
113

A Taxonomy of Uses of Interaction History

Alison Lee

Department of Computer Science
University of Toronto

10 Kings College Road
Toronto, Ontario

M5S lA4
alee@db.toronto.edu

Abstract

A variety of tools have been proposed to enhance and support
user-computer interactions [Lee 1987]. One such tool is the
interaction history facility. It permits the user to have access
to past interactions kept in a history and to incorporate them
into the context of the current situation. We characterize dif­
ferent ways the history can aid in the performance of a user's
tasks. The list of possible aids include: history for reuse, his­
tory for recording & replaying a script, history for user
recovery, history for navigation, history for external memory
support, history for adaptive interfaces, and history for user
modelling. We conclude with a discussion of some of the is­
sues and problems that this taxonomy has helped to raise.

Resume

Une variete d'outils ont ete proposes dans le but d'ameliorer
et de supporter l'interaction d'un usager avec l'ordinateur
[Lee 1987]. L' interaction history facility est l'un de ces
outils. 11 permet a l'usager d'avoir acces aux interactions
anterieures conservees sous le nom d'histoire (history) et de
les incorporer au contexte de la situation courante. Nous
decrivons pour les usagers differentes fas:ons d'utiliser
l'histoire de maniere a ameliorer la performance de leurs
taches. Parmi la liste des utilitaires, on retrouve: I'histoire
pour la reutilisation, I'histoire pour enregister et reexecuter un
scripte, I'histoire pour la recuperation-usager, l'histoire pour
le pilotage, l'histoire pour le support de memo ire exteme,
l'histoire pour les interfaces adaptives, et l'histoire pour la
modelisation-usager. Nous concluons avec une discussion
portant sur les questions et problemes que cette taxonomie
aura permi de soulever.

Keywords: user support, history, script, reuse, inter­
referential I/O, user recovery, macros, program­
ming with example, navigation, external memory
support, adaptive interfaces, and user modelling.

1. Introduction

Numerous run-time, computer-based support tools
have been proposed to assist the user's immediate and ongo­
ing interactions with the system (i.e., user support tools [Lee
1987]). By and large, the HELP tool has gamered most of the
attention judging by the literature on tlus subject. However,

there is a scarcity of information about interaction history
tools (history tools for short).

These tools permit users to access past interactions
kept in a history and to incorporate them into the context of
the current situation. The basic history tool is made up of
four components, minimally: collection, presentation,
selectionlnwdificalion, and submission [Barnes and Rovey
1986, Joy 1980, Lau and Asthana 1984] . The collection com­
ponent records past user-computer interactions into a history.
The presentation component displays the history. The
selectionlnwdificalion component allows the user to copy
(and possibly modify) a history item. The submission com­
ponent allows the user to use the selected history item in the
context of the current sinlation.

History tools are considered because of their potential
as a user support tool. Such a tool does not need to be highly
knowledgeable about the task or be application specific or act
autonomously in order to be of assistance to the user. It
would exploit the computer's strengths (e.g., storage and
search) to compensate for human limitations (e.g., memory
and focus of attention), to allow users to concentrate on the
conceptual rather than the tedious and mundane aspects of the
task, and to deal with problems that crop up in the course of
their interactions . Essentially, it is an electronic assistant
who provides users with extra hands and eyes . As we shall
see, the history tool fits this bill by providing a number of aids
that arc supportive of user-computer interactions .

In section 2, we introduce the taxonomy. In section 3,
we examine the individual uses enumerated in the taxonomy.
We conclude with a discussion of some of the isslles and
problems that this taxonomy has helped to raise .

2. Taxonomy

The taxonomy identifies seven different uses of the his­
tory (see Table 1). The list grew out of our survey of current
systems that support the history tool by name as well as those
that maintain some form of a history that users may use
directly or indirectly. We cast our coverage widely and com­
pletely with respect to the possible user aids that Cllrrent histo­
ry tools provide. Of course, there are many other uses that fall
outside of our scope of interest (e.g .. using the history of
user's session to analyze the design of a system).

Graphics Interface '90

Uses of Types of Initiated By Repository
History Uses User System Actions Data

reuse repeat an

" " operation
repeat as a (..J)

functional " " group
relate input

and/or " " " output
recording &
replaying " " a script
user recovery " (..J) " navigation information

" " spaces
activity

" " spaces
external consult " " " memory remember " " " adaptive

" " interfaces
user

" " modelling

Table 1: Taxonomy of uses of interaction history.

Each use is distinctive and reflects the user's basic in­
tention for the history use. However, within a particular use,
there can be varying types of uses and these can overlap.
They reflect the choices that are available in carrying out the
basic intentions unconstrained by the system or the situation.
To illustrate, let us consider repeat an operation and function­
aI grouping. The former reuses a previous command or ob­
ject and the latter reuses a group of commands as a unit. The
.differentiation is made because some systems support this ca­
pability directly while others support it with difficulty, if at
all. More importantly, when the user has the intention to do a
functional grouping and the system does not directly support
or match the user's intention, then the level of interaction re­
quired by the user is more primitive and the amount of user
involvement to realize the goal is greater.

We distinguish amongst some of the different types of
uses with respect to special features and implementation
characteristics; nominally referred to as the forms of history
use. The different forms and types of history uses along with
some example systems that support them are listed in Table 2.

Each history use can be initiated by the user or by the
system. All but history for adaptive interfaces, user model­
ling, and in some cases user recovery and reuse are in the
user-initiated category. History uses that fall in the system­
initiated category are able to help the user by predicting and
initiating actions. While they have a strong appeal, their reali­
zations are generally domain-specific and limited in scope.

The contents of the history can be viewed as a data or
actions repository. In the first case, the contents of the history
are referenced by the the user or the system to assist their pro­
cessing (e.g., user's preferences). In the second case, the con-

114

tents of the history are invoked by the user or the system as an
action to be performed (e.g., repeat an action, undo an action).

