
83

Octant Priority for Radiosity Image Rendering

Yigong Wang and Wayne A. Davis
Department of Computing Science

University of Alberta
Edmonton, Alberta
Canada T6G 21-11

Abstract

This paper presents a new scheme for image display
using radiosity methods. An octree technique performs
subdivision of polygons which is required in any
radiosity method. The octree-based subdivision not only
subdivides polygons into patches, but also produces a
sequence of leaf octants implicitly sorted in the octree.
By traversing the octree, a depth priority of these leaf
octant,s with respect to a given viewer position can be
found efficiently. Since each octant contains a certain
number of patches, octant priority implies a patch depth
priority that is used to determine visibility in computing
form-factors by a front-to-back list priority algorithm.
This list-priority method has many advantages over the
z-buffer and can avoid some unnecessary computation.

Keywords Radiosity, Illumination Models, Octrees
Image Synthesis, Hemi-cube, Space Subdivision.

1. Introduction

Radiosity methods for image synthesis have been
important for some time. This is due largely to its
potential in generating more realistic images. It
overcomes several difficulties that are hard for previous
approaches to resolve. The major advantage of the
method is to allow for inter-reflection of lights in an
enclosure, more faithfully simulating the behavior of
light based on thermal engineering.

Since Goral et al. first introduced the radiosity
method for a perfect diffuse environment in 1984 [1], a
number of papers have been published. In these papers,
the main focus is placed on efficiency of its
implementation. Cohen and Greenberg proposed a
method to approximate the calculation of form -factors
by using a hemi-cube technique [2] . This hem i-cube
method laid down the foundation of radiosity methods
including occluded objects. Further, Cohen et al.
improved the hemi -cube method using a substTucturing
strategy in order to more accurately determine radiosity

on surfaces with complex intensity gradients [3].
Recently, Cohen again improved radiosity methods and
proposed an interactive technique to progressively refine
radiosity images [4].

In general, radiosity methods can be implemented
in four steps:

• Subdivide surfaces into patches each of which has a
constant radiosity;

• Calculate the form-factors from any patch to the
remaining patches;

• Solve a set of simultaneous equations for radiosity;

• Render the image using an appropriate rendering
algorithm.

Focusing on the first two steps, this paper
proposes another radiosity method, again for an ideal
diffuse environment. By carefully examining the
previous results, it is observed that calculating form
factors involves a lot of visibility computation that
requires a depth priority of patches to determine which
patch is seen first. Therefore, if an implicit depth
priority of patches is set up while polygons are divided
into patches in the subdivision step, the second step
may take advantage of the patch priority to speed up the
visibility computation. This results In a 3-D
subdivision scheme. By using an octree technique, this
scheme not only subdivides polygons into patches but
constructs an implicit octant priority . With the octant
priority, in the second step for computing form-factors,
a front-to-back list priority algorithm is used to
efficiently determine visibility from a patch to the rest.

2. 3-D Subdivision for Polygons

Traditionally, an octree has been used to represent
three dimensional objects in a hierarchic structure by
subdividing the space into octants [5,6], each being
either solid or empty. However, such a scheme is also
suitable for subdividing polygons into patches, To
derive accurate values for radiosity, a radiosity method

Graphics Interface '90

generally needs to subdivide polygons interactively, that
is, the user needs to conduct the subdivision process in a
way that polygon surfaces with high intensity gradients
should be divided into fme patches. In the new radiosity
method, interactive preprocessing is required to assure
that the 3-D subdivision works properly. This is
described first in this section.

2.1 Interactive Preprocessing

In the subdivision method to be stated later, It ts
assumed that all the polygons must be convex.
Therefore, the first task in this preprocessing step is to
break all polygon surfaces that are concave into convex
sUbpolygons. This can be done automatically [19,20];
however, since the focus of the new radiosity method is
on efficiency of form-factor computation, the
decomposition of polygons is performed manually.

In general, polygon surfaces having high
intensity gradients are those shadowed by the surfaces of
other objects. On these polygons, intensity across the
boundaries of shadows changes dramatically. In order to
assure that each patch has an approximately equal
radiosity, the shadowed polygons should therefore be
divided into smaller patches than other polygons. To
this end, these shadowed polygons are first divided into
subpolygons along the boundaries of the shadows in the
preprocessing. Then the 3-D subdivision uses the
information of the boundaries between the divided
polygons to subdivide them again in an adaptive way.

