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Abstract 

The fast rendering of complex scenes IS a fundamental 

problem in imaging systems. Imprecise computation is a 

two level scheme for executing screen update tasks . The 

full level specifies the maximum computation require­

ment of a rendering task while the reduced level spec­

ifies the minimum computation requirement which will 

render a region imprecisely but acceptably. Load shar­

ing is a task allocation scheme which shares the work­

ing load of the system among all processors, better uti­

lizing each processor and thereby reducing overall re­

sponse time. This paper describes an integration of im­

precise computation and load sharing techniques which 

reduce image generation time while maintaining high im­

age quality. No one has formally studied this integrated 

system and we do this with an analytical model which 

evaluates and compares CGI systems using only one of 

the techniques with systems which use both techniques. 

Our study demonstrated that the coupled system fea­

tures faster task response time and high image quality 

even when the system has been over-loaded . 

Keywords: image synthesis, real-time image display, 

distributed computer system, imprecise computation, 

task allocation, load sharing/balancing. 

Introduction 

One of computer graphics most challenging tasks is to 

generate realistic images in real-time. While recent 

technological advances in hardware and software have 

brought about major strides towards this lofty goal, the 

major stumbling block is that the combination of render­

ing speed and high quality image performance require-

ments play off against each other. As the number of ob­

jects describing an image increases so does computation 

time, and this increase is often linear. 

Computer Generated Imaging (CGI) system designers 

are often forced to choose between realism and speed, 

depending upon the requirements of the system or the 

inclination of the designer. CAD systems often draw wire 

frame images to achieve real-time response but are will­

ing to tolerate acceptable delays of several seconds to 

produce shaded images. In [9] an adaptive refinement 

process, and spare CPU cycles, is used to quickly render 

an image at different levels of complexity. At the other 

extreme, "fast" ray tracing of complex scenes consisting of 

hundreds of thousands of objects consume several hours 

of processing time on single processor systems [11] ; but 

this time decreases directly as the number of processors 

increases [1] . 

High performance visual training simulation systems, 

such as Redifussion/Evans & Sutherland CT6 image gen­

erator [19] , sacrifice visual exactness for speed to achieve 

a high level of scene fidelity while maintaining a screen 

update rate of 20 - 30 hertz . These specially designed 

systems, costing in excess of 5 million dollars, attain 

this performance by using a high degree of parallelism in 

which work is distributed among several processor nodes. 

Crucial to their performance is a well designed data base 

which supports dynamically varying multiple levels of de­

tail which is based upon the distance an object is viewed . 

Typically, as an object gets closer to the viewer unre­

solved objects are transformed to resolved objects by in­

creasing detail. Objects that are located far from the 

viewer or at the edges of the field of view are still imme-
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diately recognizable although displayed in reduced detail 

[22]. This technique takes advantage of the vast redun­

dancy of visual cues in a typical scene and the abili ty of 

the brain to fill in detail based upon previous experiences 

[2]. 

These attempts to reduce image generation time can be 

formalized into two categories: imprecise computation 

and distributed computing. The technique of imprecise 

computation, recently studied by a number of researchers 

[10, IS, 16, 17], chooses to trade off computational accu­

racy for faster response time. That is, for some applica­

tions, a partial execution of an imaging task, which yields 

a faster response time and imprecise-but-acceptable re­

sults, may be better than a full execution of a task which 

yields the highest possible precision of computation with 

a longer response time. A critical issue in an impre­

cise system is that the partial execution of tasks should 

be properly controlled in order to keep the computation 

quality at an "acceptable" level. 

On the other hand, computer networks impact task re­

sponse time by sharing the working load of the individual 

nodes (i.e. , transferring tasks) among all nodes in the 

system [20]. In this way, the computation resources on 

each node can be better utilized and the task response 

time can be reduced . The computation quality of a load 

sharing system is never degraded. However, as we will 

see, its ability to reduce the response time is very limited 

compared with an imprecise system. 

