
92

Imprecise Computation and Load Sharing
in Computer Generated Imaging Systems

Marc Berger

Department of Computer and Information Sciences

University of Delaware

Newark, DE 19716 USA

Wei Zhao
Department of Computer Science

University of Adelaide
Adelaide, SA 5001 Australia

Abstract

The fast rendering of complex scenes IS a fundamental

problem in imaging systems. Imprecise computation is a

two level scheme for executing screen update tasks . The

full level specifies the maximum computation require­

ment of a rendering task while the reduced level spec­

ifies the minimum computation requirement which will

render a region imprecisely but acceptably. Load shar­

ing is a task allocation scheme which shares the work­

ing load of the system among all processors, better uti­

lizing each processor and thereby reducing overall re­

sponse time. This paper describes an integration of im­

precise computation and load sharing techniques which

reduce image generation time while maintaining high im­

age quality. No one has formally studied this integrated

system and we do this with an analytical model which

evaluates and compares CGI systems using only one of

the techniques with systems which use both techniques.

Our study demonstrated that the coupled system fea­

tures faster task response time and high image quality

even when the system has been over-loaded .

Keywords: image synthesis, real-time image display,

distributed computer system, imprecise computation,

task allocation, load sharing/balancing.

Introduction

One of computer graphics most challenging tasks is to

generate realistic images in real-time. While recent

technological advances in hardware and software have

brought about major strides towards this lofty goal, the

major stumbling block is that the combination of render­

ing speed and high quality image performance require-

ments play off against each other. As the number of ob­

jects describing an image increases so does computation

time, and this increase is often linear.

Computer Generated Imaging (CGI) system designers

are often forced to choose between realism and speed,

depending upon the requirements of the system or the

inclination of the designer. CAD systems often draw wire

frame images to achieve real-time response but are will­

ing to tolerate acceptable delays of several seconds to

produce shaded images. In [9] an adaptive refinement

process, and spare CPU cycles, is used to quickly render

an image at different levels of complexity. At the other

extreme, "fast" ray tracing of complex scenes consisting of

hundreds of thousands of objects consume several hours

of processing time on single processor systems [11] ; but

this time decreases directly as the number of processors

increases [1] .

High performance visual training simulation systems,

such as Redifussion/Evans & Sutherland CT6 image gen­

erator [19] , sacrifice visual exactness for speed to achieve

a high level of scene fidelity while maintaining a screen

update rate of 20 - 30 hertz . These specially designed

systems, costing in excess of 5 million dollars, attain

this performance by using a high degree of parallelism in

which work is distributed among several processor nodes.

Crucial to their performance is a well designed data base

which supports dynamically varying multiple levels of de­

tail which is based upon the distance an object is viewed .

Typically, as an object gets closer to the viewer unre­

solved objects are transformed to resolved objects by in­

creasing detail. Objects that are located far from the

viewer or at the edges of the field of view are still imme-

Graphics Interface '90

diately recognizable although displayed in reduced detail

[22]. This technique takes advantage of the vast redun­

dancy of visual cues in a typical scene and the abili ty of

the brain to fill in detail based upon previous experiences

[2].

These attempts to reduce image generation time can be

formalized into two categories: imprecise computation

and distributed computing. The technique of imprecise

computation, recently studied by a number of researchers

[10, IS, 16, 17], chooses to trade off computational accu­

racy for faster response time. That is, for some applica­

tions, a partial execution of an imaging task, which yields

a faster response time and imprecise-but-acceptable re­

sults, may be better than a full execution of a task which

yields the highest possible precision of computation with

a longer response time. A critical issue in an impre­

cise system is that the partial execution of tasks should

be properly controlled in order to keep the computation

quality at an "acceptable" level.

On the other hand, computer networks impact task re­

sponse time by sharing the working load of the individual

nodes (i.e. , transferring tasks) among all nodes in the

system [20]. In this way, the computation resources on

each node can be better utilized and the task response

time can be reduced . The computation quality of a load

sharing system is never degraded. However, as we will

see, its ability to reduce the response time is very limited

compared with an imprecise system.

