
123 

The DataPaper: Living in the Virtual World 

Mark Green 
Chris Shaw 

Department of Computing Science 
University of Alberta 

Edmonton, Alberta. Canada 

Abstract 

Virtual reality user interfaces are a new type of user 
interface based on placing the user in a three dimensional 
environment that can be directly manipulated. Virtual reality 
user interfaces have a wide range of applications in scientific 
computing, remote manipulation, communications, and the 
arts. This paper presents a cost effective hardware and 
software architecture for this type of user interface. Some of 
the hardware devices required to produce this type of user 
interface are discussed, along with the techniques used to 
combine them into a usable system. A low level and high 
level set of software tools are described. The low level tool 
set handles the interaction between the input and output dev
ices and the user's program. The high level tool set assists 
with the development of virtual reality user interfaces. An 
example user interface developed with our tool set is 
described, along with suggestions for further research. 

Keywords: Virtual Reality, User Interfaces, 3D Interaction 

1. Introduction 

Virtual reality user interfaces are a new type of user 
interface based on placing the user in a three dimensional 
environment that can be directly manipulated. The user's 
complete field of vision is filled with computer generated 
images, and he or she can use three (or more) dimensional 
input devices to directly interact with the underlying applica
tion. By using a head-mounted display, the user can move 
through the environment and have the images respond to his 
body movements. The main aim of virtual reality user inter
faces is to give the user the feeling of directly interacting with 
his or her application, and not using a computer. Virtual real
ity user interfaces have a wide range of application in 
scientific computing, remote manipulation, communications, 
and the arts. The basic ideas behind virtual reality user inter
faces are developed in [Fisher86], [Brooks86], [Krueger83] 

and [Green89]. 

As an example of this type of user interface consider a 
fluid dynamics computation. These computations are per
formed on large two or three dimensional grids, and the 
results of these computations are recorded at fixed intervals of 
time (every 0.1 seconds of simulation time for example). The 
results of the computation could include the position of the 
fluid's surface, and for each grid cell, the flow velocities, 
pressure, and temperature. Obviously, a printed version of 
these results will be very hard to interpret Similarly static 
plots of the flow velocities at each time interval do not give a 
good impression of how the flow develops over time. Fluid 
flow is a dynamic phenomenon, thus a dynamic three dimen
sional presentation of the results is required. At each time 
step of the computation, a three dimensional image of the 
flow can be produced (two images if a head-mounted display 
is used). These images can be presented to the user as they 
are produced, giving an impression of how the flow develops 
over time. Given a fast enough computational engine, the 
images could be produced in real time allowing the user to 
directly monitor the computation. The user can interact with 
the computation through a multi-dimensional input device, 
such as a DataGlove. .The user can interactively enter the 
boundary conditions for the computation, and change these 
conditions and other parameters as the computation evolves. 
In this way the user can steer the computation to the more 
interesting parts of the model, and thus save considerable 
amounts of computing time. The user can interactively slap 
the water with the DataGlove and watch the changes in the 
flow. This type of user interface is possible with today's 
technology, and this example is based on one of the prototype 
virtual reality user interfaces that we have constructed. 

In this paper we describe our experiences with con
structing virtual reality user interfaces. The two main pur
poses of this paper are to present an affordable and usable 
hardware and software architecture for this type of user inter-

Graphics Interface '90 



124 

face, and identify some of the major research problems in this 
area. The second section describes the hardware that we are 
using to explore this type of user interface. The next section 
describes the low level software that lies between the 
hardware and the tools that we have produced for construct
ing virtual reality user interfaces. The typical programmer of 
our system doesn't directly interact with this software level. 
TIle fourth section of this paper describes the software tools 
that we have produced for constructing virtual reality user 
interfaces. The following section describes one of the appli
cations that has been developed using these tools. The final 
section of this paper presents some of the research problems 
that we have identified. 

Source 

DataGlove 

Polhemus 
Isotrak 

most of the user's field of vision, and an optional diffusion 
panel is used to blur these images. Without the diffusion 
panel the individual red, green and blue dots in the displays 
are visible. The LCD's are driven by two NTSC video 
sources. In our configuration we use two Silicon Graphics 
Iris workstations to generate the video signals. One of the 
workstations is a 3130 and the other is a 2400. The worksta
tions are synchronized over an ethernet, and two NTSC con
verters are used to convert the video signals from the worksta
tion into NTSC for the LCD's. TIle two workstations are not 
gen1ocked, but using the ethernet for synchronization gives a 
good illusion of stereo in the applications that we have tried 
so far. TIle head-mounted displays uses a Polhemus lsotrak 

Polhemus 
lsotrak 

RS232 RS232 

Sensor 

RS232 

r-R_S2_3_2_~ Polhemus 

Isotrak 

NfSC Video 

Iris 2400 Iris 3130 MIPS 

Ethemet ____ ~ __________________________ _L ______________________________ ~ ______ _ 

Figure 1 Current system architecture 

2. Hardware Configuration 

This section describes the hardware that we have 
assembled for investigating virtual reality user interfaces. 
The current laboratory configuration is shown in figure 1. 
Most of the hardware described in this section is available 
commercially, and the parts that aren ' t can easily be made in 
any electronics shop. The two key components in our 
hardware configuration are a head-mounted display and a 
DataGlove. 