Computing shadows can be automated; however, it
is expensive and difficult. Furthermore, for radiosity
image display, accurate computation of shadows is
almost impossible before the radiosity solutions are
obtained. The objective to calculate shadows is to use

.. the shadow information to guide the following 3-D
subdivision. As a result, a user's careful estimate on
shadows is sufflcient to make the 3-D subdivision work
fine.

2.2. Octree in Polygon Subdivision

Subdividing space to improve efflciency of image
generation is not a new idea. The fast ray tracing
algorithm proposed by Glassner 1984 was based on a
space subdivision by an octree technique [11] . Other
papers have been present in the literature to deal with
space subdivision, especially octree subdivision
[12,13,14]. However, papers that tackle radiosity using
octree techniques have not been seen. Although Cohen et
al. and Samet-Webber mentioned how to take advantage
of hierarchical data structures to improve radiosity
methods [3, 14], the detail of how to implement the
octree technique in radiosity methods was not described.

Without loss of generality, it can be assumed
that all polygons in a 3-D environment are enclosed in a
unit cube whose edges are parallel to the axes, as shown

84

in Figure la. In addition, it is also assumed that all the
polygons are convex (see Section 2.1).

To construct an octree, a coding scheme needs to
be chosen. Gargantini proposed a numbering scheme
[15], in which 0 through 7 are used to name the nodes.
Although G1assner had a better numbering system [11],
this paper mainly refers to Gargantini's method since its
features are adequate.

Starting with the original unit cube, the whole
environment is subdivided into 8 sub-cubes by 3 planes
Px (x=O.5), P y (y=O.5) and P z (z=O.5), as shown in

Figure la. Then for each sub-cube, another set of planes,
for instance, x=O.25, y=O .25 and z=O.25, are applied to
subdivide the subcube into 8 smaller sub-cubes. The
process continues for subsequent sub-cubes until a given
criteria is met. Finally, the evironment space is divided
into a sequence of small sub-cubes and an octree is built
up. Figures Ib and lc demonstrate a 2-level octree, where
0Jc represents a node which is called an octant, and k
stands for the code.

(0) (b)

(c)
(d)

Fig.1. (a) The cube is divided by Px, Py and pz inlO 8
smaller cubes, 00, ... , 07, called octanlS. (b) An
example of lhe numbering system. (c) The OClree
corresponding to Fig. I b. (d) The 3-D subdivision for a
scene based on the OClTee in Fig. l c.

Constructing an octree is not the whole story, but
using the octree to subdivide polygons into patches is
the main purpose. Polygon subdivision can be done by
the following approach. As an octant is subdivided into
8 smaller octants by the dividing planes, for example,
Px , Py and P z in Fig.I., any polygon that crosses the
boundaries of these smaller octants is simultaneously
clipped against the dividing planes. The polygon
subdivision goes on as these smaller octants are
subdivided again. Finally, when the octree is completed,
each of the resulting sub-polygons will lie entirely in
one of the leaf octants. Such a sub-polygon is called a

Graphics Interface '90

patch. Once the octree has been formed. each polygon is
eventually divided into a number of patches. If the
criteria for subdivision termination is chosen
accordingly. each of these patches will have an
approximately constant radiosity. An example of 3 -D
subdivision for a simple scene is shown in Figure Id.

2.3 Criteria for Subdivision termination

As indicated above, the subdivision process
terminates when a given criteria is met. Several ways
exist to specify the criteria.

One way is to constrain the size of the octant.
When the octant is less than a specified size, the process
of subdivision stops. In this case, if the specified size
is sufficiently small, all polygons involved will
eventually be subdivided into patches with the desired
size because these patches are restricted in the final
octants. However, with such criteria, subdivision may
end up with some octants each of which contains more
than one patches. In this case, the depth priority of
these patches has to be determined in a different way.
Fortunately, the Newell-Newell-Sancha algorithm's
overlapping tests (8) can be used to accomplish this task
and is efficient when the number of patches within an
octant is small.

The second method for termination is to constrain
both the size of octant and the number of polygons in it.
When an octant is less than a specified size and contains
only one patch, subdivision would terminate. The
constraint may result in a problem - infinite
subdivision because some joined polygons may not be
separable. Theoretically, this method can be valid and
perform a good ploygon subdivision if a very fine
subdivision that eventually leads to a 3-D point in an
octant is allowed. Fine subdivision is very expensive
itself, let alone that it may produce a huge number of
patches that the radiosity method can not handle within a
reasonable time. As far as this is concerned, the
following criteria is better than this one.