There have been two previous surveys of history.
Greenberg 1988 examined different interaction styles for im­
plementing reuse based on history. Linxi and Habermann
1986 examined various ways of keeping and reusing history
in the context of improving the software development pro­
cess. Our taxonomy examines history as a user support tool
and elaborates on uses beyond reuse.

3. Uses ofInteraction History

Herein, we identify and examine seven uses of history.
The terms history, scripts, and the future part of the history
appear to be used interchangeably. To clarify, a history is a
log of information and actions that have taken place sometime
earlier. A script is a sequence of actions to be carried out
which may incorporate temporal elements to coordinate ac­
tivities and to specify trartsformations on objects [Archer Jr. et
al. 1984]. If during the recording, the actions are performed
for real, then the recording (aside from being the script) is part
of the history. A future instantiation of the script could be a
future part of a history. Viewing the user's interactions with
respect to an activity timeline, actions and objects that took
part earlier are history and thus unmodifiable (as it reflects the
historical log of the user's session), and actions and objects
that are to take place in the future as either a part of a script or
as a future action are thus modifiable up to and just prior to
their taking place.

3.1. History for Reuse
Currently, the most common use of history is to reuse

history items (possibly with modifications) to save keystrokes
or mouse strokes [Linxi and Habermann 1986]. However,
there are a number of choices available to the user.

Repeat an Operation

This permits the user to repeat a single operation (typi­
cally a command line) by one of two means . The fonns arise
because of the different emphases placed on how history
items are selected and/or modified.

Systems that model interactions as typescripts (i.e.,
transcript of input and output) maintain histories of the com­
mand lines issued. Items are selected by descriptive/indirect
manipulation or by direct manipulation!. The former requires
the user to remember the history items and syntactical con­
structs (e.g., !-5:s/aa/bb recalls the 5th last command substi­
tuting the first occurrence of aa by bb) and to juggle the two
as the history item is copied and edited. In the latter case,
items are visible and directly manipulable by the users with
control keys or a mouse (see Figure 1 for a sample display of
the INTERLISp-D HlSTMENU). There are situations in which
one style of selection is suitable over the other. For instance,
descriptive manipUlation is suitable when references to a par­
ticular history item can be described easily and uniquely by a
pattern. On the other hand, there are situations where it may
be more expedient for the users to scan and point to the item
of interest. Furthermore, the visual presentation and immedi-

I
Greenberg and Willen 1988 calls these, respectively, history

through glass teletypes and history through graphical selection.

Graphics Interface '90

115

Uses of History Types Forms Example Systems

reuse repeat an operatIOn command typcscnpts by
descriptive manipulation C Shell [Joy) 980], COUSIN-UNl)(TM [H aycs and

Szekely 1983). OOERLISP-D US E. REDO [Teitel-
man and Masinter 1986)

direct manipulation KORN Shell [Korn 1983). HCR HI [HCR Cor-
poration 1987], Edit Shell [Steffen and Veach
1983). MINIT [Bames and Bovey 1986). TC
Shell [ElIis et a!.) 987). TNTERLISP-D HISTMENU
& FIx [Teitelman and Masinter 1986)

browsing/editing
into scratch area CEDAR [Teitelman 1984)
at input focus CEDAR [Teitelman 1984). Macintosh UW [Rruner

1985], SUNTOOLS [SUN Mi crosystem s. Inc.
1986)

at the command line EMACS [Stallman 1981). CEDAR lTeitelman
1984)

to the window workspace CEDAR [Teitelman 1984). SMALLTALK-80

relate input input to input SYMBOLICS [McMahon 1987]
and/or output output to input SYMBOLICS [McMahon 1987)

repeat as a macros
functional group history macros ALOE [Linxi and Habermann 1986]

recorded macros EMACS [Stallman 1981]. HP NEWWAYE AGENT
[Steams 1989). MACROS By EXAMPLE [Olsen
and Dance 1988]. MEXEC [Ash 1981]. TEMPO
[Whitby 1986], QUlcKEYS [Bobker 1988]

programming by examples METAMOUSE lMaulsby et a!. 1989J
programming with examples SMALLSTAR [Halbert 1984]. PERIDOT [Myers

and Buxton 1986)
recording & re- ACTIVE PATHS [Zellweger 1988]. CONMAN
playing a script [Haeberli 1986). MlT Lincoln Labs [Lancas ter-

Thomas 1969], PLAYERPIANO [Bier and Freed-
man 1985]

user recovery history-based UNDO/UNDO INTERLISP-D UNDO lTeitelman and Masinter
1986]

linear UNDO/REDO CIUMERA [Kurlander and Feiner 1988]
navigation information spaces data retrieval domain WIIA T. WHERE. WHENCE l Engel et a!. 1983 J

hypertext domain HYPERCARD RECENT [Goodman 1987]
documentation domain limeline page [Feiner et 31. 1982J

activity workspaces list of active jobs JOBS in C Shell [Joy 1980]
record of user's excursions SITES. MODES. and TRAILS [Nievergelt and

Weydert 1980], Room Stack in ROOM MODEL
[Chan 1984]

the previous activity Back Door in ROOMS [Card and Henderson
1987]

external memory consult progress of active jobs [SUN Microsystems. Inc. 1986, Teitelman and
support Masinter 1986, Teitelman 1977]

rc-orientation [Engel et al. 1983. Nievergelt and Weyderl
1980]

track and debug errors
remember reacquire mental task context

guide in performing similar task
adaptive default menu selection lo last
interfaces REACTIVE KEYBOARD [Willen et al. 1983]

user modelling UNlJ(TM CONSULTANT [Chin 1986]. UKNOW
[Desmarais and Pavel 1987), STEREOTYPE [Rich
1983], and [Senay 1989]

Table 2: Uses for interaction history tools and examples

Graphics Interface '90

ate feedback enhances the the quality and support for selec­
tion and modifications of history items and provides an exter­
nal reminder to the user of the contents of history.