The head-mounted display that we are using is the 
VPL EyePhone. This device consists of two LeD TV's that 
are mounted less than two inches in front of the user's eyes. 
An optics system is used to expand the images so they cover 

digitizer to determine the posItion and orientation of the 
user's head. This information is used to generate the images 
that are presented to the user. 

The main input device that we are using is the VPL 
DataGlove [Zimmerman87]. This device senses the position 
and orientation of the hand, along with the bending of the 
fingers. An lsotrak digitizer is used to determine the position 
and orientation of the hand. Special fiber optics placed on the 
back of the hand are used to determine the orientation of the 
fingers. At the finger joints, the fibers have been treated to 
attenuate the light when the joint is bent Two joints on each 
finger are instrurnented, and can be sampled up to 60 times 
per second. This information can be used to determine the 

Graphics Interface '90 



positions of the fingers, or the gesture that the user is making. 

The use of an Isotrak in the DataGlove was a source of 
problems. First, the DataGlove doem't allow us to directly 
interact with the lsotrak. The DataGlove configures the Iso
trak to report roll, pitch and yaw angles, which is not the best 
way to report the orientation of an object (this is discussed 
furthez in section 3). This problem can be solved by detach
ing the Isotrak from the DataGlove hardware aOO driving it 
directly. Second, having more than one Isotrak in the same 
room requires special care (we have three in our current 
configuration. one in the DataGlove, one in the head-moun1ed 
display, and one standalone Isotrak digitizer). By default the 
Isotrak samples 60 times per second and it requires the com
plete 1/60 second to process the sample. Since the lsotrak: 
broadcasts an electro-magnetic field, only one device can 
sample at a time. Multiple devices can be handled by time 
multiplexing the sampling. In our case each of our three Iso
traks are sampled 20 times per second. Using this sampling 
rate doem't seem to adversely effect the quality of the interac
tion. The DataGlove electronics provides the sync signals 
required for three Isotraks, so this problem can be easily 
solved. 

Anothez problem that occurs with the lsotrak is its lim
ited range of accuracy. The Isotrak digitizer consists of two 
main components, which are a source that produces the 
electro-magnetic pulse and a sensor that detects this pulse. In 
normal operation the source is kept at a fixed position and the 
sensor moves about the environment. Polhemus Navigation 
Systems claim that the digitizer has an accuracy of 0.25 inch 
RMS when the sensor is up to 30 inches away from the 
source, and "reduced accuracy" at separations up to 60 inches. 
The accuracy of the lsotrak is affected by metal objects and 
other sources of EM radiation that lie close to the source or 
sensor, such as computers, fluorescent lights, and display 
screens. In a computer graphics laboratory this 60 inch range 
will never be achieved. In practice we have found that noise 
in the readings becomes noticeable when the source and sen
sor are separated by more than 24 inches, and a high level of 
noise occurs when the separation reaches 50 inches. In the 
case of positioning with the DataGlove this noise can be a 
major problem, but the user can partially adjust to it through 
the use of visual feedback. On the other hand, it is a serious 
problem for the head-mounted display, since the noise in the 
Isotrak causes the images to jiggle. When the user's head is 
not moving there can be significant changes in the images 
presented to him, which can be very disturbing. We have 
solved this problem by filtering the data produced by the Iso
trak as described in the next section. 

The only piece of custom hardware that we are using is 
a device we call a navigation box. This device has four but
tons and three potentiometers and is contained in a small box 
that can be attached to the user's belt The navigation box 
plugs into a port on the DataGlove electronics box, which has 
three spare AID converters and four spare digital inputs. The 
use of the navigation box is described in section 5. 

125 

3. Low Level Software 

As one might expect, the Isotrak and DataGlove dev
ices need drivez software to integrate them into our environ
ment These devices communicate with the external world via 
a serial data link. aOO are entirely controlled by commands 
sent via the serial line. This section describes the software 
structure required to effectively drive these devices, and the 
steps that weze taken to best utilize the data gathered by them. 