In this paper we introduce a new model that properly 

couples imprecise computation and load sharing tech­

niques in local area networks to reduce processing time 

while maintaining a high visual quality. Clearly, any set 

of criteria used to measure the effectiveness of an image 

generation system is different for real-time and non-real­

time systems [6] . For our analysis, we have chosen three 

important performance metrics: 1) the mean task wait­

ing time, 2) the mean task served computation time, and 

3) the fraction of the display screen which is precisely 

processed. The first metric assesses the image generation 

time while the latter two indicate the image quality. 

Computation Model 

We adopt a two level imprecise computation model for 

rendering tasks. Typically a task is a request to update 

a specified part of the scene. In our system, each task 

has two levels of computation time requirements: the 
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full level requirement specifying the maximum compu­

tation time needed by the task, and the reduced level 

computation requirement defining the minimum compu­

tation time needed by the task. If a task is allocated 

this reduced amount of processing time, its correspond­

ing screen area is rendered imprecisely but acceptably. 

There are several features in scene generation that could 

be affected by a reduced level of computation. These 

include, but are not restricted to, geometric modelling, 

motion dynamics, lighting characteristics, texture detail 

and aliasing artifacts. In general, tasks that update areas 

in the center of the screen have a higher precise compu­

tational requirement than tasks updating areas near the 

edges of the screen. 

We note that this simple two level task computation 

model covers a wide range of application tasks. For ex­

ample, if a task's reduced level computation time is zero, 

then this task can be dropped in case the system is too 

busy. On the other hand , if the reduced level compu­

tation time is the same as the the full level one, then 

this task is so important that it should never be partially 

processed. 

Each update request (task) has its unique processing re­

quirement which depends upon the visual complexity of 

its designated screen area. To simplify the analysis, in 

this paper, we assume that the (full level) task compu­

tation time is exponentially distributed with a mean of 

1/ JI.. The reduced level computation time of a task is a 

fraction R of the full level computation time of the same 

task, where R is a constant (an overall average) between 0 

and 1. Consequently, the reduced level computation time 

is also exponentially distributed, with a mean of R/ JI. . In 

[3]' Chong and Zhao showed that the derived analytical 

formulas, assuming a system with constant R,. are good 

approximations for systems in which the R parameter is 

not constant but a random variable. A theoretical inves­

tigation of this issue is beyond the scope of this study, 

and is currently being undertaken in a separate paper [5]. 

System Model 

The functional requirements of a CGI system can be de­

composed into three processes: 

1. Scene Manager - This process, residing in the host 

computer, selects the level of detail for those objects that 

are potentially visible within the current field of view. It 
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also sends out task requests for an area of the screen 

to be updated. The display screen is divided into equal 

size blocks of pixels to reduce communication overhead 

that would occur if just one pixel was transferred at a 

time. These requests are randomly routed to a rendering 

processor node. 

2. Renderer - This process performs the viewing transfor­

mation, clipping and finally calculates the color of each 

pixel in the block it receives from the scene manager. 

Identical code consisting of different rendering algorithms 

is loaded onto each processor. 

3. Displayer - This process collects the results from the 

renderer process and transmits them to the display de-

vice. 

The scene manager's major functions are to decide what 

information to send and where to send it. In some sys­

tems, the scene manager (perhaps in conjuction with a 

controller process) will monitor the load of the rendering 

processor nodes [22]. This would allow the scene man­

ager to dynamically change the level of detail and select 

a lightly loaded processor. We refrain from doing this 

in our system since this is a cause of a potential bottle­

neck. Instead we distribute the scheduling function to 

the processor nodes. 

The set of identical nodes executing the renderer process 

form a local area network connected by an ethernet. We 

assume that screen update tasks arrive to the scene man­

ager from the external world randomly as a Poisson pro­

cess. These tasks can be generated either through inter­

active actions (eg. CAD or flight simulations) or through 

system requests (eg. animated sequences). Each task is 

then randomly passed on to a rendering processor node 

arriving as a Poisson process with arrival rate Ae. In the 

case a task needs to be transferred to another node, we 

assume that an average communication overhead d, rep­

resenting communication and transfer processing delays, 

is required to transfer a task. 