History for reuse is available in systems that allow
users to copy text appearing anywhere on the screen to a work
area (see Table 2 and Figure 2) where further editing may be

performed before it is submitted2
• In these systems, browsing

and editing, coordinated through a common representation of
the application objects, is the interaction paradigm [Scofield
1981, Young et al. 1988]. Here, the common representation is
the textual contents of the screen which is also the history.
Unlike command typescripts, this form of reuse does not re­
quire an explicit history support machinery to be built (i.e.,
available virtually for free). No overhead is incurred for the
collection and presentation of the history as the screen is the

(AOO.LOGO.COMMANO (Q .
(AOO.LOGO.COMMAND (Q '
REVERT@
REVERT@
REVERT@
REVERT@ ,
(AOD.LOGO.COMMAND (Q :.
(LOGO. ERROR 5 (QUOTE ~ ,
(LOGO.ERROR ~ (QUOTE ~:
(OF LOGO.STARTREC '.

(DEFINEQ (LOGO.ST
(DF LOGO. RECORDING)

"'loIImllEilll ___ ... _____ ~(DF IOWATCH)

" (DF TURTLEWATCH)

""'WINS

'I'OURWINS

(DF IOWATCH)
(DF VIEW. FUNCTION)

DISPLAY.VARIABLE)

IOVIEW)
ET.END.DISPLAY)

(Of DISPLAY,VARIABLE)

(SETQ NOT. IN.DISPLAY
(DF LOGO.STARTUP)
(OF SET. LOGO. VAR IABLE .
(LOGO)
(IDLE)
IDLE
(FOR I IN (QUOTE (LOGOM .
(FIL ES?)

Figure 1: The INrERLISP-D HISTMENU package
displays the history of the commands issued to the
Executive in a menu. The user may select the
items from the menu (the window entitled History
Window).

104 OIS . DB~ cd . .
105 OIS. OBt date
ri Apr 21 17:Si : 36 JU)'I' 1989

106 OIS.DB' ¥U"'fHiHS+W.I ,.mp
It.; Co.r.&nd not. found..

107 OIS . DB~ pwd
hoftlM/ oia/ wlnd/al •• /thcasl.

108 OIS. DB' cd prop08al
10; 015. 00\ b - l hbtor,
rw-c--r-- 1 alee

110 OIS . OB \ I
S8J~7 Ape 2 0 14 : 35 h h t ory

EnQb c Paac 14~~
L'\lt , tl'lefl Vet

Figure 2: In SUNfOOLS, text may be selected,
copied, and stuffed to where the input focus is (i.e.,
I).

2
Greenberg and Witten 1988 calls it history through editing.

116

history repository and, in effect, the history is always on
display. By having the history constantly on display, brows­
ing rather than querying becomes the primary means of exa­
mining the history. Furthermore, history items are not limited
to the command lines entered but include the results or out­
puts from executing the command. As well, editing is an in­
tegral part of the interaction paradigm so that support for
modification of a history item is provided with little or no ef­
fort. Overall, selection and modification of a history item in
this approach is manual but direct, performed at a lower con­
ceptual level, and much improved compared to the first ap­
proach (Le., command typescripts).

Relate Input and/or Output

In human-human dialogue, conversants can make ab­
breviated references to objects and actions that took place in
the earlier dialogue without either of them having to repeat it
in part or in its entirety [Draper 1986, Reichman-Adar 1986].
In the computing analogue, the user's input or the system's
output in the current dialogue (available on the display) can
reference previous input or output or both (called inler­
referential 110 [Draper 1986]).

History is an explicit component of this capability be­
cause the input and/or output that the conversants use ori­
ginates from an earlier part of the dialogue. Beyond simply
reusing the input and/or output, the user and computer con­
verse in a manner that makes explicit the relationships
between the actions and objects of an earlier part of the dialo­
gue with the current part of the dialogue. Hence objects and
actions are explicitly disambiguated, albeit in a more abbrevi­
ated form. However, this does not fully realize the capability
that exists in human-human dialogue as we are nowhere close
to achieving the understanding that human conversants are
able to of each other's mind. In human-human dialogue, con­
versants have access to other conversational cues (e.g., body
language, i:1tonation, facial expressions) that help disambigu­
ate the dialogue. These are not available in current human­
computer dialogue but the shared display and explicit denota­
tion of object and actions in the dialogue is a positive step to­
wards achieving understanding between conversants.

In the SYMBOL/CS GENERA programming environment
[McMahon 1987], users make references to objects or
representations of actions on the display by pointing at them.
The underlying mechanism that makes inter-referential I/O
possible is a type mechanism that associates types to user in­
terface data (known as presentation types). Conceptually, the
presentation type relates the piece of data with the way it is to
be used in particular user interface situations. These presenta­
tion types are arranged in an inheritance lattice that organizes
the way in which user interface data are collected and re­
tumed to the user. An example is when a print request re­
quires operands (i.e., filename). Objects on the display that
have the desired presentation type (i.e., filename) are mouse
sensitive [McMahon 1987].

History for Functional Grouping

In this type of reuse, users group a set of items into one
functional unit so as to construct a compound/complex com­
mand. They come in three forms: macros, programming with
example, and programming by example.

Graphics Interface '90

A macro facility [Ash 1981J permits the user to associ­
ate one instruction, command, keystroke, or mouse action to a
sequence of instructions, commands, keystrokes or mouse ac­
tions. To reflect how the macros are constructed, there are
history macros and recorded macros. History macros are
constructed by selecting pieces of the history and binding
them as a macro. With recorded macros, the user enters a
record mode and the commands issued subsequently define
the macro. By and large, macro facilities are limited. In a
graphics-based system, a user is unable to view and edit the
resulting macro. Most systems do not support parameters and
control constructs in the macros.