3.1. DataServers 

Our first attempt at a driver was a simple library of 
routines that polled an lsotrak for data. waited for the 
response, and returned the properly interpreted data to the 
application program. The advantage of this scheme was that it 
minimized the time lag between request and use of data. A 
simple polygon mesh viewer which used this library gave 
good response, that is, movement of the polygon mesh 
corresponded almost exactly with movement of the 3D sensor 
with little more than a 1/30 second lag. 

The source of this lag is the sum of the time to send the 
poll request, plus the time required by the Isotrak to format its 
data, plus the time to send the data across the serial link to be 
interpreted by the host computer. To nullify this sampling 
lag, we reversed the order of polling such that a poll request 
was sent before the polygon drawing operation, and the data 
was collected after the mesh was drawn and the frame buffer 
was swapped. If the polygon mesh was small enough, this 
scheme worked quite well, since the time to draw the model 
was less than the time to gather the next data sample. In 
essence, sampling and drawing occurred simultaneously, 
speeding up the drawing operation and increasing the data 
sampling rate. However, if the polygon mesh was too large, 
each drawing operation required several times the sampling 
period to complete, and thus by the time the program col
lected the sampled data. the data was no longer up-to-date. 
This could be seen as a smalllag in the program's response. 

To combat the problem of sampling latency, we built a 
software system based on the client-server model. The server 
program, called isotrakd (for Isotrak Daemon), is the sole 
manager of the serial port that communicates with the lsotrak. 
While a client is connected, isotrakd samples the Isotrak 
continually, and returns the latest position and orientation 
values to the client program upon request This arrangement 
has numerous advantages, the first being that the sampling 
latency between isotrakd and the Isotrak is relatively 
low, while the sampling latency between client and iso
trakd is nearly zero. Since isotrakd is a separate pro
cess, time that would otherwise be wasted in the monolithic 
polling scheme while waiting for a frame buffer swap can be 
better spent processing lsotrak data. 

The second advantage of isotrakd is that the appli
cation software is simplified, since the client needs only to 
make a few calls to initialize service, and only one sampling 
call per screen update to gather data. Also processes on other 
machines can access the lsotrak across the network, which 

Graphics Interface '90 



means that the Isotrak can be used with a wider range of 
applications, and it can be used when the host machine's 
display is occupied by other unrelated tasks. This network 
capability will be expanded in the future by dedicating a 
small, fast processor with many serial ports solely to the task 
of managing all the serial-controlled devices. 

The client-server interface allowed us to experiment 
cleanly with the idea of adding more intelligence to i so
trakd. The most obvious addition was to make isotrakd 
robust enough to detect device resets and anomalous condi
tions in the Isotrak itself. The second addition was to filter the 
Isotrak data as it was received, which solves part of the noise 
problem that occurs when the sensor is moved to the outer 
parts of its range. The basic filtering scheme used was an N
stage FIR filter, where the filter's output is the weighted sum 
of the most recent N samples. If N is too large, the filtered 
data shows a noticeable lag between actual motion and 
filtered output. If N is too small, the noise-reduction effect is 
not apparent. Currently, we find the filter with the best trade
off between noise reduction and low lag is a 5-stage box filter, 
which is a classic low-pass filter. Each data element is filtered 
separately, so each of X, Y, and Z position are filtered 
independently, and each of the four quaternion elements is 
filtered independently with a quatemion normalization step 
afterwards. 

One unexpected effect of the client-server model is the 
decoupling of the isotrakd's rate of sampling the lsotrak 
versus the client sampling isotrakd. The result of this 
decoupling is that isotrakd usually samples the Isotrak at 
between two and four times the screen update rate in our sim
ple polygon mesh viewer. What this means is that the filtering 
can be performed at essentially no real cost. 

Given the success of the lsotrak server, we also built a 
server called gloved, or Glove Daemon. The purpose here 
was essentially the same: package the interface to the Data
Glove such that the client program need only make a small 
number of calls to interact with the hardware. Filtering is sup
ported in gloved also, since the flex sensors on the glove 
are not terribly accurate, and the navigation box is also quite 
noisy. 

To properly use the DataGlove, one must first calibrate 
the DataGlove electronics to the maximum and minimum 
finger bend angles produced by the user's hand. During the 
calibration process, the host computer uses the raw fibre-optic 
intensity values to generate a function which maps intensity 
to bend angle. When calibrated, the DataGlove uses these 
mapping functions in table lookup form to return bend angles. 
gloved manages this process, and saves old calibrations on 
gl~ved's file system for later retrieval if the user wishes. By 
default, the user is determined by having the client pass the 
user id of the client process. 

