundaries. (a) patch boundary with correct normals, 
(b) linearly interpolated normais , (c) correct normais used 
on split side, (d) conflicting norm als on boundary . 

Barsky , De Rose and Dippe [2] proposed a 
method, which like Clark's, does not require informa
tion outside of the (sub)patch being rendered to avoid 
cracks. It differs in two significant ways. First, their 
method uses the actual patch boundary for subsequent 
subdivisions even once an edge is considered straight, 
and also keeps information indicating that final 
approximating polygon edges must lie along the line 
joining the endpoints . Thus polygon vertices gen
erated at lower levels of subdivision are on the line at 
the points closest to the corresponding points on the 
true boundary. Secondly, lighting information is cal
culated from the actual control mesh. There is a 
potential lighting inconsistency across a boundary in 
the Barsky algorithm, although probably not visible at 
the tolerances the authors intend. It occurs where a 
curved boundary is shared between two patches, one 
of which is rendered as flat , while the other is split. 
Figure 2 (a) shows an (exaggerated) edge that, for the 
sake of illustration, is the boundary between two such 
sub-patches. Since the one side is approximated with a 
single polygon, and the normals at both ends of the 
boundary are the same, there is no variation in inten
sity along the edge on that side, for either Gouraud or 
Phong shading (b) . On the other side the patch is 
split, and the actual behaviour of the normal is 
reflected in the shading of the two polygons (c). In 
this case there is a significant difference between the 
computed normals on the two sides of the boundary at 
the midpoint (d) . 

Adaptive subdivision is also used in several 
intersection algorithms [10], [15]. In these algorithms 
cracks must be avoided entirely, lest the intersection 
curves be disconnected. To do this, Peng's method 
replaces edges with mathematically straight lines once 
the edges have passed a straightness criterion. For 
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rendering purposes, small cracks are deemed accept
able as long as their projection onto the screen is too 
narrow to appear on the raster. This allows us to 
trade a small amount of positional accuracy for greater 
lighting accuracy. 

2. Algorithm Outline 
Our algorithm takes as input a set of patches, and 
begins by converting them to the Bezier basis. For the 
sake of presentation, we assume cubic patches, 
although the algorithm is in no way limited to degree 
three. (Catmull's basis could be used for cubics, giv
ing greater efficiency in subdivision, but the Bezier 
basis makes the termination tests simpler). Each patch 
has any modelling and viewing transformations (but 
not perspective) applied to its control vertices, and is 
then rendered recursively as follows: 

Render( patch) 
Save the unprojected control points 
Project the control points to screen space 
if Small( patch, "I ) 

draw patch as a polygon 
return 

mustsplit _ false 
for each boundary of patch 

if ..., boundary. straight 
Straight uses projected points 
if ..., Straight( boundary, Cl< ) 

mustsplit _ true 
else 

Straighten( boundary ) 
boundary. straight - true 

if mustsplit or ..., Flat( patch, f3 ) 
Split unprojected patch into 

four subpatches: pl..p4 
Render( pI) 
Render( p2) 
Render( p3 ) 
Render( p4) 
return 

else The patch has straight edges and is flat 
draw patch as a polygon 

The key elements of this algorithm are hidden in the 
primitives SmallO, StraightO and FlatO ; and in the 
SplitO and StraightenO routines. 

2.1. Smallness 
The size test is primarily intended for protection 
against particularly curved patches. Assuming the 
threshold size is small enough, deviations from 
straightness or flatness in such polygons cannot be ren
dered accurately anyway, and so no further time 
should be wasted on them. 

Several criteria are possible; since patches are 
tested first by size it is important that the test is inex
pensive. Our test is as follows: if the projections of the 
sixteen control vertices fit within an axis-aligned 
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square of a uc;er-~pecified size h) on the screen, then 
SmallO evaluates to true. 