The third method, adopted in the new radiosity
method, consists of two levels: when an octant
contains one patch and its size is less than a number,
say SIZEl, the subdivision terminates; or when an
octant contains more than one patches and its size is
less than another number, say SIZE2, the subdivision
stops, where SIZEl > SIZE2. The reason to use a two
level criteria is to allow for fine subdivision on high
intensity gradients. This point can be clearly seen in
the following two situations:

Since a shadowed polygon is divided into several
subpolygons along the boundaries of shadows in the
preprocessing step, the surfaces around the boundaries of
shadows are made up of more than two polygons. By this
criteria, those surfaces are eventually divided into more
patches. Moreover, since a corner of an object consists

85

of at least two polygons, a fmer subdivision around the
corner is also performed. Shadow boundaries and object
corners are generally considered. to have high intensity
gradients . Therefore, this method allows for adaptive
subdivision to some extent, at least in the two cases:
boundaries of shadows and corners of objects.

In the last criteria, as dealt with in the fITst
criteria, the depth priority of the patches within an
octant is found by using the Newell-Newell-Sancha
algorithm (8).

3. Depth Priority of Octants

Octant priority in terms of depth with respect to a
viewer is a new concept introduced in this paper. With
octant priority, the radiosity method can employ a front
to-back paint algorithm to perform hidden-surface
removal in computing form-factors. Establishment of the
octant priority is based on both the octree constructed in
3-D subdivision and the Schumacker algorithm.

3.1 Traditional Method for Cluster Priority

Schumacker proposed a fast algorithm for
determining hidden surfaces as the viewer position
constantly changes [7). In the Schumacker algorithm, all
polygons in a scene are collected into clusters of
polygons, which are linearly separable, that is, any two
clusters can be separated by a dividing plane. Then
cluster priority that is independent of the viewer can be
easily established. Fuchs et. al later developed the
algorithm and proposed a data structure for tracing the
cluster priority [16,17). The data structure is called a
BifUlry Space Partitioning tree (BSP tree). A classical
example is shown in Figure 2.

a

B

~
c

to) (b)

Fig.2. 1he Schumacker algorithm', cluster priority. <a)
Two dividing planes a and ~ separate three clusters and
divide space into three regions. (b) The corresponding
Binary Space Partitioning tree.

The tree in Fig. 2b is a BSP tree of the scene in
Fig . 2a. To determine the cluster priority, given a
viewer, the BSP must be traversed from the root to the
leaves. At each node, which branch, + or -. is visited
fITst depends on the order in which clusters are displayed.
If a front-to-back paint algorithm is used, the branch
associated with the side of the dividing plane in which
the viewer lies is visited fITst. In the example in Fig. 2.
where the viewer is supposedly in area D the branch - is

Graphics Interface '90

visited first and then + at the first level. and at the
second level. - first and + later. When the whole tree is
visited. the order in which the leaves have been visited
is the cluster priority. For the example. the priority is 3.
1. and 2.

3.2 Methods for Octant Priority

As seen in the preceding section. the 3-D
subdivision algorithm uses a sequence of planes to
partition the space into octants and clip the polygons
into patches. To use the Schumacker algorithm. the
octants can be regarded as clusters of patches. and the
planes as dividing planes for separating the clusters.
Unlike the original Schumacker algorithm. however. the
BSP tree is replaced by the octree produced in the 3·D
subdivision, in which each node has 8 children instead
of 2.

To describe the following method conveniently.
let us classify three kinds of nodes in an octree.

NULL node - has no child and contains no patch.
INTER node - g children one being a non-NULL.
TERMINAL node - has no children but patches.

The task to compute octant priority is to sort the
TERMINAL nodes according to depth with respect to a
given viewer. Based on the principle of the BSP tree.
computing octant priority needs to traverse the octree in
the order that the octants that are closesr to the viewer
are visited first. At each INTER node. determining the
ordering of its g children is the key part in forming
octant priority.

A rather OCUnt (the
whole cube). 0.: sublpooe

Fig.3. An example of how to determine octant
priority given a viewer.

Let Ok=(k. xm. ym. zm) present an INTER
octant, where k is the code of the octant and (xm. ym.
zm) is the center of the octant. Consider Fig.3. When a
father octant Ok is subdivided into g smaller octants 0lce.
Die} • ...• Olq by 3 planes x=a. y=b. z=c (a. b. c are

constants). the space is also divided into 8 sub-spaces.
S/co. Sk} • Sk7' Note that according to the numbering
scheme of the octree. ki is in fact equal to k· 8 +i
(i= 0 7). If the octal system is used and let k =
(b1b2 ... br)g. then ki = (b1b2 .. . bri)g.