We call pe = Ael I' the external load of the system. Pe 

represents, in terms of the task full level computation, 

the amount of computation requirement proposed to a 

node from the scene manager . Note that Pe is larger 

than the real load a node experiences (i .e., the processor's 

utilization) if any of the tasks are served at the reduced 

level. 
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Load Sharing Scheme 

The load sharing (task allocation) scheme is invoked upon 

an external rendering task arrival at a node. It makes the 

decision where the task is to be executed. The objective 

of this load sharing scheme is to distribute (share) the 

working load among all the nodes such that the proces­

sors on each node can be better utilized and the over all 

response time of tasks can be reduced. When a task is 

allocated to a node by the load sharing scheme, the task 

is put in a task queue, waiting to be executed by the 

processor on the node. 

The load sharing scheme we adopt is as follows: 

Upon an external task arrival at a node 11, the total num­

ber of tasks on node 11 is checked. This number includes 

the task executing and those on the node's queue. 

If the total number of tasks on node 11 is at least S, a sys­

tem parameter denoting send, then an attempt is made 

to transfer the newly arrived external task to some other 

node. This is done as follows: node 11 broadcasts over 

the local area network the information of the newly ar­

rived task. Then each other node sends node 11 its current 

queue length . Because nodes respond to the request at 

different times, depending upon their current status, we 

are not permitting node 11 to collect information from all 

the nodes. Instead node 11 collects this information from 

a total of L nodes, a system parameter denoting the re­

sponse limit. If the number of tasks in any responding 

node, 11', is less than A, another system parameter denot­

ing accept, the newly arrived external task is transferred 

to 11' and executed . 

In the case a newly arrived external task is not transferred 

to other nodes, the task is queued in a ready queue, and 

will be executed locally on node 11 . 

We note that a node should not accept any task from 

another node if it is sending out its own external tasks. 

Hence, the upper bound of parameter A is S. This fact 

is used in the analysis and evaluation of the system per­

formance in the rest of the paper. 

Node Scheduling Scheme 

When the processor is ready to execute a task, the node 

scheduling scheme is invoked to decide how the task is 

to be executed - at the full level or the reduced level. 

The objective of task scheduling is to improve the task 

response time while maintaining computation quality as 

high as possible. 
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The node scheduling scheme we adopt for this study is 

as follows: When a processor node is ready to execute a 

task, the total number of tasks in the node is checked. If 

the number of tasks in the node is less than P, a system 

parameter denoting partial processing, the task's compu­

tation is performed at the full level, otherwise the task is 

performed at the reduced level. While a task is in execu­

tion, the number of tasks in the system is not monitored. 

A task receives a full level computation even if the num­

ber of tasks in the system exceeds P (d ue to new arrivals 

during its execution), as long as at the beginning of its 

execution, the number of tasks is less than P. 

Performance Metrics 

For our imprecise CGI system with th e load sharing and 

scheduling schemes proposed in the las t section, the fol­

lowing performance metrics are important: The first per­

formance metric is the Normalized Mean Task Waiting 

Time, denoted as W n . 

Wq + dP( a task is transferred) 
(1) 

Mean Task Full Level Comp. Time 

where Wq is the mean time spent waiting in the ready 

queue, the mean task full level computation time is lip., 

and d is the average delay of transferring a task. 

Using Little's result [13,14)' we can write 

(2) 

where Nq is the mean number of tasks waiting to be 

served. Let j be the number of tasks on a node upon 

an external task arrival. With our task allocation and 

scheduling schemes, 

P(task transfer) P(j ~ 5)(1 - pL(j ~ A)). (3) 

In the right side of the above formula , the first term is 

the probability that the node at which a task arrives has 

at least S tasks when it arrives. The second term means 

that among L probes regarding transferring this task, at 

least one of them is successful, and hence the new task is 

transferred. Hence 

= 

= 

NqlAe + dP(j > 5)(1 - pL(j > A)) 
lip. 