2.2. Straightness 
The main reason for straightness testing is crack 
prevention. Because edges are tested for straightness 
independent of any other patch properties, the result is 
consistent for both patches sharing an edge. Since 
such edges are straightened in a consistent manner, 
cracks are avoided entirely. There are several reasons 
for testing straightness in screen space. Foremost 
among them is the fact that an edge is considered 
straight as soon as it is safely possible, regardless of 
the depth of the edge. 

Suppose a boundary edge is defined by the pro
jected points PO,PIoP2,P3' StraightO is true if PI and P2 
are within Cl< pixels of the pixels rendered along a line 
from Po to P3, measured along a Manhattan grid. If 
the line is more horizontal than vertical, the vertical 
distances from the interior control points to the line are 
compared with Cl<; otherwise the horizontal distance is 
used. This way of measuring deviation from the line 
is motivated by Bresenham's algorithm for selecting 
pixels on the line approximating the boundary [3J. 

Straight( Po, Pl , P2, P3, Cl< ) 

translate polygon so Po is at the origin 
if morehorizontal( Po' P3 ) 

Check/or x-monotonicity (to within 'h pixel) 
if PO'x < Pl.x < P3·x and Po'x < P2·x < P3.x 

shear control polygon making P3.y ;;;;; 0 
if Pl .y and P2.y have different signs 

return 4/9 max( 1 Pl I, 1 P21 ) < Cl< 

else 
return 3/4 max( 1 Pl I, 1 P2 1 ) < Cl< 

else 
return false 

else 
perform similar operations with x and y exchanged 

The multipliers are based on the worst case control 
polygons for a Hezier curve. If the signs change the 
curve can stray no further from the axis than 4/9 of the 
distance to the further point: this corresponds to the 
nearer point being on axis. If the signs are the same, 
moving the interior control point nearest . the axis to 
the position of the further point only makes the curve 
go further from the axis. With both points at the same 
distance from the axis, the curve goes as far as 3/4 of 
the distance to the interior control points. 

It is worth noting that because the first part of 
the straightness test guarantees that the points are 
monotonic in the long axis, patches with edges perpen
dicular to silhouettes are split until these edges are 
shorter than a pixel. Thus edge straightness together 
with the flatness criterion guarantees that silhouette 
edges of this type are well approximated. (Flatness 
comes into play when the exterior of a patch is planar 
but a bulge appears in the centre). 
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2.3. Straightening Edges 
Edges are "straightened" by modifying the interior 
control points of the edge. In the methods of Barsky 
et al. [2], Clark [5] and Peng [15], the edges are made 
mathematically straight. Contrariwise, in our algo
rithm the edges are "straightened" by moving the inte
rior control points onto the plane containing the end 
control points and the eyepoint. Currently we use the 
perpendicular projection of the control vertex onto the 
plane to determine its "straightened" position. Any 
such projection can yield edges that are not at all 
straight in world space, but whose curvature is invisi
ble from the eye. Since straightness is designed specif
ically for crack prevention, this meets that need , 
without flattening patches that have an appreciable 
amount of curvature in the z direction. In this way a 
minimum of lighting errors are introduced by straight
ening edges. 

2.4. Flatness 
The size criterion is used to avoid runaways. The 
straightness criterion is used for crack prevention. A 
flatness criterion is used primarily to control errors in 
lighting, and (occasionally) correctness of silhouettes . 
If an edge is not straight, patches adjacent to it are not 
likely to be flat . Flatness tests are more expensive 
than straightness tests. Hence the flatness test is not 
performed until all four edges are found to be straight. 

A number of flatness tests are given in the 
literature; we make no claim that ours is optimal. The 
best choice depends on the cost of the various opera
tions involved. Riesenfeld and Lane were the first to 
suggest a flatness test [10]. In their method a patch is 
subdivided if the maximum distance of any control 
vertex to the plane through three of the corner control 
vertices is too large, or if the distance of any edge ver
tex to the line through the corresponding corner ver
tices is too large. Barsky and DeRose [1] use only the 
plane-point distance. Clark's method uses the 
parametric curvatures at the corners to decide whether 
the edges are approximately straight, splitting if they 
are not, but if they are, uses the parametric curvatures 
(d4f(u ,v)/du2dv2

) to decide whether to split. In order 
to make the test resolution dependent, the depth com
ponent is divided out of the control vertices before the 
curvatures are computed. The method of Koparkar 
and Mudar [8] is to require straightness of all eight 
defining curves and co-planarity of the four corner 
control points. This criterion is more strict than neces
sary, as the four interior control points can be any
where in the plane of the four corner points without 
affecting the planarity, as long as they are not outside 
the convex hull of the edge curves. 