When the system can make inferences and generaliza­
tions from the examples the user gives, they are known as
programming by example systems (e.g., METAMOUSE can in­
duce graphical procedures from the user execution traces of a
drawing program [Maulsby et a1. 1989]). Few systems are
able to make inferences and generalizations [Myers 1986J.

Typically, a user demonstrates to the system an exam­
ple of a procedure and then proceeds to indicate how to gen­
eralize the resulting trace using an editor. The resulting pro­
gram or function is more sophisticated and is meant to per­
form a single complete task. The history is augmented with
logic, symbolic computations, and object descriptions to cap­
ture and encapsulate all the objects and operations for the
specific task. Such facilities are called programming with ex-
ample4

• Figure 3 illustrates an example construction of a
SMALLST AR program.

3.2. History for Recording & Replaying a Script
The oldest and most primitive use on our list allows the

user to record and replay a sequence of actions verbatim, ef­
fectively "pushing the buttons" for the user like a player pi­
ano . The recorded script can be used for canned demos, as a
debugging test suite, for performance benchmarking, for
configuring systems, and for distributing new releases.

By and large, script editing is unsupported by the tool
itself. Typically, such systems only maintain information
necessary to replay the script. Thus, to reuse the script for
purposes other than what it was intended to do would require
substantial tweaking on the user's part. The onus is on the
user to understand the script (which is not necessarily in a
human-readable form), to know what modifications to make
(using some editor), and to perform them correctly. It is in­
tended to perform a specific script and this is why it is not
considered a variation of reuse.

3.3. History for User Recovery

User recovery tools allow users to recover from unfor­
seen errors (e.g., typing) and to experiment with the system's
advanced commands. Typically, user recovery is facilitated
by UNDO, spelling correction, and editing. UNDO is pertinent to
our discussions. History based implementations of this opera­
tion exists as do others.

3
Linxi and Habennann 1986 calls the latter keyboard macros

to reflect the fact that in some systems (e.g., EMACS, Tempo), the mac­
ro may be bound to one key for quick easy invocation.

• Greenberg and Witten 1988 does not distinguish the two.

117

In the mail fonn, the Weight field is examined to determine what
should be filled in the Class field.

W.;ghl(pounds)

10.751
I 'our~das, mail I

The initial program after the user records the actions assuming that
the value in the Weight field is less than I pound. The user selects
the statements that will be in the body of the conditional to be provid ­
ed.

Open DMllilinG F"rm.

Cclet\! DMa,l,n1 Form (jCI~:. E='FalJ'th' .

T)'l= c.n First' at brqinninq at OM;]II,n,] form 8(1)5'

(lose DMlliling Form.

Move [)Mllilll'lg 'orm to ~Mail(oom P"nte,.,

This shows the completed program with the correct conditional test
and actions.

Open DMailinQ fo,""

tf DMailing Form (i}Weight • ,11 < 1 do :

Oelele (lMailIng 'orm rilel." "Fourth' .

Type in : 'fir1\".l bctJirWnt at DMailing Form (jJClass.

Clo,e ClMailino 10rm.

Move: ClMailing Form to ~M.;I"oolTl Printer.

Figure 3: The SMALLSTAR program determines
whether a customer's order is to be sent by first­
class or fourth-class mail. If the value in Weight
field of the mail is less than one pound, the order
will be sent by first-class mail, otherwise by
fourth-class mail.

According to Vitter 1984, history-based UNDOIUNDO

maintains a history of all the primitive and recovery com-

mands (i.e., UNDO) ever executed5. Users may use UNDO to
undo the effects of one or more previous commands. Howev­
er, to UNDO the nth earlier command, the intervening n-l com­
mands must be undone first. Issuing an UNDO command on an
UNDO reverses the effects of the first UNDO. The power of this
facility is that it can return the system state to any value that

We do not make a distinction about how the operation is
internally realized (e.g., restoring to an earlier snapshot or state of the
system or by reversing changes at each step).

Graphics Interface '90

existed earlier but not one that did not exist formerly. That is,
the user cannot backtrack to some state, invoke a couple of
new operations and then carry on with the operations follow­
ing the point from which he backtracked to (referred to as
command insertion by [Vitter 1984]). This implementation
constraint has a direct impact on whether the user's intention
can be realized (i.e., when some commands cannot be un­
done).

In linear UNDO/REDO, the UNDO and REDO commands
are meta-commands which act on primitive commands (i.e.,
UNDO!REOO cannot operate on other UNDO/REOO). This form
of user recovery allows users to insert operations into the
midst of the history (which the pure history-based UNDO/UNDO
cannot handle). However, if the user has a change of heart
and does not really want to insert those operations in the
chain, then they cannot be removed (which the pure history­
based UNDOiUNDO can handle) [Vitter 1984]. An example of a
system based on this model is the graphical history facility in
CHIMERA [Kurlander and Feiner 1988].

3.4. History for Navigation
History for navigation allows the user to reflect on

where they have been and where they are, and to use that in­
formation to guide their progress [En gel et al. 1983, Fitter
1979, Nievergelt and Weydert 1980, Paap and Roske­
Hofstrand 1988]. Navigation is possible in one of two spaces:
information spaces and activity workspaces. The history is
generally presented to the users as a series of static frames of
places that they visited. These static frames can potentially
contain a wealth of information (e.g., actions performed, pro­
gress of actions, errors encountered) and are generally
presented in one form (e.g., temporal order). However, when
the frames were visited is not necessarily the appropriate
presentation when they want to locate only frames that pertain
to an activity (i.e., activity structure may highlight the desired
information better).

,Information Spaces

This is a common type of navigation in the information
retrieval domain; other example domains are listed in Table 2.
Users can easily become lost in the vast information space as
they navigate through it. The history as a navigation aid can
help minimize this. It can provide information about where
users are presently, where users last visited, and where they
have visited. Figure 4 shows the timeline page of [Feiner et
al. 1982] which shows the pages of a document that the user
has seen in miniature form ordered chronologically along
bands associated with their parent chapters.