86

Suppose that the viewer is in SkJ' If only the

plane x=a is considered ignoring others. it is clear that
any patches lying on the side of x=a further from the
origin can not obscure the patches on the side closer to
the origin; therefore 0/co. Ok). 0IQ. 0kJ should be visited
first. and 014. Oks. 0k6. 0k7 later. Applying the same
principle. when the planes y=b and z=c are considered in
turn. each of the above two groups is sorted again.
respectively. and finally the priority of the 8 oclants can
be determined as follows: 0kJ' 0k2' Ok}. 0/co. 0k7' 0k6.

Dies. 014'

Since there are only 8 possibilities that the
viewer can be located in the 8 sub-spaces. therefore. all 8
orderings. each corresponding to a sub-space in which
the viewer lies. can be precomputed and stored in a table.
called the basic octant priority table (B 0 PT). The
complete table is listed in Appendix A.

At each IN T E R node. the following simple
calculation is required to determine in which sub-space
the viewer lies.

b = (view.x >= xm)·4 + (view.y >= ym)·2 + (view.z >= zm)

Then S"" is the sub-space in which the viewer is.

Using b to index B 0 PT. the 8 children under the current
INTER node will be visited in the order indicated by
BOPT. When a TERMINAL node is visited. it is
output and used in the form-factor computation which is
stated in the next section.

4. Visibility in Form-factor Computation

To compute the form-factor. the visibility from a
patch to the remaining patches must first be identified.
Secondly. the form-factor from a patch, say Pe. to one of
the remaining patches. say Pr. is calculated by counting
the delta form-factors in the area projected by Pr onto
the hemi-cube[21. In this new radiosity method. with
octant priority. the hemi-cube concept is kept with a
slight modification and a front-to -back algorithm is
adopted for the visibility computation.

4.1 Hemi-cube Technique

To calculate form -factors for any patch. an
imaginary hemi-cube is first mounted on the patch as
traditionally done. (For convention. the patch on which
the hemi-cube is constructed is called the emitting patch.
and the rest of patches the receiving patches.) Then the
receiving patches are projected onto each of the five
faces of the hem i-cube. respectively. Let O/q =(ki. (mxi.
mYi. mZi). P/q} present a TERMINAL octant, where ki
is the code. (mxi. mYi. mzj) is the center coordinates of
the octant and P/q is the set of patches that lie inside the
octant. Suppose the emitting patch. Pe. is contained in
the TERMINAL octant O/q =(ki. (mxi. mYi. mZi). S/q}.
Thus Pe belongs to Plc;. Let (x.y.z) be the viewer

Graphics Interface '90

position which is located at the centre of Pe. By
traversing the octree. the octant priority list with respect
to (x.y.z) can be found. Let OPL={ OkJ Ok,.1 represent
this list where Ok; has a higher priority than Okj if i<j

(i,j=}, ... , n).

As required by the hem i-cube technique. two 2-D
arrays of delta form-factors are precomputed and any
form-factor between two patches can be quickly
calculated using a table lookup technique. The two
arrays are called the delta form-factor tables. One
corresponding to the upward-face of the hemi-cube is
used to accumulate delta form-factors while patches are
projected onto the upward-face of the hemi-cube. The
other is used when patches are projected onto any of the
sides. In addition. another i-bit 2-D array with the
same size as the upward array of delta form-factors is
used to assist the visibility computation. The array is
named the mask table which can replace the item buffer
used traditionally.

A conventional paint method paints all polygons
to the frame buffer in the order of the farthest to the
nearest. Instead, this new method adopts the reverse
order. that is. patches are projected onto a face of the
hemi-cube from the nearest to the farthest, i.e .• from the
patch with the highest priority to the one with the
lowest priority.

When a patch is painted on a face of the hemi
cube. the corresponding pixel that is 0 in the mask table
is set to } (the table is initialized at 0). However. it is
only at those pixels currently set to } in the mask table
and covered by the patch's projection that the delta form
factors are accumulated. Note that the form-factor from
the emitting patch to a receiving patch is computed right
after the receiving patch is projected onto the hemi-cube.
Thus there is no need to use an item buffer as used
usually to store the projection of the receiving patch.

A face of
hemi-cube

r- V" ~v
,,(1 'f
1 1 1
1 lY
'1-r-Y

Pkl

?

Fig.4. When Pki hides Pkj. the delta form-factors
only within the visible area of Pkj are counted.