In this paper we introduce a new model that properly

couples imprecise computation and load sharing tech­

niques in local area networks to reduce processing time

while maintaining a high visual quality. Clearly, any set

of criteria used to measure the effectiveness of an image

generation system is different for real-time and non-real­

time systems [6] . For our analysis, we have chosen three

important performance metrics: 1) the mean task wait­

ing time, 2) the mean task served computation time, and

3) the fraction of the display screen which is precisely

processed. The first metric assesses the image generation

time while the latter two indicate the image quality.

Computation Model

We adopt a two level imprecise computation model for

rendering tasks. Typically a task is a request to update

a specified part of the scene. In our system, each task

has two levels of computation time requirements: the

93

full level requirement specifying the maximum compu­

tation time needed by the task, and the reduced level

computation requirement defining the minimum compu­

tation time needed by the task. If a task is allocated

this reduced amount of processing time, its correspond­

ing screen area is rendered imprecisely but acceptably.

There are several features in scene generation that could

be affected by a reduced level of computation. These

include, but are not restricted to, geometric modelling,

motion dynamics, lighting characteristics, texture detail

and aliasing artifacts. In general, tasks that update areas

in the center of the screen have a higher precise compu­

tational requirement than tasks updating areas near the

edges of the screen.

We note that this simple two level task computation

model covers a wide range of application tasks. For ex­

ample, if a task's reduced level computation time is zero,

then this task can be dropped in case the system is too

busy. On the other hand , if the reduced level compu­

tation time is the same as the the full level one, then

this task is so important that it should never be partially

processed.

Each update request (task) has its unique processing re­

quirement which depends upon the visual complexity of

its designated screen area. To simplify the analysis, in

this paper, we assume that the (full level) task compu­

tation time is exponentially distributed with a mean of

1/ JI.. The reduced level computation time of a task is a

fraction R of the full level computation time of the same

task, where R is a constant (an overall average) between 0

and 1. Consequently, the reduced level computation time

is also exponentially distributed, with a mean of R/ JI. . In

[3]' Chong and Zhao showed that the derived analytical

formulas, assuming a system with constant R,. are good

approximations for systems in which the R parameter is

not constant but a random variable. A theoretical inves­

tigation of this issue is beyond the scope of this study,

and is currently being undertaken in a separate paper [5].

System Model

The functional requirements of a CGI system can be de­

composed into three processes:

1. Scene Manager - This process, residing in the host

computer, selects the level of detail for those objects that

are potentially visible within the current field of view. It

Graphics Interface '90

also sends out task requests for an area of the screen

to be updated. The display screen is divided into equal

size blocks of pixels to reduce communication overhead

that would occur if just one pixel was transferred at a

time. These requests are randomly routed to a rendering

processor node.

2. Renderer - This process performs the viewing transfor­

mation, clipping and finally calculates the color of each

pixel in the block it receives from the scene manager.

Identical code consisting of different rendering algorithms

is loaded onto each processor.

3. Displayer - This process collects the results from the

renderer process and transmits them to the display de-

vice.

The scene manager's major functions are to decide what

information to send and where to send it. In some sys­

tems, the scene manager (perhaps in conjuction with a

controller process) will monitor the load of the rendering

processor nodes [22]. This would allow the scene man­

ager to dynamically change the level of detail and select

a lightly loaded processor. We refrain from doing this

in our system since this is a cause of a potential bottle­

neck. Instead we distribute the scheduling function to

the processor nodes.

The set of identical nodes executing the renderer process

form a local area network connected by an ethernet. We

assume that screen update tasks arrive to the scene man­

ager from the external world randomly as a Poisson pro­

cess. These tasks can be generated either through inter­

active actions (eg. CAD or flight simulations) or through

system requests (eg. animated sequences). Each task is

then randomly passed on to a rendering processor node

arriving as a Poisson process with arrival rate Ae. In the

case a task needs to be transferred to another node, we

assume that an average communication overhead d, rep­

resenting communication and transfer processing delays,

is required to transfer a task.