Nql pe + DP(j ~ 5)(1 - pL(j ~ A)) . 

(4) 

(5) 

where D = dp. . We call D the normalized communica­

tion overhead. It represents the communication overhead 

measured in the unit of the mean task full level compu­

tation time. 
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Wn assesses the speed of generating an image. As Wn ap­

proaches 0, tasks spend less time waiting to begin their 

execution and hence complete their execution faster. If 

all tasks were fully processed, Wn would completely mea­

sure the performance of the imaging system. However , 

with the addition of imprecise computation, the quality 

of the image must also be measured. 

The second performance metric we consider is the Nor­

malized Mean Task Served Computation Time, denoted 

as Qc. This metric is defined as 

= 

Mean Task Served Comp. Time 
Mean Task Full Level Comp. Time 
Mean Task Served Comp. Time 

1/ p. 
(6) 

where the Mean Task Served Computation Time is the 

average computation time a task receives . This metric 

indicates the average computation quality over all tasks 

executed . Because not all tasks receive the full level com­

putation time, Qc is a value between Rand 1. The larger 

the value of this metric, the higher the average quality of 

computation resulting in a more detailed image. 

Let U be the utilization factor of the processor. Qc can 

be computed as follows: 

Mean Task Served Comp. Time 
lip. 

U IAe _ UI 
lip. - Pe (7) 

The third performance metric is the Fraction 0/ the 

Screen that is Fully Processed, Q, . This is defined as 

(for a give time interval) 

Mean Size of Screen Area Fully Proc. 
Mean Size of Screen Area Proc. 

Mean Number of Tasks Fully Proc. 
Mean Number of Tasks Executed' 

(8) 

where each task updates the same amount of screen area. 

Q, specifies how many tasks receive the full level (precise) 

computation . With this definition of Q" we see that 

Mean Task Svd. Comp.Time = Q,1. + (1 - Q.)!!:. . (9) 
p. p. 

That is, by (6), 

Q, + R(1 - Q,) = Qc. (10) 

Substituting (7) into (10) and solving for Q, we have 

(11 ) 
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Nq , U, P(j ~ S), and P(j ~ A) are derived later in the that is, 

paper. 

Performance Analysis 

To compute the performance metrics, we first construct 

an approximate analytical model for our system. Once 

the analytical model is solved, the performance metrics 

can be easily calculated. 

To perform the analysis of the imprecise distributed sys­

tem, a Markov model of the system can be constructed. 

However, the state space is very large and complex. In 

previous studies (e.g., [7]), certain approximation as­

sumptions are made so that the system model can be 

decomposed and/or simplified. It turns out that this ap­

proximation analysis is necessary and successful in the 

sense that it is usually asymptotically exact and it sim­

plifies the analysis which helps to reveal the important 

aspects of the system characteristics. Because of this, we 

also take an approximation approach in this paper. 

We assume that the state of each node is stochastically 

independent of the state of any other node. With this 

assumption, each node can be analyzed separately. Fur­

ther, because the network is homogeneous, the system 

performance measurements can be obtained by analyz­

ing anyone of the individual nodes. 

We further assume that tasks arriving at a node from 

other nodes form a Possion process with rate of Ai. In 

addition, when the total number of tasks on a node is S or 

more, the arrivals of the external tasks which cannot be 

transferred from this node l also form a Possion process 

with rate of Ae/. With these latter two assumptions, the 

Pe < I/R, (13) 

where Pe = Ad~ . We assume that the above condition 

is always satisfied throughout this paper. 

With the assumptions stated above, the state of a node 

can be represented by a pair (i, j) where the integer 

i ~ 0 indicates the total number of tasks in the node, 

and j is either 0 or 1, where 1 corresponds to state 

when the system is performing reduced level computa­

tion and 0 corresponds to state when the node is per­

forming full level computation or is idle. Denote the 

equilibrium probability that the node is in state (i,j) by 

Pi,i ' Pi ,i is solved in [24]. The results are as follows for 

o < i < P, P $ i < A, A $ i < S, and i ~ S , repectively: 

Pi,O = (14) 

and 

o 

arrival rates to the queue on a node can be determined: Pi ,l = 
Let j be the total number of tasks on a node. The arrival 

rate to the ready queue on a node is Ae + Ai if j < Aj Ae 
if A $ j < S, and Ael if j ~ S. 