Wang has given an algorithm for finding the 
depth of subdivision required for a given degree of 
flatness, based on the control points of a patch [20] . 
Filip et al. improve on the bounds used by Wang to 
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give a tighter estimate of the degree of suhclivio;ion 
required [6] . These last two methods are best suited 
for non-adaptive subdivision · or forward differencing. 
A good test for adaptive subdivision uses a minimum 
of effort to decide whether no further subdivisions are 
required, rather than trying to estimate how many 
further subdivisions are needed. 

Our flatness estimate is most nearly like that of 
Clark. It is motivated by the notion that the flatness 
test is entirely intended to avoid lighting errors. First 
the z components of the exterior edges are tested to 
see whether the outside control points are co-planar (x 
and y components must be acceptable for the straight
ness test to succeed). Then the normals of the corner 
rectangles and the centre rectangle (of the control 
graph) are compared until two of them are found that 
point in sufficiently different directions to indicate that 
splitting is required or all have been tested. If the 
cosine of the angle between two normals exceeds the 
parameter p, FlatO returns false . 

2.S. Splitting 
Patches are split into four subpatches by midpoint sub
division in both parametric dimensions [10]. Barsky 
[1] argues that it is more efficient to split in one 
parametric direction at a time. This approach certainly 
could be used here without adversely affecting the 
crack preventing quality of the algorithm and may be 
explored in a future implementation. 

To minimize lighting discontinuities when a 
boundary curve is "straightened" but its related 
patches are not flat enough for polygonal approxima
tion, the normals at the ends of the curve are calcu
lated and linearly interpolated at lower levels of subdi
vision. Since boundary curves become straight at the 
same level of subdivision regardless of which adjacent 
patch is being rendered, the continuity of the normals 
between the patches is maintained in the final approxi
mating polygons. 

3. Caveat Implementor 
This and other crack prevention algorithms do not 
always prevent single pixel errors along seams such as 
the one in Figure 1. While the point at the joint is 
mathematically on the line between the two endpoints, 
it may not be rendered as such using commonly imple
mented polygon display algorithms. This problem was 
noted by Pineda [17] and is an example of the need 
for a restartable DDA [13] , [16]. If the hardware 
being used to render the polygons rounds the vertices 
to integers before computing the stepping coefficients, 
single pixel holes are likely to appear. 
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4. Results and Discussion 
The algorithm exhibits reasonable behaviour 

over a wide range of tolerance values. The user con
trols two tolerance variables, Cl' and /3. The minimum 
polygon area, I, is normally left at 1. The straightness 
tolerance, CI', is measured in pixels and can take any 
positive value, although exceeding about half the size 
of the display screen results in distorted surfaces. The 
flatness tolerance, j3 may vary from 0 to 1. If the 
desired maximum normal variation is 10°, j3 would be 
set to cos(lOO)- .9848 . 

We illustrate the performance of the algorithm 
using a simple uniform bi-cubic B-spline surface with 
64 patches, shown in Figure 3 rendered with 117232 
sub-pixel sized polygons. Figure 3 serves as our refer
ence image. A naive attempt to speed up the render
ing process by simply increasing the acceptable 
minimum polygon size (without applying the crack 
prevention techniques of this or other papers) , yields 
cracks across unequally sampled boundaries. Figure 4 
is an enlargement of such a region showing several 
cracks. 

The affect of Cl' can be isolated by setting j3 = 0 
(so that the flatness test never fails) while varying CI'. 