We call pe = Ael I' the external load of the system. Pe

represents, in terms of the task full level computation,

the amount of computation requirement proposed to a

node from the scene manager . Note that Pe is larger

than the real load a node experiences (i .e., the processor's

utilization) if any of the tasks are served at the reduced

level.

94

Load Sharing Scheme

The load sharing (task allocation) scheme is invoked upon

an external rendering task arrival at a node. It makes the

decision where the task is to be executed. The objective

of this load sharing scheme is to distribute (share) the

working load among all the nodes such that the proces­

sors on each node can be better utilized and the over all

response time of tasks can be reduced. When a task is

allocated to a node by the load sharing scheme, the task

is put in a task queue, waiting to be executed by the

processor on the node.

The load sharing scheme we adopt is as follows:

Upon an external task arrival at a node 11, the total num­

ber of tasks on node 11 is checked. This number includes

the task executing and those on the node's queue.

If the total number of tasks on node 11 is at least S, a sys­

tem parameter denoting send, then an attempt is made

to transfer the newly arrived external task to some other

node. This is done as follows: node 11 broadcasts over

the local area network the information of the newly ar­

rived task. Then each other node sends node 11 its current

queue length . Because nodes respond to the request at

different times, depending upon their current status, we

are not permitting node 11 to collect information from all

the nodes. Instead node 11 collects this information from

a total of L nodes, a system parameter denoting the re­

sponse limit. If the number of tasks in any responding

node, 11', is less than A, another system parameter denot­

ing accept, the newly arrived external task is transferred

to 11' and executed .

In the case a newly arrived external task is not transferred

to other nodes, the task is queued in a ready queue, and

will be executed locally on node 11 .

We note that a node should not accept any task from

another node if it is sending out its own external tasks.

Hence, the upper bound of parameter A is S. This fact

is used in the analysis and evaluation of the system per­

formance in the rest of the paper.

Node Scheduling Scheme

When the processor is ready to execute a task, the node

scheduling scheme is invoked to decide how the task is

to be executed - at the full level or the reduced level.

The objective of task scheduling is to improve the task

response time while maintaining computation quality as

high as possible.

Graphics Interface '90

The node scheduling scheme we adopt for this study is

as follows: When a processor node is ready to execute a

task, the total number of tasks in the node is checked. If

the number of tasks in the node is less than P, a system

parameter denoting partial processing, the task's compu­

tation is performed at the full level, otherwise the task is

performed at the reduced level. While a task is in execu­

tion, the number of tasks in the system is not monitored.

A task receives a full level computation even if the num­

ber of tasks in the system exceeds P (d ue to new arrivals

during its execution), as long as at the beginning of its

execution, the number of tasks is less than P.

Performance Metrics

For our imprecise CGI system with th e load sharing and

scheduling schemes proposed in the las t section, the fol­

lowing performance metrics are important: The first per­

formance metric is the Normalized Mean Task Waiting

Time, denoted as W n .

Wq + dP(a task is transferred)
(1)

Mean Task Full Level Comp. Time

where Wq is the mean time spent waiting in the ready

queue, the mean task full level computation time is lip.,

and d is the average delay of transferring a task.

Using Little's result [13,14)' we can write

(2)

where Nq is the mean number of tasks waiting to be

served. Let j be the number of tasks on a node upon

an external task arrival. With our task allocation and

scheduling schemes,

P(task transfer) P(j ~ 5)(1 - pL(j ~ A)). (3)

In the right side of the above formula , the first term is

the probability that the node at which a task arrives has

at least S tasks when it arrives. The second term means

that among L probes regarding transferring this task, at

least one of them is successful, and hence the new task is

transferred. Hence

=

=

NqlAe + dP(j > 5)(1 - pL(j > A))
lip.