Suppose that Ok; and Okjare two TERMINAL
octants in OPL each containing a single patch. Pl:j and

Pb respectively (for the more-than-one-patch cases. the
J

Newell-Newell-Sancha algorithm is used). and that P I:j

partially hides PI: ' (i<j) . Then only part of PI: ' may be
J J

visible to the viewer. Since P I:j is painted onto the

hem i-cube first, the pixels covered by P I:;'s projection are

alreadyJ"s in the mask table when PI:' is painted.
J

87

Therefore. only the delta form-factors in the visible area
are counted. while the delta form-factors in the
overlapping area are not accumulated. Fig.4. illustrates
this point.

4.2 Painting Patches onto the Hemi-cube

To accumulate delta form-factors. a scan-line
algorithm using an active edge table [9] is used to locate
the pixels covered by the projection of the 3-D patch on
a face of the hemi-cube. In this algorithm, each edge of
the polygon is represented by an edge structure as
follows:

I X.m I dx I dy

and, it is placed at the appropriate position in the edge
bucket according to the maximum y of the edge. An
active edge table (A ET) contains those edges in pairs
that are intersected by the current scan line. For
example. when the current scan line

Fig.5. A san line with a pair of active edges.

is equal to y. as shown in Fig. 5 .• the AET includes the
two edges entries:

I X miDI I dxl I dyl H XmiD21 dx21 dy2 I
To scan convert a patch, unlike the conventional

scan-line method that paints each pixel between xmin}

and xmin2 to the frame buffer [9.10]. the new method

accumulates the delta form factors in the delta form factor
table between the two columns that happen to
correspond to xminJ and x m in2' Let col} <=> xminJ.
coI2<=>Xmin2' DFFT be the precomputed delta form

factor table corresponding to the upward-race of the
hemi-cube and MT be the mask table. For any patch,
the key part of the painting technique is given in the
following algorithm.

For each current-scan-line from the maximum y
to the minimum y of the patch;

for(col=coI1 ; colScol2; col++)

If(MT[currelll·scan· /ine][col) = O){

sum_delta _FF += DF FT[currelll·scan.1 ine](col) ;

MT[currelll -scan-line](col) = 1;

Graphics Interface '90

After the above algorithm is repeated for each face of the
hemi-cube. the final result of sum _delta _FF is the form
factor from the emitting patch to the patch being
projected on the hemi-cube. Note that the delta form
factor table for the upward-face is different from that for
the side-face. and normally these tables contain only the
values for a quarter of the face . These factors are
considered in the algorithm's implementation.

4.3 Advantages

Such a scheme for painting patches from front-to
back has a substantial advantage over a back-to-front
painting scheme like the z-buffer. This approach can
save computation. especially in a complex environment.
According to the painting scheme. when the mask table
is full of 1 's 1. it is obviously unnecessary to compute
the form-factors from the emitting patch to the
remaining patches that have not been processed. This is
because these remaining patches have lower priority and
are completely hidden by the patches that have been
painted onto the hemi-cube. Therefore. their form
factors are determined to be zero. This situation happens
very frequently in an environment with crowded objects.
Consider the example in Fig. 6. A big wall or polygon
that appears in front of a small patch. All that the small
patch can see is part of the wall (perhaps. a few other
polygons around the boundary of the wall). and then
only the wall receives light from the patch. This
implies that the form-factors from the small polygon to
the other polygon except the wall are zero. As a result.
in this case. only the big polygon is projected and the
delta form-factors covered by the projection are
accumulated. simply assuming that the form-factors to
the other patches are zero.

Objcc15 behind
tbewaU

Fig.6. A small patch on a side of the cube can only see
the wall that it faces . In other words. other objects
receive no light from it.

4.4 Overview of the Algorithm

The following pseudo code outlines the new
radiosity method using octant priority established in the
3-D subdivision.

Pre-process Polygons;

Construct the octree and

I A counter. which counts the number of pixels with 1. can be
used for determining the fullness of I's in the mask table

88

subdivide polygons into N patches:) {Pl PN};

for (i=l; i<=N; i++) (

Form the octant priority list:) OPL={Okl OkM}

with respect to the center of Pi;

for (j=l; j5M; j++) {

if (MT is full) goto LOOP ;

Using Newell-Newell-Sancha

sort patches in Pkj :) {Ph •... • PjL};

for (k=l; k5L; k++) {
project Pjk onto each face of the hemi-cube in turn;

Scan the projection of Pjk from mal: _y to min y :

for (col=coll; co15coI2; col++)

}

if (MT[current-scan-line)[col) == 0) (

FF[i)[jk) += DFFT[current-scan-line}[col);

MT[current-scan-line](col) = I;

}

}

WOP:
}

Solve the radiosity equation to obtain: B[I) •.. .• B[N);
Render images using B[I) •.... B[N);

MT - mask table
FF - form -factor matrix
DFFT - delta form-factor table

5. Implementation and Analysis of Results

The new radiosity method proposed in this paper
has been implemented on a Color Sun 3/60 and the J2

S
color monitor and produced several radiosity images.
Five scenes with different complexity have been
modelled and rendered by this method. Their images with
performance results are shown in Figs. 7 to 12.