Figure 5 shows the polygons selected when the refer
ence surface is rendered with Cl' values of 100. The 
enlargement without the polygons outlined shown in 
Figure 6 shows the resulting errors. With Cl' set to 1.0, 
no further improvements are possible. Figure 7 and 8 
show the cases of Cl' = 1.0 and Cl' ~ 0.5 respectively. 

Similarly, Cl' can be held constant while f3 
changes (Figures 9 to 12) In both cases the number of 
polygons varies from a few hundred to a few thousand 
with a corresponding improvement in the quality of the 
final image . The increase in quality is negligible from 
Figure 11 to Figure 12, in spite of a considerable 
increase in polygon count. 

Because the act of straightening an edge also 
tends to flatten the patch, Cl' and f3 are not independent 
variables. Different tolerance values can produce the 
same visual effect while using a considerably different 
number of polygons. The "optimum" setting depends 
on the nature of the surface and the relative impor
tance of speed and accuracy. 

In general we have found that Cl' has the greater 
influence on the performance of the algorithm (meas
ured in number of polygons generated) and the quality 
of the lighting, but this may be a side effect of the way 
edges are straightened. Future work will explore alter
native projection methods. 

5. Summary 
This paper presents an algorithm for rendering 
parametric spline surfaces using adaptive subdivision. 
Patches that are smaller than a user-specified limit are 
rendered as polygons; patches are normally found to 
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be flat and rendered before this test can ~ucceed. 

To avoid cracks, edges are tested for straight
ness and then straightened if they are nearly straight. 
Patch boundaries are tested until their projections into 
screen space are within a user-specified tolerance of 
being x-y straight, and their curvature in z is within a 
second user-specified tolerance of being flat. Once 
edges are straight in this sense, their interior control 
vertices are moved to the plane through the eye and 
the end control vertices, thereby guaranteeing that the 
patch on either side of the edge can be rendered as a 
single polygon without creating a crack should the 
other patch be further subdivided. Normal informa
tion is calculated before the edges are straightened and 
interpolated in further subdivisions, guaranteeing that 
if either side is Phong shaded immediately, the other 
may be subdivided and subsequently shaded without 
introducing any lighting discontinuities. When an edge 
straightness test succeeds, a flag is set so that no suc
cessful test need be repeated. 

Once all four edges of a patch are tested the 
flatness is measured. This test is more expensive than 
straightness testing, but it seldom fails once the edges 
are all straight. Highly curved patches are subdivided 
until they have a small projection onto the· screen; less 
curved patches can be approximated with large 
polygons. 

Three user specifiable tolerances make it possi
ble to vary the quality of the result in terms of 
silhouette degradation (maximum polygon size), 
geometric errors (deviations from straightness) and 
lighting errors (flatness) . When the polygon size is 
small , a very strict tolerance in either straightness or 
flatness produces a high quality image. Relaxing the 
tolerances results in significant speedups for the pur
poses of previewing. 

Regardless of the tolerances for errors , con
sistency across patch boundaries is maintained. 
Cracks do not appear, regardless of the straightness 
tolerance, and lighting discontinuities do not appear, 
regardless of the flatness tolerance. The images pro
duced run the range of very reasonable in very little 
time to excellent in the same or less time than required 
by previous crack prevention algorithms. 
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Figure 3: A bi-cubic B-spline surface with 64 patches 
rendered with 117232 sub-pixel polygons. 

Figure s: The 460 polygons created when rendering 
with 0'-100 and (3-0. 

Figure 7: 0'-1, (3-0, 2881 polygons. 
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Flgure 4: Cracks resulting from a naive polygonal 
rendering of the surface in Figure 3. 

Figure 6: An enlargement of Figure 5. 

Figure 8: 0'-0.5, (3-0, 6193 polygons. 
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Figure 9: The 709 polygons created when rendering 
with a-ID and .8-0.96. 

Figure 11: a-ID, .8-0.995, 4582 polygons. 
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Figure 10: An enlargement of Figure 9. 

Figure 12: a-ID, .8-0.997, 7342 polygons. 
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