Nql pe + DP(j ~ 5)(1 - pL(j ~ A)) .

(4)

(5)

where D = dp. . We call D the normalized communica­

tion overhead. It represents the communication overhead

measured in the unit of the mean task full level compu­

tation time.

95

Wn assesses the speed of generating an image. As Wn ap­

proaches 0, tasks spend less time waiting to begin their

execution and hence complete their execution faster. If

all tasks were fully processed, Wn would completely mea­

sure the performance of the imaging system. However ,

with the addition of imprecise computation, the quality

of the image must also be measured.

The second performance metric we consider is the Nor­

malized Mean Task Served Computation Time, denoted

as Qc. This metric is defined as

=

Mean Task Served Comp. Time
Mean Task Full Level Comp. Time
Mean Task Served Comp. Time

1/ p.
(6)

where the Mean Task Served Computation Time is the

average computation time a task receives . This metric

indicates the average computation quality over all tasks

executed . Because not all tasks receive the full level com­

putation time, Qc is a value between Rand 1. The larger

the value of this metric, the higher the average quality of

computation resulting in a more detailed image.

Let U be the utilization factor of the processor. Qc can

be computed as follows:

Mean Task Served Comp. Time
lip.

U IAe _ UI
lip. - Pe (7)

The third performance metric is the Fraction 0/ the

Screen that is Fully Processed, Q, . This is defined as

(for a give time interval)

Mean Size of Screen Area Fully Proc.
Mean Size of Screen Area Proc.

Mean Number of Tasks Fully Proc.
Mean Number of Tasks Executed'

(8)

where each task updates the same amount of screen area.

Q, specifies how many tasks receive the full level (precise)

computation . With this definition of Q" we see that

Mean Task Svd. Comp.Time = Q,1. + (1 - Q.)!!:. . (9)
p. p.

That is, by (6),

Q, + R(1 - Q,) = Qc. (10)

Substituting (7) into (10) and solving for Q, we have

(11)

Graphics Interface '90

96

Nq , U, P(j ~ S), and P(j ~ A) are derived later in the that is,

paper.

Performance Analysis

To compute the performance metrics, we first construct

an approximate analytical model for our system. Once

the analytical model is solved, the performance metrics

can be easily calculated.

To perform the analysis of the imprecise distributed sys­

tem, a Markov model of the system can be constructed.

However, the state space is very large and complex. In

previous studies (e.g., [7]), certain approximation as­

sumptions are made so that the system model can be

decomposed and/or simplified. It turns out that this ap­

proximation analysis is necessary and successful in the

sense that it is usually asymptotically exact and it sim­

plifies the analysis which helps to reveal the important

aspects of the system characteristics. Because of this, we

also take an approximation approach in this paper.

We assume that the state of each node is stochastically

independent of the state of any other node. With this

assumption, each node can be analyzed separately. Fur­

ther, because the network is homogeneous, the system

performance measurements can be obtained by analyz­

ing anyone of the individual nodes.

We further assume that tasks arriving at a node from

other nodes form a Possion process with rate of Ai. In

addition, when the total number of tasks on a node is S or

more, the arrivals of the external tasks which cannot be

transferred from this node l also form a Possion process

with rate of Ae/. With these latter two assumptions, the

Pe < I/R, (13)

where Pe = Ad~ . We assume that the above condition

is always satisfied throughout this paper.

With the assumptions stated above, the state of a node

can be represented by a pair (i, j) where the integer

i ~ 0 indicates the total number of tasks in the node,

and j is either 0 or 1, where 1 corresponds to state

when the system is performing reduced level computa­

tion and 0 corresponds to state when the node is per­

forming full level computation or is idle. Denote the

equilibrium probability that the node is in state (i,j) by

Pi,i ' Pi ,i is solved in [24]. The results are as follows for

o < i < P, P $ i < A, A $ i < S, and i ~ S , repectively:

Pi,O = (14)

and

o

arrival rates to the queue on a node can be determined: Pi ,l =
Let j be the total number of tasks on a node. The arrival

rate to the ready queue on a node is Ae + Ai if j < Aj Ae
if A $ j < S, and Ael if j ~ S.