In the rest of this .paper, we denote Ae + Ai by A, (Ae + 
Ai)/,.,. by P, and Ael/~ by Pe/. 

We examine the system behaviour only when it is in a where B , Be, and Bel are defined as 

stable state. It is easy to see that the condition for the 

system to be stable is B = R(1 + p) , 

Be = R(1 + Pe), 
(12) R(1 + Pe/). 

(15) 

(16) 

(17) 

1 Due to all the L probes being unsuccessful. For 0 < i $ A, A < i < P, P $ i < S, i ~ S , i < P and 
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P :5 i < S, respectively: 

/Po ,o 

pAp~-A Po ,o 

Pi,O = (18) 

pApS-Ap'- S 
(1+P)S p(l+p:/). 5+1 Po,o 

o 

Pi ,) = 

where Be and Bel are defined III (16) and (17) respec­

tively. 

For 0 < i :5 A, A < i :5 S, S < i < P, i ~ P, i < P, and 

i ~ P, respectively: 

Pi ,O = A S -A i- S R 
p Pe Pel 0,0 

(20) 

Pi ,) = (21) 

'where Bel is defined in (17) . 

Note that all the above expressions of the state probabil­

ities are given in terms of Po,o. With the normalization 

condition that 

00 

L)Pi,O + Pi,)) = 1, (22) 
;=0 

we solve Po ,o as follows : 

R = {L: :=:o(Pi'O + Pi,t}}-1 
0 ,0 Po,o (23) 

With the solution expressions of Pi ,) «14), (15), (18), 

(19), (20), (21), and (23)), the parameters involved in 

computing the state probabilities are Ae , Ai , Ae/, /1, P, A, 

S, and R. Among these parameters, for a given system, 

>'i and >'el are unknown. To solve the unknown parame­

ters Ai and >'e/ , we need to establish two new equations. 
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Let j be the total number of tasks on a node when an 

external task arrives at the node. According to our task 

allocation scheme, when j ~ S, if using up to L probes, 

a node cannot find ariother node to send a newly ar­

rived external task, this task has to be processed locally. 

Hence, the arrival rate of tasks to the queue when j ~ S 

is 

(24) 

where the last term of the right side is the probability 

that none of the L probes succeeds. 

In the homogeneous system that we consider in this pa­

per, the arrival rate of transferred tasks must equal the 

rate of task transfers. Hence, 

>'iPU :5 A) = (A. - Ael )PU ~ S)(1 - pLU ~ A)) (25) 

With the expressions of Pi,j, the solution of equations 

(24) and (25) may be found numerically by any appro­

priate method. 2 All the values of parameters in Pi ,] are 

now known , and hence the values of Pi ,j are computed. 

Once the state probabilities are found , the terms needed 

in determining the performance metrics W n , Qc, and Qr 

can be computed easily. The probability that there are 

K or less tasks in a node is given by 

k 

P(i:5 K) = L(Pi ,O + Pi,t} (26) 
;=0 

For processor utilization, we have 

U = 1 - Po,o (27) 

The mean queue length in a node can be computed as 

00 

L(i - I)(Pi ,O + Pi ,)) . (28) 
i=1 

And the mean number of tasks in a node is 

00 

N L i(Pi ,O + Pi,t}. (29) 
i=1 

Substituting (26), (28) and (27) into (5), (7), and (ll) 
respectively, the values of the performance metrics Wn, 

Qc, and Qr can be computed. 

2We used fixed point iteration to obtain the numerical results . 
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Performance Sensitivity 

The performance of the CGI system is directly related 

to the values of the parameters L, S, and A which are 

directly used in load sharing. We now examine this sen­

sitivity. 

