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Abstract 

This paper presents a new scheme for image display 
using radiosity methods. An octree technique performs 
subdivision of polygons which is required in any 
radiosity method. The octree-based subdivision not only 
subdivides polygons into patches, but also produces a 
sequence of leaf octants implicitly sorted in the octree. 
By traversing the octree, a depth priority of these leaf 
octant,s with respect to a given viewer position can be 
found efficiently. Since each octant contains a certain 
number of patches, octant priority implies a patch depth 
priority that is used to determine visibility in computing 
form-factors by a front-to-back list priority algorithm. 
This list-priority method has many advantages over the 
z-buffer and can avoid some unnecessary computation. 

Keywords Radiosity, Illumination Models, Octrees 
Image Synthesis, Hemi-cube, Space Subdivision. 

1. Introduction 

Radiosity methods for image synthesis have been 
important for some time. This is due largely to its 
potential in generating more realistic images. It 
overcomes several difficulties that are hard for previous 
approaches to resolve. The major advantage of the 
method is to allow for inter-reflection of lights in an 
enclosure, more faithfully simulating the behavior of 
light based on thermal engineering. 

Since Goral et al. first introduced the radiosity 
method for a perfect diffuse environment in 1984 [1], a 
number of papers have been published. In these papers, 
the main focus is placed on efficiency of its 
implementation. Cohen and Greenberg proposed a 
method to approximate the calculation of form -factors 
by using a hemi-cube technique [2] . This hem i-cube 
method laid down the foundation of radiosity methods 
including occluded objects. Further, Cohen et al. 
improved the hemi -cube method using a substTucturing 
strategy in order to more accurately determine radiosity 

on surfaces with complex intensity gradients [3]. 
Recently, Cohen again improved radiosity methods and 
proposed an interactive technique to progressively refine 
radiosity images [4]. 

In general, radiosity methods can be implemented 
in four steps: 

• Subdivide surfaces into patches each of which has a 
constant radiosity; 

• Calculate the form-factors from any patch to the 
remaining patches; 

• Solve a set of simultaneous equations for radiosity; 

• Render the image using an appropriate rendering 
algorithm. 

Focusing on the first two steps, this paper 
proposes another radiosity method, again for an ideal 
diffuse environment. By carefully examining the 
previous results, it is observed that calculating form
factors involves a lot of visibility computation that 
requires a depth priority of patches to determine which 
patch is seen first. Therefore, if an implicit depth 
priority of patches is set up while polygons are divided 
into patches in the subdivision step, the second step 
may take advantage of the patch priority to speed up the 
visibility computation. This results In a 3-D 
subdivision scheme. By using an octree technique, this 
scheme not only subdivides polygons into patches but 
constructs an implicit octant priority . With the octant 
priority, in the second step for computing form-factors, 
a front-to-back list priority algorithm is used to 
efficiently determine visibility from a patch to the rest. 

2. 3-D Subdivision for Polygons 

Traditionally, an octree has been used to represent 
three dimensional objects in a hierarchic structure by 
subdividing the space into octants [5,6], each being 
either solid or empty. However, such a scheme is also 
suitable for subdividing polygons into patches, To 
derive accurate values for radiosity, a radiosity method 

Graphics Interface '90 



generally needs to subdivide polygons interactively, that 
is, the user needs to conduct the subdivision process in a 
way that polygon surfaces with high intensity gradients 
should be divided into fme patches. In the new radiosity 
method, interactive preprocessing is required to assure 
that the 3-D subdivision works properly. This is 
described first in this section. 

2.1 Interactive Preprocessing 

In the subdivision method to be stated later, It ts 
assumed that all the polygons must be convex. 
Therefore, the first task in this preprocessing step is to 
break all polygon surfaces that are concave into convex 
sUbpolygons. This can be done automatically [19,20]; 
however, since the focus of the new radiosity method is 
on efficiency of form-factor computation, the 
decomposition of polygons is performed manually. 

In general, polygon surfaces having high 
intensity gradients are those shadowed by the surfaces of 
other objects. On these polygons, intensity across the 
boundaries of shadows changes dramatically. In order to 
assure that each patch has an approximately equal 
radiosity, the shadowed polygons should therefore be 
divided into smaller patches than other polygons. To 
this end, these shadowed polygons are first divided into 
subpolygons along the boundaries of the shadows in the 
preprocessing. Then the 3-D subdivision uses the 
information of the boundaries between the divided 
polygons to subdivide them again in an adaptive way. 