In the rest of this .paper, we denote Ae + Ai by A, (Ae +
Ai)/,.,. by P, and Ael/~ by Pe/.

We examine the system behaviour only when it is in a where B , Be, and Bel are defined as

stable state. It is easy to see that the condition for the

system to be stable is B = R(1 + p) ,

Be = R(1 + Pe),
(12) R(1 + Pe/).

(15)

(16)

(17)

1 Due to all the L probes being unsuccessful. For 0 < i $ A, A < i < P, P $ i < S, i ~ S , i < P and

Graphics Interface '90

P :5 i < S, respectively:

/Po ,o

pAp~-A Po ,o

Pi,O = (18)

pApS-Ap'- S
(1+P)S p(l+p:/). 5+1 Po,o

o

Pi ,) =

where Be and Bel are defined III (16) and (17) respec­

tively.

For 0 < i :5 A, A < i :5 S, S < i < P, i ~ P, i < P, and

i ~ P, respectively:

Pi ,O = A S -A i- S R
p Pe Pel 0,0

(20)

Pi ,) = (21)

'where Bel is defined in (17) .

Note that all the above expressions of the state probabil­

ities are given in terms of Po,o. With the normalization

condition that

00

L)Pi,O + Pi,)) = 1, (22)
;=0

we solve Po ,o as follows :

R = {L: :=:o(Pi'O + Pi,t}}-1
0 ,0 Po,o (23)

With the solution expressions of Pi ,) «14), (15), (18),

(19), (20), (21), and (23)), the parameters involved in

computing the state probabilities are Ae , Ai , Ae/, /1, P, A,

S, and R. Among these parameters, for a given system,

>'i and >'el are unknown. To solve the unknown parame­

ters Ai and >'e/ , we need to establish two new equations.

97

Let j be the total number of tasks on a node when an

external task arrives at the node. According to our task

allocation scheme, when j ~ S, if using up to L probes,

a node cannot find ariother node to send a newly ar­

rived external task, this task has to be processed locally.

Hence, the arrival rate of tasks to the queue when j ~ S

is

(24)

where the last term of the right side is the probability

that none of the L probes succeeds.

In the homogeneous system that we consider in this pa­

per, the arrival rate of transferred tasks must equal the

rate of task transfers. Hence,

>'iPU :5 A) = (A. - Ael)PU ~ S)(1 - pLU ~ A)) (25)

With the expressions of Pi,j, the solution of equations

(24) and (25) may be found numerically by any appro­

priate method. 2 All the values of parameters in Pi ,] are

now known , and hence the values of Pi ,j are computed.

Once the state probabilities are found , the terms needed

in determining the performance metrics W n , Qc, and Qr

can be computed easily. The probability that there are

K or less tasks in a node is given by

k

P(i:5 K) = L(Pi ,O + Pi,t} (26)
;=0

For processor utilization, we have

U = 1 - Po,o (27)

The mean queue length in a node can be computed as

00

L(i - I)(Pi ,O + Pi ,)) . (28)
i=1

And the mean number of tasks in a node is

00

N L i(Pi ,O + Pi,t}. (29)
i=1

Substituting (26), (28) and (27) into (5), (7), and (ll)
respectively, the values of the performance metrics Wn,

Qc, and Qr can be computed.

2We used fixed point iteration to obtain the numerical results .

Graphics Interface '90

Performance Sensitivity

The performance of the CGI system is directly related

to the values of the parameters L, S, and A which are

directly used in load sharing. We now examine this sen­

sitivity.