Activity Workspaces

This type of navigation allows users to move freely
back and forth between and within activity workspaces [Ban­
non et al. 1983, Card and Henderson 1987, Cypher 1986, Lee
1987, Miyata and Norman 1986]. Such facilities maintain a
history of job activities in various forms. In one form, users
can use the display information to find out about the progress
of current and other activities. The information is directly ac­
cessible when separate activities are performed in separate
windows (e.g., windowing system). In another form, the user
may find out what the active jobs are by an explicit command
like JOBS in UNIX"" C Shell or by examining the display to see

118

Subsystems [TI

Travel

Introduction

Diagnostics

1:lO:53am 1:1l:17am 1:11'36am 1:14:05am 1:14:25am 1:17:01 am

o Touch the page or chapter that you would like to see

Figure 4: Sketch of the timeline page from [Feiner
et al. 1982] . The last 6 pages that were viewed are
displayed chronologically in miniature form along
the band associated with its parent chapter. Select­
ing the miniature will return the user to that page.
Other pages in the time line are displayed by select­
ing the scroll arrow.

what is incomplete. The user may also find out the chrono­
logical order of activities he is working on (e.g., the Room
Stack in ROOM MODEL [Chan 1984]). A primitive form of
this is the user's last activity (e.g., Back Door in ROOMS [Card
and Henderson 1987]).

3.5. History as External Memory Support
Users can consult the history or use it to help them

remember information associated with past activities. This
use of history is apparent in any system that displays a history
of the user's session. The displayed history is an external
memory aid which the user can reference at appropriate junc­
tions in their interactions. However, the onus is on the user to
extract and interpret the information in the history (i.e., per­
form most of the processing associated with using this history
use). This can potentially be an invaluable history use but the
effort generally required of the user limits the extent to which
users exploit the information contained in the history. Thus
only the easily accessible information are utilized while other
information are accessed when the value outweighs the effort
to access it. As we alluded to in the navigation case, if the
user can query or reorganize the presentation of the informa­
tion (e.g ., hiding irrelevant information or details) both con­
sultation and reminders would be more extensively utilized.
The lack of such capabilities can severely limit the value of
history as an external memory support tool.

In the consultation case, users use the history to help
them answer questions and queries they have before deciding
what to do next. For instance, users could find out what ac­
tivities are incomplete and require attention (commonly when
the user is engaged in a number of activities in a parallel or

Graphics Interface '90

interleaved fashion). In another example, the history helps
them to figure out how and where they may have introduced
an error(s) in the course of their interactions. Finally, users
have questions about how to do a task and the history can
contain some solutions (albeit not necessarily optimal but
sufficient for the users' needs) which they explored previously
(in full or in part) or which are appropriate to the current task.

In the second case, users who return to a previously
suspended activity after a digression can use the history to
help them to reacquire the mental context for the activity.
User may lose track of what they are doing because of an
interruption and the history can remind and re-orient them.
Also, users may simply recall having performed a task similar
to the current one and they use the history for that task as a
guide for completing the current one.

3.6. History for Adaptive Interfaces

The history is a source of information which the sys­
tem can use to automatically adapt the interface behavior to
suit the user's needs. Basically, the system uses heuristics to
predict what users might want to do next or what their prefer­
ences are. Greenberg and Witten 1988 calls this history
through prediction whereby the system estimates for each to­
ken already seen the probability that it will be the next one
typed. The entries with the highest probabilities are made
available for selection. A simple-minded example is a menu
system that makes the last selection be the default selection by
either relocating that item to the top or positioning the cursor
to that item when the menu appears. Another example is the
REACTIVE KEYBOARD system [Witten et al. 1983]. Based on
text previously entered by the user, the system computes a
probability for each character that it will be the next one to be
typed and offers it up to the user when text input is required
from the user.

3.7. History for User Modelling
The history is also a valuable information repository

for implicit user modellers to infer or derive information
about the user [Chin 1986, Desmarais and Pavel 1987, Rich
1983, Senay 1989, Tyler and Treu 1986]. Basically, implicit
user modellers monitor or observe what the user does, how
the user uses the system, etc. to formulate user models . User
modellers can determine the user's skill level, command and
task knowledge, preferences, and personality traits (see Figure
5 for an example) [Lee 1987]. The techniques that systems
use to draw the information include deterministic, probabilis­
tic, behavior to structure transformations, induction, and
knowledge inference.

4. Open Problems and Issues

The taxonomy identifies a wide range of different uses
that an interaction history can provide. It has brought to light
a number of open issues and problems: scarcity of informa­
tion about interaction patterns and history usage characteris­
tics, basic design concerns, and architectural concerns associ­
ated with history as a user support tool [Lee 1989a].

As history tool designers, we are interested in the
behavioural data that exist concerning the nature of human­
computer interactions and history usage characteristics (i .e.,
nature, frequencies, and sophistication). There have been stu-

119

History

Is -11 more
emacs
grapher1.c
make grapher
grapher
graph.test
rm core
cdb grapher
man term
emacs
grapher3 .c
make grapher
graph er
graph.test

Output of
cmdusage

1: cdb
2: emacs
2: grapher
1: Is
2: make
1: man
1: more
1: more

Output of UKNOW

S 0 6 (.23) Is
Splot 0 1 (.06) ma
bg 0 8 (.43) mail
calc 0 2 (.17) make
cat 0 25 (.58) man
cc 0 1 (.13) mkdir
cd 0 434 (.25) more
cdb 1 0 (.05) mv
clear 0 4 (.31) ps
compact 0 4 (.53) pu shd
er 0 433 (.73) pwd
date 0 4 (.39) queue
du 0 2 (.27) rm
emacs 0 5 (.25) nndir
f 0 134 (.66) screen
fg 0 6 (.33) source
find 0 1 (.15) su
grep 0 1 (.15) t
head 0 4 (.16) tail
history 0 7 (.40) troff
kermit 0 2 (.08) uncompact
kill 0 5 (.43) VI

last 0 5 (.28) w
Ipq 0 8 (.51) who

write

1 434 (. 17)
0 2 (.40)
o 54 (.64)
2 2 (.08)
1 18 (.59)
0370 (.77)
1 24 (.50)
1 41 (.72)
o 42 (.64)
0 6 (.26)
o 54 (.67)
0 4 (.47)
1 68 (.59)
0 3 (.3 1)
0 3 (.43)
0 3 (.23)
0 5 (.27)
0 1 (.34)
0 2 (.21)
0 0 (.58)
0 17 (.58)
0 3 (.1 1)
0 57 (.56)
0 2 (.1 5)
0 10 (.43)