Computing shadows can be automated; however, it 
is expensive and difficult. Furthermore, for radiosity 
image display, accurate computation of shadows is 
almost impossible before the radiosity solutions are 
obtained. The objective to calculate shadows is to use 

.. the shadow information to guide the following 3-D 
subdivision. As a result, a user's careful estimate on 
shadows is sufflcient to make the 3-D subdivision work 
fine. 

2.2. Octree in Polygon Subdivision 

Subdividing space to improve efflciency of image 
generation is not a new idea. The fast ray tracing 
algorithm proposed by Glassner 1984 was based on a 
space subdivision by an octree technique [11] . Other 
papers have been present in the literature to deal with 
space subdivision, especially octree subdivision 
[12,13,14]. However, papers that tackle radiosity using 
octree techniques have not been seen. Although Cohen et 
al. and Samet-Webber mentioned how to take advantage 
of hierarchical data structures to improve radiosity 
methods [3, 14], the detail of how to implement the 
octree technique in radiosity methods was not described. 

Without loss of generality, it can be assumed 
that all polygons in a 3-D environment are enclosed in a 
unit cube whose edges are parallel to the axes, as shown 
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in Figure la. In addition, it is also assumed that all the 
polygons are convex (see Section 2.1). 

To construct an octree, a coding scheme needs to 
be chosen. Gargantini proposed a numbering scheme 
[15], in which 0 through 7 are used to name the nodes. 
Although G1assner had a better numbering system [11], 
this paper mainly refers to Gargantini's method since its 
features are adequate. 

Starting with the original unit cube, the whole 
environment is subdivided into 8 sub-cubes by 3 planes 
Px (x=O.5), P y (y=O.5) and P z (z=O.5), as shown in 

Figure la. Then for each sub-cube, another set of planes, 
for instance, x=O.25, y=O .25 and z=O.25, are applied to 
subdivide the subcube into 8 smaller sub-cubes. The 
process continues for subsequent sub-cubes until a given 
criteria is met. Finally, the evironment space is divided 
into a sequence of small sub-cubes and an octree is built 
up. Figures Ib and lc demonstrate a 2-level octree, where 
0Jc represents a node which is called an octant, and k 
stands for the code. 

(0) (b) 

(c) 
(d) 

Fig.1. (a) The cube is divided by Px, Py and pz inlO 8 
smaller cubes, 00, ... , 07, called octanlS. (b) An 
example of lhe numbering system. (c) The OClree 
corresponding to Fig. I b. (d) The 3-D subdivision for a 
scene based on the OClTee in Fig. l c. 

Constructing an octree is not the whole story, but 
using the octree to subdivide polygons into patches is 
the main purpose. Polygon subdivision can be done by 
the following approach. As an octant is subdivided into 
8 smaller octants by the dividing planes, for example, 
Px , Py and P z in Fig.I., any polygon that crosses the 
boundaries of these smaller octants is simultaneously 
clipped against the dividing planes. The polygon 
subdivision goes on as these smaller octants are 
subdivided again. Finally, when the octree is completed, 
each of the resulting sub-polygons will lie entirely in 
one of the leaf octants. Such a sub-polygon is called a 
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patch. Once the octree has been formed. each polygon is 
eventually divided into a number of patches. If the 
criteria for subdivision termination is chosen 
accordingly. each of these patches will have an 
approximately constant radiosity. An example of 3 -D 
subdivision for a simple scene is shown in Figure Id. 

2.3 Criteria for Subdivision termination 

As indicated above, the subdivision process 
terminates when a given criteria is met. Several ways 
exist to specify the criteria. 

One way is to constrain the size of the octant. 
When the octant is less than a specified size, the process 
of subdivision stops. In this case, if the specified size 
is sufficiently small, all polygons involved will 
eventually be subdivided into patches with the desired 
size because these patches are restricted in the final 
octants. However, with such criteria, subdivision may 
end up with some octants each of which contains more 
than one patches. In this case, the depth priority of 
these patches has to be determined in a different way. 
Fortunately, the Newell-Newell-Sancha algorithm's 
overlapping tests (8) can be used to accomplish this task 
and is efficient when the number of patches within an 
octant is small. 