From [24], we found that as L increases, the response 

time decreases while the image quality increases (ie. Wn 

decreases and Qc and QI increase) - an improvement of 

overall system performance. However , after L = 5, the 

improvement of further increasing L is not significant. 

The detailed analysis can be found in [24]. Similar ob­

servations have been made in the system without using 

imprecise computation model [7] . 

Parameter S is the threshold for determining if an at­

tempt should be made to transfer a newly arrived ex­

ternal tasks. From our analysis we have the following 

observations: The system performance metrics, W n , Qc, 

and QI , are all affected by selection of S . Too large or 

too small of an S value would resul t in a poorer system 

performance. There is no single value of S which can 

minimize Wn and maximize Qc and Qt at the same t ime. 

For example, in the case the external load is 1.1 , S = 7 

results in the minimum Wn , while S = 5 yields the max­

imum Qc and QI . However , the d ifference between the 

S value which results in the minimum Wn and the one 

which yields the maximum Qc and Qt is usually small. 

Any value between these two S values (e.g., S = 5, 6, or 

7 in the case external load is 1.1) should produce reason­

ably good performance. 

A question of practical interest then is what value should 

S be? In [10]' S has been determined as a function of 

N - the mean number of tasks on a node. We noticed 

a rule of thumb for determining the value of parameter 

S: if S = N, the system performance is at or very close 

to the optimum: Wn is minimized and Qc and Qt are 

maximized. For example, in the case the external load 

is 1.2, at S = 7, N ::::: S. At th at time, Wn is at its 

minimum while Qc and Qt are near their maximum . 

Parameter A is used to determi ne when a node should 

accept tasks from other nodes . If the total number of 

tasks on a node is less than A, t hen this node can accept 

tasks from other nodes. A node should not accept any 

task if it has started to send out its own t ask. Hence, 

as we discussed at the beginning of t his paper , A should 

not be larger than S - the th reshold for sending tasks. 
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So the upper limit of A is S. The lower bound of A is 

obviously 1. 

Here, we are interested how a value of A between its 

upper bound and lower bound affects the system perfor­

mance W n , Qc, and Qt . Specially, we are concerned how 

a value of parameter A should be selected such that the 

system has the best or near best performance. From our 

analysis the following observations can be made. The 

selection of parameter A clearly affects the system per­

formance. Too small or too large values of parameter A 

would result in a poorer system performance. Let A o", be 

the value of A such that the system has the lowest mean 

task waiting time W n . That is, A o", is a non increasing 

function of parameter D. By the fact that A's selection 

is also based on its upper bound S, we may propose to 

calculate A o", approximately as 

Ao", = S - Q'(D) (30) 

where Q'(D) is a non-decreasing function of D and 

o :S Q'(D) :S S. Our data suggest that Q'(I) = 1, 

0'(5) = 3, etc. The other values of Q'(D) may be de­

termined by an appropriate interpolation method. Also, 

we further note that when A = A o"" the values of Qc 

and Qt is at or very close to their optimal (highest) val­

ues. Hence, (30) may be used to calculate the value of 

parameter A which can yield the optimal or near optimal 

performance. 

Conclusion 

This work represents a successful integration of the use of 

both load sharing and imprecise computation techniques 

in CGI systems to reduce image generation time while 

maintaining a high visual quality. To evaluate this new 

system model, we proposed three performance metrics -

the normalized mean task waiting time (Wn ), the normal­

ized mean task served computation time (Qc), and the 

fraction of the screen that is fully processed (Qt). These 

performance metrics, together, assess the quality of the 

image and the speed at which it generated. An analyti­

cal model was developed to evaluate the system perfor­

mance. Using the results from the analytical model, we 

compared the performance of CGI systems which use ei­

ther load sharing or imprecise computation with systems 

which use both imprecise compuation and load sharing. 

It was found that using both imprecise computation and 

load sharing techniques are necessary. Comparatively, 

using only one of the two techniques alone, a system could 
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suffer from sluggish performance or low image quality, es­

pecially when the system load is high. 
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