Figure 5: 'cmdusage' analyzes the user's history .
UKNOW [Desmarais and Pavel 1987] uses this infor­
mation to identify the extent of the user' s
knowledge of of the commands.

dies but they concentrate on command use. Findings charac­
terizing the nature of human-computer interactions can give
us insights into interaction patterns th at would he relevant to
any user support efforts [Bannon et al. 1983, Greenberg and
Witten 1988, Henderson and Card 1986, Hanson et al. 1984,
Lee and Lochovsky 1990]. Studies of users using history
tools would allow us to investigate and identify the potential
and actual uses of history tools, inadequacies in systems, the
prevalent uses, and uses not enumerated in our taxonomy.
Furthermore, there have been no studies examining the cogni­
tive and physical effort associated with using particular
designs of history tools. This can give insights to the issue of
whether such effort outweigh the benefits the various uses of
history offer (i.e., excessive effort deters use?).

Graphics Interface '90

Two studies recently have demonstrated that repetition
of individual operations (74% on average) and groups of
operations exist in user's interactions [Greenberg and Witten
1988, Lee and Lochovsky 1990]. These results have direct
implications for history for reuse. The Greenberg and Witten
study found that actual uses of the C Shell history tool were
minimal. Our exploratory study of two history tools (C Shell
and TC Shell) [Lee 1988b] corroborate their findings. Furth­
ermore, our qualitative analysis shows that history usages are
unsophisticated with a large majority of the history commands
being confined to simple specialized operations (e.g., !!).
Both studies are limited. In particular, the Greenberg and
Witten study only looked at reuse and did not investigate any
of the other possible uses. Our study was extremely explora­
tory and qualitative.

Aside from the behavioural and usability issue, there
are also a number of unresolved design issues [Lee 1989aJ.
First, what should the histo;y include? We propose a number
of possibilities: input as well as output objects, textual and
non-text objects, and less directly accessible information like
user goals, intentions, and tasks. Second, which of the history
information can be obtained directly and automatically and
which must be provided with the user's own input? In the
latter case, what techniques may be used to obtain the infor­
mation? Third, what portions of the history should be
displayed (permanently and on demand) and what techniques
(e.g., signals and descriptions, overlapping windows, switch­
ing between various display panels) and representational
schemas (e.g., icons and fisheye views) can be used for rem­
inders, external memory support, and cues for recognition and
recall. Fourth, what level of support and degree of functional­
ity should be provided for selection and modification of a
selected history item? Fifth, how should the history be or­
ganized (by function or by task), which items need to be in­
tegrated and which items need to be kept separately, and what
support is needed to manage the history? (e.g., accessing oth­
er histories, querying history, aging and discarding history)?
Finally, which aspects of the history tool are amenable to
mechanization?

The last major issue pertains to the architectural sup­
port that must be provided for the operation of history tools .
The framework is needed to ensure that the history informa­
tion from the relevant level be collected. Second, history con­
cepts and functionality must pervade throughout the system
and transcend particular applications (i.e., history is integrated
and available from all applications). Third, the system should
be flexible to support new concepts, uses, and capabilities.
There are very few efforts that are specifically concerned with
identifying and providing coupling architecture or framework
to integrate user support facilities [Cock ton 1989].

Acknowledgements
Special thanks to Caroline Houle for providing the french
translation of the abstract. This research was supported by the
Narural Sciences and Engineering Research Council of Cana­
da under grant OGPOOO3356.

References

J.E. Archer Jr., R_ Conway, and F.B. Schneider (January
1984). User recovery and reversal in interactive systems.
ACM Transactions on Programming Languages and Sys-

120

tems, 6(1), pages 1-19.

W.L. Ash (August 1981). Mxec: Parallel processing with an
advanced macro facility. Communications of the ACM, 24(8),
pages 502-509.

L. Barmon, A. Cypher, S. Greenspan, and M.L. Monty (Dec.
12-15, 1983). Evaluation and analysis of users' activity or­
ganization. In Proceedings of the CHI'83 Human Factors in
Computer Systems, pages 54-57, Boston, Massachusetts.

D.J. Bames and lD. Bovey (September 1986). Managing
command submission in a multiple-window environment.
Software Engineering Journal , 1(5), pages 177-184.

E. Bier and M. Freedman (1985). PlayerPiano: Playback
scripts for window systems. Unpublished paper, 22 pages.

S. Bobker (January 1988). Command performance.
MacUser, 4(1), pages 114-122.

lD. Bruner (November 8, 1985). UW: A multiple-window
terminal emulator for use with 4 .2BSD UNIX. Manual for
version 2.l of UW, 14 pages.

S.K. Card and D.A. Henderson Ir. (April 5-9, 1987). A mul­
tiple, virrual-workspace interface to support user task swi tch­
ing. In Proceedings of the CHI+GI' 87 Human Factors in
Computing Systems and Graphics Interface, pages 53-59,
Toronto, Ontario.

P.P. Chan (July 1984). Learning Considerations in User In­
terface Design: The Room Model. Technical Repon CS-84-
16, 51 pages. Computer Science Department, University of
Waterloo.