The second method for termination is to constrain 
both the size of octant and the number of polygons in it. 
When an octant is less than a specified size and contains 
only one patch, subdivision would terminate. The 
constraint may result in a problem - infinite 
subdivision because some joined polygons may not be 
separable. Theoretically, this method can be valid and 
perform a good ploygon subdivision if a very fine 
subdivision that eventually leads to a 3-D point in an 
octant is allowed. Fine subdivision is very expensive 
itself, let alone that it may produce a huge number of 
patches that the radiosity method can not handle within a 
reasonable time. As far as this is concerned, the 
following criteria is better than this one. 

The third method, adopted in the new radiosity 
method, consists of two levels: when an octant 
contains one patch and its size is less than a number, 
say SIZEl, the subdivision terminates; or when an 
octant contains more than one patches and its size is 
less than another number, say SIZE2, the subdivision 
stops, where SIZEl > SIZE2. The reason to use a two
level criteria is to allow for fine subdivision on high 
intensity gradients. This point can be clearly seen in 
the following two situations: 

Since a shadowed polygon is divided into several 
subpolygons along the boundaries of shadows in the 
preprocessing step, the surfaces around the boundaries of 
shadows are made up of more than two polygons. By this 
criteria, those surfaces are eventually divided into more 
patches. Moreover, since a corner of an object consists 
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of at least two polygons, a fmer subdivision around the 
corner is also performed. Shadow boundaries and object 
corners are generally considered. to have high intensity 
gradients . Therefore, this method allows for adaptive 
subdivision to some extent, at least in the two cases: 
boundaries of shadows and corners of objects. 

In the last criteria, as dealt with in the fITst 
criteria, the depth priority of the patches within an 
octant is found by using the Newell-Newell-Sancha 
algorithm (8). 

3. Depth Priority of Octants 

Octant priority in terms of depth with respect to a 
viewer is a new concept introduced in this paper. With 
octant priority, the radiosity method can employ a front
to-back paint algorithm to perform hidden-surface 
removal in computing form-factors. Establishment of the 
octant priority is based on both the octree constructed in 
3-D subdivision and the Schumacker algorithm. 

3.1 Traditional Method for Cluster Priority 

Schumacker proposed a fast algorithm for 
determining hidden surfaces as the viewer position 
constantly changes [7). In the Schumacker algorithm, all 
polygons in a scene are collected into clusters of 
polygons, which are linearly separable, that is, any two 
clusters can be separated by a dividing plane. Then 
cluster priority that is independent of the viewer can be 
easily established. Fuchs et. al later developed the 
algorithm and proposed a data structure for tracing the 
cluster priority [16,17). The data structure is called a 
BifUlry Space Partitioning tree (BSP tree). A classical 
example is shown in Figure 2. 

a 

B 

~ 
c 

to) (b) 

Fig.2. 1he Schumacker algorithm', cluster priority. <a) 
Two dividing planes a and ~ separate three clusters and 
divide space into three regions. (b) The corresponding 
Binary Space Partitioning tree. 

The tree in Fig. 2b is a BSP tree of the scene in 
Fig . 2a. To determine the cluster priority, given a 
viewer, the BSP must be traversed from the root to the 
leaves. At each node, which branch, + or -. is visited 
fITst depends on the order in which clusters are displayed. 
If a front-to-back paint algorithm is used, the branch 
associated with the side of the dividing plane in which 
the viewer lies is visited fITst. In the example in Fig. 2. 
where the viewer is supposedly in area D the branch - is 
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visited first and then + at the first level. and at the 
second level. - first and + later. When the whole tree is 
visited. the order in which the leaves have been visited 
is the cluster priority. For the example. the priority is 3. 
1. and 2. 

3.2 Methods for Octant Priority 

As seen in the preceding section. the 3-D 
subdivision algorithm uses a sequence of planes to 
partition the space into octants and clip the polygons 
into patches. To use the Schumacker algorithm. the 
octants can be regarded as clusters of patches. and the 
planes as dividing planes for separating the clusters. 
Unlike the original Schumacker algorithm. however. the 
BSP tree is replaced by the octree produced in the 3·D 
subdivision, in which each node has 8 children instead 
of 2. 

To describe the following method conveniently. 
let us classify three kinds of nodes in an octree. 

NULL node - has no child and contains no patch. 
INTER node - g children one being a non-NULL. 
TERMINAL node - has no children but patches. 

The task to compute octant priority is to sort the 
TERMINAL nodes according to depth with respect to a 
given viewer. Based on the principle of the BSP tree. 
computing octant priority needs to traverse the octree in 
the order that the octants that are closesr to the viewer 
are visited first. At each INTER node. determining the 
ordering of its g children is the key part in forming 
octant priority. 