From [24], we found that as L increases, the response

time decreases while the image quality increases (ie. Wn

decreases and Qc and QI increase) - an improvement of

overall system performance. However , after L = 5, the

improvement of further increasing L is not significant.

The detailed analysis can be found in [24]. Similar ob­

servations have been made in the system without using

imprecise computation model [7] .

Parameter S is the threshold for determining if an at­

tempt should be made to transfer a newly arrived ex­

ternal tasks. From our analysis we have the following

observations: The system performance metrics, W n , Qc,

and QI , are all affected by selection of S . Too large or

too small of an S value would resul t in a poorer system

performance. There is no single value of S which can

minimize Wn and maximize Qc and Qt at the same t ime.

For example, in the case the external load is 1.1 , S = 7

results in the minimum Wn , while S = 5 yields the max­

imum Qc and QI . However , the d ifference between the

S value which results in the minimum Wn and the one

which yields the maximum Qc and Qt is usually small.

Any value between these two S values (e.g., S = 5, 6, or

7 in the case external load is 1.1) should produce reason­

ably good performance.

A question of practical interest then is what value should

S be? In [10]' S has been determined as a function of

N - the mean number of tasks on a node. We noticed

a rule of thumb for determining the value of parameter

S: if S = N, the system performance is at or very close

to the optimum: Wn is minimized and Qc and Qt are

maximized. For example, in the case the external load

is 1.2, at S = 7, N ::::: S. At th at time, Wn is at its

minimum while Qc and Qt are near their maximum .

Parameter A is used to determi ne when a node should

accept tasks from other nodes . If the total number of

tasks on a node is less than A, t hen this node can accept

tasks from other nodes. A node should not accept any

task if it has started to send out its own t ask. Hence,

as we discussed at the beginning of t his paper , A should

not be larger than S - the th reshold for sending tasks.

98

So the upper limit of A is S. The lower bound of A is

obviously 1.

Here, we are interested how a value of A between its

upper bound and lower bound affects the system perfor­

mance W n , Qc, and Qt . Specially, we are concerned how

a value of parameter A should be selected such that the

system has the best or near best performance. From our

analysis the following observations can be made. The

selection of parameter A clearly affects the system per­

formance. Too small or too large values of parameter A

would result in a poorer system performance. Let A o", be

the value of A such that the system has the lowest mean

task waiting time W n . That is, A o", is a non increasing

function of parameter D. By the fact that A's selection

is also based on its upper bound S, we may propose to

calculate A o", approximately as

Ao", = S - Q'(D) (30)

where Q'(D) is a non-decreasing function of D and

o :S Q'(D) :S S. Our data suggest that Q'(I) = 1,

0'(5) = 3, etc. The other values of Q'(D) may be de­

termined by an appropriate interpolation method. Also,

we further note that when A = A o"" the values of Qc

and Qt is at or very close to their optimal (highest) val­

ues. Hence, (30) may be used to calculate the value of

parameter A which can yield the optimal or near optimal

performance.

Conclusion

This work represents a successful integration of the use of

both load sharing and imprecise computation techniques

in CGI systems to reduce image generation time while

maintaining a high visual quality. To evaluate this new

system model, we proposed three performance metrics -

the normalized mean task waiting time (Wn), the normal­

ized mean task served computation time (Qc), and the

fraction of the screen that is fully processed (Qt). These

performance metrics, together, assess the quality of the

image and the speed at which it generated. An analyti­

cal model was developed to evaluate the system perfor­

mance. Using the results from the analytical model, we

compared the performance of CGI systems which use ei­

ther load sharing or imprecise computation with systems

which use both imprecise compuation and load sharing.

It was found that using both imprecise computation and

load sharing techniques are necessary. Comparatively,

using only one of the two techniques alone, a system could

Graphics Interface '90

suffer from sluggish performance or low image quality, es­

pecially when the system load is high.

References

[I] P. Aktkin , S. Ghee and J. Packer, "Transpu ter ar­

chitectures for ray tracing", Proceedings: Computer

Graphics 87, Computer Animation, 1987.