To highlight the advantages of this new method.
two comparisons are used to analyze its performance.
First. the new method using a front-to-back paint
algorithm is compared with the hemi-cube method using
the z-buffer technique. Second. a scene of crowded
objects is compared with a scene of sparse objects. There
are two terms to measure performance. the execution time
and the number of octants processed.

A comparison of the two methods can be
converted to a comparison of a front-to-back paint
algorithm with the z-buffer. By careful examination. the
paint algorithm has an overhead consisting of returning
pointers in traversing the octree to obtain octant
priority. and performing a simple calculation at each
node to determine which branch to visit next. On the
other hand. the z-buffer does not need to determine depth
priority of patches. but has the extra computation for the
z values. comparing. and updating the frame buffer and
the z buffer at each pixel. Since a front-to-back paint
algorithm uses a I -bit mask to determine whether a pixel
is occupied. extra comparison operations are needed at

Graphics Interface '90

each pixel too. However, this can be compensated by the
saving in the situations where a number of patches are
completely obscured by other patches and then discarded
(This has been discussed in Section 4.3 and will be
emphasized again in the following timing analysis).
Thus, both methods have overhead in different places.
The trade-off is that if the size of the octree is smaller
than the number of pixels, the new method would have
less overhead than the z buffer. From the six examples
shown in Figs. 7 to 12, in general, a four-level octree is
enough to produce a fine polygon subdivision. In the
worst case, the size of the octree is 8+82+8 3+84=4632.
However, the resolution of the hemi-cube is usually from
100*100 to 300*300. Obviously, the former is less than
half of the latter.

By further investigation, the overhead imposed by
the octant priority algorithm can be still reduced in the
following situations.

Recall that in Section 3.2, once a TERMINAL
octant has been visited in traversing the octree, the
octant can be immediately output to the front-to-back
paint algorithm since the TERMINAL octant must have
higher priority than those not visited. This implies that
traversal of an octree can dynamically interact with the
painting process. By the interaction, an INTER octant
being visited currently can be checked to see if it is
behind the viewer in advance. If so, the whole subtree
under the INTER node can be discarded without
traversing down through it. Definitely, this would reduce
a significant amount of overhead due to octree traversal.

Another situation that may lessen the overhead is
that when the I-bit mask is full of l's, the paint
algorithm stops further processing. In this case, there is
no need to continue to traverse the remaining portion of
the octree. Therefore, a lot of time is saved by cutting
off these remaining branches.

Since the view position is located in the center of
an emitting patch that appears inside the environment, it
is usual that the viewer only can see part of the scene,
most objects being either behind it or behind the other
nearer objects. As a result, the savings occurring in the
above two situations is significant for most scenes.

Furthermore, traversing the octree is performed
only once for all five faces of the hem i-cube, while the z
buffer has to be gone over five times for different faces
of the hemi-cube. This implies that the overhead in
traversing the octree is small compared with that in the z
buffer.

From the point of view of the number of the
octants processed, the advantages of the front-to-back
paint algorithm can be seen easily. The Z buffer always
has to process all the patches in the environment
(except the back faces of an object) even if some patches
are completely obscured by the nearer patches. Therefore,

89

its complexity is constant for any emltltng patch. By
contrast with the z buffer, the complexity of the front
to-back paint algorithm varies depending on the location
of the viewer or the emitting patch. In a crowded
environment as shown in Fig. 11, the average number of
octants per face that have to be processed by the paint
algorithm is 125 (for the z buffer, it is always 932, the
maximum number. Although the z-buffer does not use the
octant concept, the number 932 in effect represents the
equivalent number of patches). Even for the environment
shown in Figs 8 to 10, in which objects are distributed
loosely, approximately half of the emitting patches use
only about 230 octants . Moreover, there is always at
least one face of the hem i-cube that needs only 20
octants to cover it on average, that is, an average of 20
octants can be seen from this face.