A rather OCUnt (the 
whole cube). 0.: sublpooe 

Fig.3. An example of how to determine octant 
priority given a viewer. 

Let Ok=(k. xm. ym. zm) present an INTER 
octant, where k is the code of the octant and (xm. ym. 
zm) is the center of the octant. Consider Fig.3. When a 
father octant Ok is subdivided into g smaller octants 0lce. 
Die} • ...• Olq by 3 planes x=a. y=b. z=c (a. b. c are 

constants). the space is also divided into 8 sub-spaces. 
S/co. Sk} • .... Sk7' Note that according to the numbering 
scheme of the octree. ki is in fact equal to k· 8 +i 
(i= 0 .. .. . 7). If the octal system is used and let k = 
(b1b2 ... br)g. then ki = (b1b2 .. . bri)g. 

86 

Suppose that the viewer is in SkJ' If only the 

plane x=a is considered ignoring others. it is clear that 
any patches lying on the side of x=a further from the 
origin can not obscure the patches on the side closer to 
the origin; therefore 0/co. Ok). 0IQ. 0kJ should be visited 
first. and 014. Oks. 0k6. 0k7 later. Applying the same 
principle. when the planes y=b and z=c are considered in 
turn. each of the above two groups is sorted again. 
respectively. and finally the priority of the 8 oclants can 
be determined as follows: 0kJ' 0k2' Ok}. 0/co. 0k7' 0k6. 

Dies. 014' 

Since there are only 8 possibilities that the 
viewer can be located in the 8 sub-spaces. therefore. all 8 
orderings. each corresponding to a sub-space in which 
the viewer lies. can be precomputed and stored in a table. 
called the basic octant priority table (B 0 PT). The 
complete table is listed in Appendix A. 

At each IN T E R node. the following simple 
calculation is required to determine in which sub-space 
the viewer lies. 

b = (view.x >= xm)·4 + (view.y >= ym)·2 + (view.z >= zm) 

Then S"" is the sub-space in which the viewer is. 

Using b to index B 0 PT. the 8 children under the current 
INTER node will be visited in the order indicated by 
BOPT. When a TERMINAL node is visited. it is 
output and used in the form-factor computation which is 
stated in the next section. 

4. Visibility in Form-factor Computation 

To compute the form-factor. the visibility from a 
patch to the remaining patches must first be identified. 
Secondly. the form-factor from a patch, say Pe. to one of 
the remaining patches. say Pr. is calculated by counting 
the delta form-factors in the area projected by Pr onto 
the hemi-cube[21. In this new radiosity method. with 
octant priority. the hemi-cube concept is kept with a 
slight modification and a front-to -back algorithm is 
adopted for the visibility computation. 

4.1 Hemi-cube Technique 

To calculate form -factors for any patch. an 
imaginary hemi-cube is first mounted on the patch as 
traditionally done. (For convention. the patch on which 
the hemi-cube is constructed is called the emitting patch. 
and the rest of patches the receiving patches.) Then the 
receiving patches are projected onto each of the five 
faces of the hem i-cube. respectively. Let O/q =(ki. (mxi. 
mYi. mZi). P/q} present a TERMINAL octant, where ki 
is the code. (mxi. mYi. mzj) is the center coordinates of 
the octant and P/q is the set of patches that lie inside the 
octant. Suppose the emitting patch. Pe. is contained in 
the TERMINAL octant O/q =(ki. (mxi. mYi. mZi). S/q}. 
Thus Pe belongs to Plc;. Let (x.y.z) be the viewer 
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position which is located at the centre of Pe. By 
traversing the octree. the octant priority list with respect 
to (x.y.z) can be found. Let OPL={ OkJ ..... Ok,.1 represent 
this list where Ok; has a higher priority than Okj if i<j 

(i,j=}, ... , n). 

As required by the hem i-cube technique. two 2-D 
arrays of delta form-factors are precomputed and any 
form-factor between two patches can be quickly 
calculated using a table lookup technique. The two 
arrays are called the delta form-factor tables. One 
corresponding to the upward-face of the hemi-cube is 
used to accumulate delta form-factors while patches are 
projected onto the upward-face of the hemi-cube. The 
other is used when patches are projected onto any of the 
sides. In addition. another i-bit 2-D array with the 
same size as the upward array of delta form-factors is 
used to assist the visibility computation. The array is 
named the mask table which can replace the item buffer 
used traditionally. 