[2] R. Clapp, "Comparisons of performance ill varI­

ous visual systems common to simulation" , Summer

Computer Simulation Conference, 1986.

[3] E. K. P. Chong and W. Zhao, "Performance Eval­

uation of Imprecise Computer Systems," submitted

for journal publication, September 1988.

[4] E. K. P. Chong and W. Zhao, "Equilibrium Be­

haviour of Queues with Queue Length Dependent

Random Service Rates," in preparation.

[5] R. Deyo, J. Briggs, P. Doenges, "Getting Graphics

in Gear: Graphics and Dynamics in Driving Simu­

lation", Proceedings : Computer Graph ics, 1988.

[6] D. Eager, E. Lazowska, and J . Zahorjan, "Adap­

tive Load Sharing in Homogeneous Distributed Sys­

terns", IEEE Trans. Soft ware Eng., vol. SE-12, No.

5, pp 662-675, 1986.

99

[12] L. Kleinrock, Queueing Systems - Volume 1: The­

ory £j Volume 2: Computer Applications, John Wi­

ley and Sons, 1975 (Vol. 1) & 1976 (Vol. 2).

[13] J. D. C. Little, "A Proof of the Queueing Formula

L = AW," Operations Research, vol. 9, pp 383-387,

1961.

[14] K. Lin, S. Natarajan, and J. Liu, "Imprecise Results:

Utilizing Partial Computations in Real-Time Sys­

terns", in Proc. of IEEE Real- Time Systems Sympo­

sium, 1987.

[15] J. Liu, K. Lin, and C . Liu, "Concord Prototype Sys­

tem and Real-Time Scheduling," Proc. of IEEE 4th

Workshop on Real- Time Operating Systems, July

1987.

[16] J. Liu , K. Lin , and S. Natarajan, "Scheduling Real­

Time, Periodic Jobs Using Imprecise Results," Proc.

of IEEE Real- Time Systems S ymposium, 1987.

[17] D. Shorrock, "Visual systems - The state of the art",

Summer Computer Simulation Conference, 1986.

[18] J . Stankovic, "A Perspective on Distributed Com­

puter Systems," IEEE Trans. Comp ., Vol. C-33, No.

12, 1984.

[7] D. Eager, E. Lazowska, and J. Zahorjan, "The Lim- [1 9] J. Van, "Advances in Computer-Generated Imagery

ited Performance Benifits of Migrating Active Pro- for Flight Simulation", IEEE Compute r Graphics

cesses for Load Sharing" , Peljl·omance Evaluation and Applications, August 1985.

Review, Vol. 16, No. 1, pp 63-72, May 1988.
[20] Y. Yemini, "A Bang-Bang Principle for Real-Time

[8] L. Bergman, H. Fuchs, E. Grant, and S. Spach, "Im- Transport Protocols," Proc. SIGCOMM '83 Symp.

age Rendering by Adaptive Refinement", Proceed- Comm un. Architect. Protocols, 1983.

ings: Computer Graphics, 1986.

[9] C. H . Hsu and J . W . Liu, "Dynamic Load Balancing

Algorithms in Homogeneous Distributed Systems",

in Proc. IEEE 6th Inter. Conf. on Distributed Co m­

puting Systems, pp 216-223, 1986.

[10] T . Kay and J . Kayiya, "Ray Tracing Complex

Scenes" Proceedings: Computer Graphics, 1986.

[11] B. Kim and D. Towsley, "Dynamic Flow Control

Protocols for Packet-Switching Multiplexers Serv­

ing Real-Time Multipacket Messages," IEEE Trans­

actions on Communications, Vol. COM-34, No. 4,

April 1986.

[21] W. Zhao and M. Berger, "An Analytic Model for Im­

precise Distributed Computer Systems", Australian

Computer Science Communications, Jan . 1990.

Graphics Interface '90