From the Algorithm described in Section 4.4, this
kind of saving is reflected by the number of the loop
running through 0 P L. If the mask table is full very
quickly, only a small number of octants in OPL will be
processed, the rest being discarded. Obviously, the
smaller the number of octants processed, the faster the
algorithm. The statistical results corresponding to the
images are shown in Figs. 7 to 12.

6. Conclusions

This paper proposes a new radiosity method
which subdivides polygons into patches as an octree is
established. Based on the Schumacker algorithm and the
BSP tree, traversing the octree produces octant priority
that can be used for fast visibility computation in
computing form-factors. A paint method that paints
patches from near to far is developed to accomplish the
visibility computation.

As indicated above, the main advantage in this
new scheme for radiosity image synthesis is to avoid
unnecessary computation. The front-to-back method can
save much effort in computing form-factors that are in
fact zero, especially in the case of a complex
environment with crowded objects.

The major disadvantage is that the 3-D
subdivision may result in a number of odd-shaped
patches that will create hemi-cube aliasing. To reduce the
artifact, a high resolution hemi-cube is required.
However, this will unfortunately cancel off the savings
gained from using this octant priority method. This
difficulty has been overcome in [21).

Furthermore, the new method has also proposed
an adaptive subdivision technique for polygons . But it is
not sufficient at its current stage. More work needs to be
done in order to accommodate the adaptive subdivision
efficiently. Cohen's substructure techniques for adaptive
subdivision are expected to be added into this new
method to accomplish more accurate polygon
subdivision.

Graphics Interface '90

To conclude, although some problems exist, this
proposed radiosity method has attempted to open up an
alternative direction for radiosity methods instead of
being forced to use the traditional z buffer.

7. Acknowledgements

Special thanks to Myrias Corporation in
Edmonton for letting us to use the 64-processor Myrias
PSP-2 to test the programs. We would like to thank
Mark Green and Chris Shaw in Dept. of Computing
Science at University of Alberta for their powerful
graphics packages, particularly Chris's nice arm chairs.

REFERENCES
[1] Goral, C.M., Torrance K. E., Greenberg, D. P. and

Battaile, B., "Modeling the Interaction of Light
Between Diffuse Surfaces", Proc. of SIGGRAPH' 84,
July 1985, pp. 213-222.

[2] Cohen, M.F. and Greenberg, D.P., 'The Hemi-cube: A
Radiosity Solution For Complex Environments",
Proc. of SIGGRAPH' 85, July 1985, pp. 31-40.

[3] Cohen, M.F., Greenberg, D.P., Immel, D.S. and
Brock, P.J., "An Efficient Radiosity Approach for
Realistic Image Synthesis", IEEE CG & A, March
1986, pp. 26-35.

[4] Cohen, M.F., Chen S.E., Wallace, J.R., Greenberg,
D.P., "A Progressive Refinement Approach to Fast
Radiosity Image Generation," Proc . of SIGGRAPH'
88, August 1988, pp. 75-84.

[5] Yamaguchi, K., Kunii , T.L., Fujimura, K., "Octree
related Data Structure and Algorithms", IEEE CG & A,
January 1984, pp. 53-59.

[6] Doctor, L.J., Torborg, J.G., "Display Techniques for
Octree-Encoded Objects", IEEE CG & A, July 1981,
pp. 29-38.

[7] Schumacker, R.A., Brand, B., Gilliland, M. and
Sharp, W., "Study for Applying Computer-generated
Images to Visual Simulation", U.s. Air Force Human
Resource Lab Tech . Rep., AFHRL-TR-69-14, Sept.
1969, NTIS AD 700 375.

[8] Newell, M.E., Newell, R.G., and Sancha, T.L., "A
New Approach to Shaded Picture Problem", Proc.
ACM National Conference, 1972, pp. 443-450.

[9] Fo1ey, J. D. and Dam, A. V., Fundamentals of
Interactive Computer Graphics, Addison-Wesley
Publishing Company, 1983.

[10] Rogers, D. F., Procedural Elements for Computer
Graphics, McGraw-Hill Book Company, New York,
1985.

90

[11] Glassner, A.S., "Space Subdivision for Fast Ray
Tracing", IEEE CG & A, October 1984, pp. 15-22.

[12]

[13]

Fujimoto, A., Tanaka, T., and Iwata, K., "ARTS:
Accelerated Ray-Tracing System", IEEE CG & A,
April 1986, pp. 16-26.

Kaplan, M.R., "Space-Tracing, a Constant Time
Ray-Tracer", SIGGRAPH 85 Tutorial, San Francisco,
July 1985.