A conventional paint method paints all polygons 
to the frame buffer in the order of the farthest to the 
nearest. Instead, this new method adopts the reverse 
order. that is. patches are projected onto a face of the 
hemi-cube from the nearest to the farthest, i.e .• from the 
patch with the highest priority to the one with the 
lowest priority. 

When a patch is painted on a face of the hemi
cube. the corresponding pixel that is 0 in the mask table 
is set to } (the table is initialized at 0). However. it is 
only at those pixels currently set to } in the mask table 
and covered by the patch's projection that the delta form
factors are accumulated. Note that the form-factor from 
the emitting patch to a receiving patch is computed right 
after the receiving patch is projected onto the hemi-cube. 
Thus there is no need to use an item buffer as used 
usually to store the projection of the receiving patch. 

A face of 
hemi-cube 

r- V" ~v 
,,( 1 'f 
1 1 1 
1 lY 
'1-r-Y 

Pkl 

? 

Fig.4. When Pki hides Pkj. the delta form-factors 
only within the visible area of Pkj are counted. 

Suppose that Ok; and Okjare two TERMINAL 
octants in OPL each containing a single patch. Pl:j and 

Pb respectively (for the more-than-one-patch cases. the 
J 

Newell-Newell-Sancha algorithm is used). and that P I:j 

partially hides PI: ' (i<j) . Then only part of PI: ' may be 
J J 

visible to the viewer. Since P I:j is painted onto the 

hem i-cube first, the pixels covered by P I:;'s projection are 

alreadyJ"s in the mask table when PI:' is painted. 
J 
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Therefore. only the delta form-factors in the visible area 
are counted. while the delta form-factors in the 
overlapping area are not accumulated. Fig.4. illustrates 
this point. 

4.2 Painting Patches onto the Hemi-cube 

To accumulate delta form-factors. a scan-line 
algorithm using an active edge table [9] is used to locate 
the pixels covered by the projection of the 3-D patch on 
a face of the hemi-cube. In this algorithm, each edge of 
the polygon is represented by an edge structure as 
follows: 

I X.m I dx I dy 

and, it is placed at the appropriate position in the edge 
bucket according to the maximum y of the edge. An 
active edge table (A ET) contains those edges in pairs 
that are intersected by the current scan line. For 
example. when the current scan line 

Fig.5. A san line with a pair of active edges. 

is equal to y. as shown in Fig. 5 .• the AET includes the 
two edges entries: 

I X miDI I dxl I dyl H XmiD21 dx21 dy2 I 
To scan convert a patch, unlike the conventional 

scan-line method that paints each pixel between xmin} 

and xmin2 to the frame buffer [9.10]. the new method 

accumulates the delta form factors in the delta form factor 
table between the two columns that happen to 
correspond to xminJ and x m in2' Let col} <=> xminJ. 
coI2<=>Xmin2' DFFT be the precomputed delta form

factor table corresponding to the upward-race of the 
hemi-cube and MT be the mask table. For any patch, 
the key part of the painting technique is given in the 
following algorithm. 

For each current-scan-line from the maximum y 
to the minimum y of the patch; 

for(col=coI1 ; colScol2; col++) 

If(MT[currelll·scan· /ine][col) = O){ 

sum_delta _FF += DF FT[currelll·scan.1 ine ](col) ; 

MT[currelll -scan-line](col) = 1; 
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After the above algorithm is repeated for each face of the 
hemi-cube. the final result of sum _delta _FF is the form
factor from the emitting patch to the patch being 
projected on the hemi-cube. Note that the delta form 
factor table for the upward-face is different from that for 
the side-face. and normally these tables contain only the 
values for a quarter of the face . These factors are 
considered in the algorithm's implementation. 

4.3 Advantages 

Such a scheme for painting patches from front-to
back has a substantial advantage over a back-to-front 
painting scheme like the z-buffer. This approach can 
save computation. especially in a complex environment. 
According to the painting scheme. when the mask table 
is full of 1 's 1. it is obviously unnecessary to compute 
the form-factors from the emitting patch to the 
remaining patches that have not been processed. This is 
because these remaining patches have lower priority and 
are completely hidden by the patches that have been 
painted onto the hemi-cube. Therefore. their form
factors are determined to be zero. This situation happens 
very frequently in an environment with crowded objects. 
Consider the example in Fig. 6. A big wall or polygon 
that appears in front of a small patch. All that the small 
patch can see is part of the wall (perhaps. a few other 
polygons around the boundary of the wall). and then 
only the wall receives light from the patch. This 
implies that the form-factors from the small polygon to 
the other polygon except the wall are zero. As a result. 
in this case. only the big polygon is projected and the 
delta form-factors covered by the projection are 
accumulated. simply assuming that the form-factors to 
the other patches are zero. 