D.N. Chin (April 13-17, 1986). User modeling in UC, the
UNIX Consultant. In Proceedings of the CII1'86 Human
Factors in Computer Systems, pages 24-28, Boston, Mas­
sachusetts ..

G. Cock ton (August 21-25, 1989). Session discussions. In
Proceedings of the Working Conference on User Interfaces
(Engineering for Human -Computer Int eraction), Napa Val­
ley, CA.

A. Cypher (1986). The structure of users' activities . In D.A.
Norman and S.W. Draper (editors), User-Centered System
Design: New Perspectives on Human-Computer Interaction,
pages 243-263. Lawrence Erlbaum Associates.

M.C. Desmarais and M. Pavel (September 1-4, 1987). User
knowledge evaluation: An experiment with UNIX. In H.J .
Bullinger and B. Shackel (editors), Human-Computer Interac­
tion - Interact' 87. Proceedings of the Second IFlP Confer­
ence on Human-Computer Interaction, pages 151-156.
North-Holland (Elsevier Science Publishers B.V .).

S.W. Draper (1986). Display managers as the basis for user­
machine communication. In D.A. Norman and S.W. Draper
(editors), User-Centered System Design: New Perspectives on
Human-Computer Interaction, pages 339-352. Lawrence Erl­
baum Associates.

M. Ellis, K. Greer, P. Placeway, and R. Zachariassen (March
ID, 1987). TCSH - C shell with filename completion and
command line editing. UNIX Programmer's Manual (revised
U ofT, previous revisions from Fairchild, HP Labs., and OSU
IRCC) .

F.L. Engel, I.J. Andriessen, and H.1.R. Schmitz (1983).
What, where and whence: Means for improving electomic

Graphics Interface '90

data access. International Journal of Man·Machine Stu­
dies, 18(2), pages 145-160.

S. Feiner, S. Nagy, and A. van Dam (January 1982). An ex­
perimental system for creating and presenting interactive
graphical documents. ACM Transactions on Graphics, 1(1),
pages 59-77.

M. Fitter (May 1979). Towards more "natural" interactive
systems. InternatioTUlI JourTUlI of Man-Machine Stu­
dies, 11(3), pages 339-350.

D. Goodman (September 1987). The Complete HyperCard
Handbook. Bantam Book.

S. Greenberg (1988). Tool use, reuse, and organization in
command-driven interfaces. Research Report 881336/48, 187
pages. PhD Dissertation, Department of Computer Science,
University of Calgary, Calgary, Alberta, Canada

S. Greenberg and I.H. Witten (May 15-19, 1988). How users
repeat their actions on computers: Principles for design of his­
tory mechanisms. In Proceedings of the CHI'88 Human Fac­
tors in Computer Systems, pages 171-178, Washington, D.C.
Also appears as Department of Computer Science, University
of Calgary Technical Report No. 87/279/27 (February, 1987).

HCR Corporation (July 1987). Hi User's Guide (version 7.7).
User Manual, 31 pages. HCR Corporation, 130 Bloor St. W.,
10th Floor, Toronto, Ontario M5S INS.

P.E. Haeberli (June 1986). A data-flow manager for an in­
teractive programming environment. In Proceedings of 1986
Summer USENIX Technical Conference.

D.C. Halbert (December 1984). Programming by Example.
Technical Report No. OSD-T8402, 89 pages. Xerox Office
Systems. PhD Dissertation, Department of Electrical En­
gineering and Computer Science, University of California,
Berkeley, CA.

SJ. Hanson, R.E. Kraut, and J.M. Farber (January 1984). in­
terface design and multivariate analysis of UNIX command
use. ACM Transactions on Office Information Systems, 2(1),
pages 42-57.

P. Hayes and P.A. Szekely (September 1983). Graceful in­
teraction through the COUSIN command interface. InterTUl­
tioTUlI Journal of Man-Machine Studies, 19(3), pages 19-30.

D.A. Henderson Jr. and S.K. Card (July 1986). The use of
multiple virtual workspaces to reduce space contention in a
window-based graphical user interface. ACM Transactions
on Graphics - Special Issue on User Interface Software Part
1/,5(3), pages 211-243.

W.N. Joy (November 1980). An Introduction to the C Shell.
UNIX Programmer's Manual (7th edition) 2c: Supplementary
Documentation (Virtual-V AX 11 Version), 46 pages.

W.N. Joy and D. Korn (July 1983). KSH - A shell program­
ming language. In Proceedings of USFNIX Association
Software Tools Users Group (Summer Conference), pages
191-202, Toronto, Ontario.

D. Kurlander and S. Feiner (October 10-12, 1988). Editable
Graphical Histories. In Proceedings of the 1988 IEEE
Workshop on Visual Languages, pages 127-134. IEEE Com­
puter Society Press, Pittsburgh, Pennsylvania.

E. Lancaster-Thomas (June 1969). The Storing and Reuse of
Real-Time Graphical Inputs. MSc Dissertation, 40 pages.

121

Department of Electrical Engineering, Massachusetts insti­
tute of Technology.

F.C.M. Lau and A. Asthana (March 1984). Yet another histo­
ry mechanism for command interpretors . SIGPLAN No­
tices, 19(3), pages 51-56.

A. Lee (July 1987). User Support: Considerations, Features,
and Issues. Technical Report No. CSRI-195: Office and Data
Base Systems Research'87 F.H. Lochovsky (editors), pages
1-23. Computer Systems Research Insti tute, University of
Toronto.

A. Lee (May 15-19, 1988). Study of command usage in three
UNIX command interpreters. Interactive Poster. CHI'88,
Washington, D.C.

A. Lee (August 21-25, 1989). Issues in design of history tool
for user support. In Proceedings of the Working Conference
on User Interfaces (Engineering for Hwnan-Computer In­
teraction), Napa Valley, CA.