[14] Samet, H., Webber, R.E., "Hierarchical Data
Structures and Algorithms for Computer Graphics",
IEEE CG & A, July 1988, pp.59-75.

[15]

[16]

Gargantini, I., "Linear Octree for Fast Processing
of Three-Dimensional Objects", Computer Graphics
and Image Processing, Vol. 20, No. 4, 1982, pp.
265-274.

Fuchs, H., Kedem, Z.M., and Naylor, B.F., "On
Visible Surface Generation by A Priori Tree
Structures", Proc. SIGGRAPH 80, Vol. 14, No. 3,
July, 1980, pp. 124-133.

[17] Fuchs, H., Abram, G.D., and Grant, E.D., "Near
Real-Time Shaded Display of Rigid Objects", Proc.
SIGGRAPH 83, Vol. 17, No. 3, July 1983, pp. 65-
69.

[18] Reynolds, R.A., Gordon, D., and Chen, L-S, "A
Dynamic Screen Technique for Shaded Graphics
Display of Slice-Represented Object", Computer
Vision , Graphics, and Image Processing, Vol. 38,
1987, pp. 275-298.

[19] Schachter, B ., "Decomposition of Polygons into
Convex Sets", IEEE Transactions on Computer, Vol.
c-27, No. 11, Nov., 1978, pp.l078-1082.

[20] -loe, B, and Simpson, R.B., ''Triangular Meshes for
Regions of Complicated Shape", International
Journal for Numerical MetJwds in Engineering, Vol.
23, 1986, pp. 751-778.

[21] Wang, Y., "Image Synthesis Using Radiosity
Methods", Ph .D. Thesis, University of Alberta,
1990.

Appendix A The Basic Octant Priority Table

BOPT [8] [8] = {

to, 1, 2, 3, 4, 5, 6, 7},
{I, 0, 3, 2, 5, 4, 7, 6},
{2, 3, 0, 1, 6, 7, 4, 5},
{3, 2, 1, 0, 7, 6, 5, 4},
{4, s, 6, 7, 0, 1, 2, 3},
{5, 4, 7, 6, 1, 0, 3, 2},
{6, 7, 4, 5, 2, 3, 0, I},
{7, 6, 5, 4, 3, 2, 1, O}

Graphics Interface '90

91

T
T ... Ooun.
fo< R=d<r Mu. Levd Ckun.

'of foe f · ""'" cl 01 f:c
pa

p~ 3 b

11::'j (oDu.) OCWU bcm·

(....) ",bo

Tome T"",
Ckwu

(h ...

foe Rmdo, Ma.< • l.c>d
•• f fo<

fonD- Om< .f .f l:
pe<

!,""boo J·lUb bem-

(ooc .) foaoe (min .) .,"". "'- ",be
(aDn)

Fi g.7. Z &rfcr 1098 16 '35 5 .1 172 5 172 H50 rig .8. Z Buff« 1059 12 496 481 481 2405

aa... 1091 16 290 ' .9 m 5 499 2491
PnonlY

Oaan, 1059 u J5' 4 .1 .s I 2JO IISO
Priority

T l\mo Ooun ..

Ioi f. f .. -Mu. UwI ea-
f..".· cl 01 r:.

~ l-.. b f..- ("'J
bcm·

("".)
....... ",bo

(....)

T_ T"", aa....
Iof f. foe - Mu. Le ... aa.....

fonD- Iimo .f .f r=, P"
~ 3 b (....) oa-. """'"

b<m.

("".) (.....)
",be

rig .9. ZBu.trcr In4 .. 59' M '92 5 '92 2264
Fig. IO. Z Buffer In4 .. 59' 5 .' '92 5 '92 22~

aa... In. .. ~ ' .9 '92 5 190 950
Priotily

aa... In, .. J&4 ' _9 492 5 190 950
Priority

T 0.-
'0[f. !or R.odo.- Ma.<. Le ... Oaan ..

f · 0[.f f:c "'" ...- 3 b
(...) 1::., (....) oa-. wbo

To"", ..". 0..-
f",

........,
Moa' Lc>d aa....

.01 foe fonD -f of l: P"
P""bco) b bem-

faaoe (....) "'-(....) 1(.... ",be

Fig . l!. Z BYlfcJ 1110 15 526 6 .2 932 4 m 4660
Fig.12. Z Bufrer "I • 100 2 241 5 241 1205

aa... 1170 15 194 4 .6 932 4 125 ru
Pnonly

Oaan.
"I • .. 2 241 5 Ill> 920

Priority

Graphics Interface '90