Objcc15 behind 
tbewaU 

Fig.6. A small patch on a side of the cube can only see 
the wall that it faces . In other words. other objects 
receive no light from it. 

4.4 Overview of the Algorithm 

The following pseudo code outlines the new 
radiosity method using octant priority established in the 
3-D subdivision. 

Pre-process Polygons; 

Construct the octree and 

I A counter. which counts the number of pixels with 1. can be 
used for determining the fullness of I's in the mask table 
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subdivide polygons into N patches:) {Pl ..... PN}; 

for ( i=l; i<=N; i++ ) ( 

Form the octant priority list:) OPL={Okl ..... OkM} 

with respect to the center of Pi; 

for (j=l; j5M; j++ ) { 

if (MT is full) goto LOOP ; 

Using Newell-Newell-Sancha 

sort patches in Pkj :) {Ph •... • PjL}; 

for ( k=l; k5L; k++ ) { 
project Pjk onto each face of the hemi-cube in turn; 

Scan the projection of Pjk from mal: _y to min y : 

for (col=coll; co15coI2; col++) 

} 

if ( MT[current-scan-line)[col) == 0 ) ( 

FF[i)[jk) += DFFT[current-scan-line}[col); 

MT[current-scan-line](col) = I; 

} 

} 

WOP: 
} 

Solve the radiosity equation to obtain: B[I) •.. .• B[N); 
Render images using B[I) •.... B[N); 

MT - mask table 
FF - form -factor matrix 
DFFT - delta form-factor table 

5. Implementation and Analysis of Results 

The new radiosity method proposed in this paper 
has been implemented on a Color Sun 3/60 and the J2

S 
color monitor and produced several radiosity images. 
Five scenes with different complexity have been 
modelled and rendered by this method. Their images with 
performance results are shown in Figs. 7 to 12. 

To highlight the advantages of this new method. 
two comparisons are used to analyze its performance. 
First. the new method using a front-to-back paint 
algorithm is compared with the hemi-cube method using 
the z-buffer technique. Second. a scene of crowded 
objects is compared with a scene of sparse objects. There 
are two terms to measure performance. the execution time 
and the number of octants processed. 

A comparison of the two methods can be 
converted to a comparison of a front-to-back paint 
algorithm with the z-buffer. By careful examination. the 
paint algorithm has an overhead consisting of returning 
pointers in traversing the octree to obtain octant 
priority. and performing a simple calculation at each 
node to determine which branch to visit next. On the 
other hand. the z-buffer does not need to determine depth 
priority of patches. but has the extra computation for the 
z values. comparing. and updating the frame buffer and 
the z buffer at each pixel. Since a front-to-back paint 
algorithm uses a I -bit mask to determine whether a pixel 
is occupied. extra comparison operations are needed at 
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each pixel too. However, this can be compensated by the 
saving in the situations where a number of patches are 
completely obscured by other patches and then discarded 
(This has been discussed in Section 4.3 and will be 
emphasized again in the following timing analysis). 
Thus, both methods have overhead in different places. 
The trade-off is that if the size of the octree is smaller 
than the number of pixels, the new method would have 
less overhead than the z buffer. From the six examples 
shown in Figs. 7 to 12, in general, a four-level octree is 
enough to produce a fine polygon subdivision. In the 
worst case, the size of the octree is 8+82+8 3+84=4632. 
However, the resolution of the hemi-cube is usually from 
100*100 to 300*300. Obviously, the former is less than 
half of the latter. 

By further investigation, the overhead imposed by 
the octant priority algorithm can be still reduced in the 
following situations. 

Recall that in Section 3.2, once a TERMINAL 
octant has been visited in traversing the octree, the 
octant can be immediately output to the front-to-back 
paint algorithm since the TERMINAL octant must have 
higher priority than those not visited. This implies that 
traversal of an octree can dynamically interact with the 
painting process. By the interaction, an INTER octant 
being visited currently can be checked to see if it is 
behind the viewer in advance. If so, the whole subtree 
under the INTER node can be discarded without 
traversing down through it. Definitely, this would reduce 
a significant amount of overhead due to octree traversal. 