A. Lee and F.H. Lochovsky (January 1990). User's command
line reference behaviour: Locality versus recency. Technical
Report No. CSRI-238: Office and Data Base Systems
Research'89 F.H. Lochovsky (editors), pages 6-13. Computer
Systems Research Institute, University of Toronto.

C. Linxi and A.N. Habermann (August 13, 1986). A history
mechanism and undo/redo/reuse support in ALOE. Technical
Research Report No. CMU-CS-86-148. Department of Com­
puter Science, Camegie Melon University .

D.L. Maulsby, LH. Witten, and K.A . KiLllitz (August 1989).
Metamouse: Specifying graphic procedures by example.
Computer Graphics, 23(3), pages 127-136. Proceedings of
the ACM SIGGRAPH'89, July 31 - August 4 1989, Boston,
Massachusetts.

M. McMahon (1987). A practical system for managing
mixed mode user interfaces. Working Paper, 29 pages. Sym­
bolics, Inc., Cambridge, Massachusetts.

Y. Miyata and D.A. Norman (1986). Psychological issues in
support of multiple activities . In D.A. Norman and S.W.
Draper (editors), User-Centered System Design: New Per­
spectives on Human-Computer Interaction, pages 265-284.
Lawrence Erlbaum Associates.

B.A. Myers (April 13-17, 1986). Visual programming, pro­
gramming by example and program visualization: A taxono­
my. In Proceedings of the CHI' 86 Human Factors in Com­
puter Systems, pages 59-66, Boston, Massachusetts.

B.A. Myers and W. Buxton (August 1986). Creating highly­
interactive and graphical user interfaces by demonstration.
Computer Graphics, 20(4), pages 249-258. Proceedings of
the ACM SIGGRAPH'86, August 18-221986, Dallas, Texas.

J. Nievergelt and 1. Weydert (1980) . Sites, modes, and trail s:
Telling the user of an interactive system where he is, what he
can do, and how to get places. In R.A. Guedj, P. ten Hagen,
F.R. Hopgood, H. Tucker, and D.A. Duce (editors). Metho­
dology of Interaction, pages 327-338. North-Holland.

D.R. Olsen and J.R. Dance (January 1988). Macros by Exam­
ple in Graphical UIMS. IEEE Computer Graphics and Appli­
cations, 8(5), pages 68-78.

K.R. Paap and R.1. Roske-Hofstrand (1988). Design of
Menus. In M. Helander (editors), Handbook of Human-

Graphics Interface '90

Computer Interaction, pages 205-235. Elsevier Science Pub­
lishers B. V .

R. Reichrnan-Adar (1986). Communication paradigms for a
window system. In D.A. Norman and S.W. Draper (editors),
User-Centered System Design: New Perspectives on Hwnan­
Computer Interaction, pages 285-313. Lawrence Erlbaum As­
sociates.

E. Rich (March 1983). Users are individuals: Individualizing
user models. International Journal of Man-Machine Stu­
dies, 18(3), pages 199-214.

SUN Microsystems, Inc (February 17, 1986). Windows and
window based tools: Beginner's guide. SUN Microsystems,
Inc., 2550 Garcia Avenue, Mountain View, CA 94043.

J. Scofield (November 1981). Editing as a Paradigm for User
Interaction A Thesis Proposal. Technical Report No. 81-11-
01,27 pages. Department of Computer Science, University of
Washington.

H. Senay (August 21-25, 1989). Fuzzy command granunars
for user modelling in intelligent interfaces. In Proceedings of
the Working Conference on User Interfaces (Engineering for
Human-Computer Interaction), Napa Valley, CA.

R. M. Stallman (Spring/Summer 1981). EMACS - The exten­
sible, customizable self-documenting display editor. SIGOA
Newslelter, 2(1-2), pages 147-156. Proceedings of the ACM
SIOPLAN/SIGOA Symposium on Text Manipulation, June
8-10 1981, Portland, Oregon.

O.R. Steams (August 1989). Agents and the HP NewWave
application program interface. Hewlelt-Packard Journal,
pages 32-37.

J.L. Steffen and M.T. Veach (July 1983). The edit shell -
Combining screen editing and the history List. In Proceed­
ings of USENIX Association Software Tools Users Group
(Summer Conference), pages 187-190, Toronto, Ontario .

W. Teitelman (August 22-25, 1977). A display oriented
progranuner's assistant. In Proceedings of IJCAI-77, 5th
International Joint Conference on Artificial Intelligence,
Volume 2 , pages 905-915. A longer version appears in
Xerox PARC Technical Report No. CSL-77-3 (November
1982).

W. Teitelman (April 1984). A tour through cedar. IEEE
Software. Also appears in Xerox PARC Technical Report
No. CSL-83-11 (June 1984), pp. 23-88.

W. Teitelman and L. Masinter (April 1981). The interlisp
progranuning environment. IEEE Computer, pages 39-50.

S.W. Tyler and S. Treu (October 6-8, 1986). Adaptive inter­
face design: A symmetric model and a knowledge-based im­
plementation. SIGOIS Bulletin, 7(2-3), pages 53-60.
Proceedings of the Office Information Systems.

J.S. Vitter (October 1984). US&R: A new framework for
redoing. IEEE Software, 1(4), pages 39-52.

M. Whitby (July 1986). See MAC run. MacUser, 1(10),
pages 38-42.

I.H. Witten, J.O. Cleary, and 1.1. Darragh (April 1983). The
Reactive Keyboard: A new technology for text entry. Techni­
cal Research Report No. 83/121/10, 7 pages. Department of
Computer Science, University ofCalgary.

122

M. Young, R.N. Taylor, and D.H. Troup (June 1988).
Software environment architectures and user interface facili­
ties. IEEE Transactions on Software Engineering , 14(6),
pages 697-708.

P.T. Zellweger (ApriI20-22; 1988). Active Paths Through
Multimedia Documents. In I.C . van Vliet (editors), Docu­
ment Manipulation and Typography, pages 19-34. Cambridge
University Press.

Graphics Interface '90