Another situation that may lessen the overhead is 
that when the I-bit mask is full of l's, the paint 
algorithm stops further processing. In this case, there is 
no need to continue to traverse the remaining portion of 
the octree. Therefore, a lot of time is saved by cutting 
off these remaining branches. 

Since the view position is located in the center of 
an emitting patch that appears inside the environment, it 
is usual that the viewer only can see part of the scene, 
most objects being either behind it or behind the other 
nearer objects. As a result, the savings occurring in the 
above two situations is significant for most scenes. 

Furthermore, traversing the octree is performed 
only once for all five faces of the hem i-cube, while the z 
buffer has to be gone over five times for different faces 
of the hemi-cube. This implies that the overhead in 
traversing the octree is small compared with that in the z 
buffer. 

From the point of view of the number of the 
octants processed, the advantages of the front-to-back 
paint algorithm can be seen easily. The Z buffer always 
has to process all the patches in the environment 
(except the back faces of an object) even if some patches 
are completely obscured by the nearer patches. Therefore, 
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its complexity is constant for any emltltng patch. By 
contrast with the z buffer, the complexity of the front
to-back paint algorithm varies depending on the location 
of the viewer or the emitting patch. In a crowded 
environment as shown in Fig. 11, the average number of 
octants per face that have to be processed by the paint 
algorithm is 125 (for the z buffer, it is always 932, the 
maximum number. Although the z-buffer does not use the 
octant concept, the number 932 in effect represents the 
equivalent number of patches). Even for the environment 
shown in Figs 8 to 10, in which objects are distributed 
loosely, approximately half of the emitting patches use 
only about 230 octants . Moreover, there is always at 
least one face of the hem i-cube that needs only 20 
octants to cover it on average, that is, an average of 20 
octants can be seen from this face. 

From the Algorithm described in Section 4.4, this 
kind of saving is reflected by the number of the loop 
running through 0 P L. If the mask table is full very 
quickly, only a small number of octants in OPL will be 
processed, the rest being discarded. Obviously, the 
smaller the number of octants processed, the faster the 
algorithm. The statistical results corresponding to the 
images are shown in Figs. 7 to 12. 

6. Conclusions 

This paper proposes a new radiosity method 
which subdivides polygons into patches as an octree is 
established. Based on the Schumacker algorithm and the 
BSP tree, traversing the octree produces octant priority 
that can be used for fast visibility computation in 
computing form-factors. A paint method that paints 
patches from near to far is developed to accomplish the 
visibility computation. 

As indicated above, the main advantage in this 
new scheme for radiosity image synthesis is to avoid 
unnecessary computation. The front-to-back method can 
save much effort in computing form-factors that are in 
fact zero, especially in the case of a complex 
environment with crowded objects. 

The major disadvantage is that the 3-D 
subdivision may result in a number of odd-shaped 
patches that will create hemi-cube aliasing. To reduce the 
artifact, a high resolution hemi-cube is required. 
However, this will unfortunately cancel off the savings 
gained from using this octant priority method. This 
difficulty has been overcome in [21). 

Furthermore, the new method has also proposed 
an adaptive subdivision technique for polygons . But it is 
not sufficient at its current stage. More work needs to be 
done in order to accommodate the adaptive subdivision 
efficiently. Cohen's substructure techniques for adaptive 
subdivision are expected to be added into this new 
method to accomplish more accurate polygon 
subdivision. 
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To conclude, although some problems exist, this 
proposed radiosity method has attempted to open up an 
alternative direction for radiosity methods instead of 
being forced to use the traditional z buffer. 
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Appendix A The Basic Octant Priority Table 

BOPT [8] [8] = { 

to, 1, 2, 3, 4, 5, 6, 7}, 
{I, 0, 3, 2, 5, 4, 7, 6}, 
{2, 3, 0, 1, 6, 7, 4, 5}, 
{3, 2, 1, 0, 7, 6, 5, 4}, 
{4, s, 6, 7, 0, 1, 2, 3}, 
{5, 4, 7, 6, 1, 0, 3, 2}, 
{6, 7, 4, 5, 2, 3, 0, I}, 
{7, 6, 5, 4, 3, 2, 1, O} 
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