126 

3.2. Orientation Data 

As mentioned in section 2, the Euler angles of Yaw, 
PilCh and Roll are not the best way to express orientations, for 
three reasons. Euler angles express an arbitrary orientation as 
a: series of three rotations about one of the three coordinate 
aJ!.es. There are twelve possible orderings of the axes, which 
results in unnecessary ambiguity when stating orientation. 
Aeronautics and graphicS uses the Z, Y, X or Yaw, Pitch, Roll 
ordering, while physicS uses Z. X, Z ordering. 

Independent of order, the second problem with Euler 
angles is a phenomenon called "gimbal lock", which is the 
loss of one degree of rotational freedom. Gimbal lock occurs 
when the first and last Euler axes of rotation are coincident or 
nearly coincident For example, a ship's compass uses a 
mechanical gimbal to ensure that the compass needle rotates 
about an axis which is normal to the tangent plane on the 
earth's surface. A gimbal will fail at certain "impossible" 
orientations, such as · when a ship is stood on its bow or stem, 
and in this situation, compass readings are meaningless 
because the ship is not pointing in any direction given by the 
compass needle. In fact, the ship points along the needle's 
axis of rotation. 

Unfortunately, Euler angles are used for orientation by 
the lsotrak and DataGlove, and are implicitly used in the 
viewing operations in most graphics packages. We 
discovered the last point by accident on one or our worksta
tions. We noticed in one of our viewing programs that the 
environment would suddenly turn upside down when we 
moved into certain areas. A simple test program was con
structed that performed a 360 degree rotation about the Z axis 
in 1 degree increments. When the viewing direction 
approached the positive or negative Y axis the environment 
would perform a 360 degree rotation about the viewing direc
tion, due to gimbal lock along this orientation. Obviously, 
Euler angles cannot be used in virtual reality user interfaces, 
since there is no guarantee that gimbal-locked orientations 
will not occur. 

The third problem is that Euler angles have a discon
tinuity in its coordinate space at two of the poles. On the Iso
trak, these poles are at Pitch = +/- 90 degrees. In fact, pitch is 
restricted to lie in the range from -90 degrees to +90 degrees, 
which means that when the sensor is oriented such that the 
Pitch angle crosses the pole, the Yaw and Roll are rotated by 
180 degrees to generate a Pitch angle of less than 90 degrees. 
If the data is noisy, this double rotation is noticeable when the 
orientation nears the poles. Moreover, filtering the Euler 
angles worsens the problem. 

The solution to these problems is to use the unit 
quatemion, which is a four element vector that expresses 
orientation as a rotation about an arbitrary axis. Quatemions 
are usually written in the following way: 

e . e (" ')] 1 q = [w,(x,y,z)] = [COS2" ' SIn 2" X x,y,z 

w 2+x2+y2+z2 = 1 

Graphics Interface '90 



Quatemions were originally developed as an extension 
to complex numbers by Hamilton [Shoemake85], and as such 
are two-part numbers with a real scalar part W, and an ima
ginary vector part (x .y ,z ). Euler ~howed that any orientation 
can be stated in terms of a single rotation about a reference 
vector, much like any position can be stated as a translation 
from a reference Winl The unit quaternion can be interpreted 

as a rotation by "2 degrees about the arbitrary axis (x ,y ,z ), 

with the unit quaternion being restricted to a magnitude of 1. 
Equation 1 shows the unit quaternion's definition, and further 
shows that the vector (x',y',z') is also restricted to a magni
tude of 1. When isotrakd filters quaternion data, the mag
nitude of the filter output quatemion is likewise forced to 1. 
'The value [1,(0,0,0)] is the multiplicative identity quatern
ion. To catenate rotations, simply multiply their quatemions, 
as in equation 2. 

This formulation of rotation catenation talces 16 multiplies 
and 12 adds, while the 4x4 homogeneous matrix form takes 
64 multiplies and 48 adds. 

One of the advantages of quaternions is that they are 
continuous for all orientations, so gimbal lock does not occur. 
The quaternion can be used to generate a 3D (non
homogeneous) rotation matrix directly, at the cost of 9 multi
plies and 15 adds [Shoemake85], as shown in equation 3. 

[

1-2y2-2Z2 2xy+2wz 2xz-2wy I 
M = 2xy-2wz 1-2x2-2z2 2yz+2wx 

2xz+2wy 2yz-2wx 1-2x2-2y2 
3 

This matrix can be used in one of two ways. For the 
DataGlove and stand-alone Isotrak applications, the current 
transformation matrix is multiplied by this rotation matrix to 
place the hand or the object being manipulated in the proper 
orientation. For the head-mounted display, the transpose (i.e. 
inverse) of this matrix is multiplied onto the transformation 
stack as the rotation component ·of the viewing transforma
tion. In both cases, the results are quick, efficient, and con
tinuous at all orientations. 

The standard DataGlove restricts access to its internal 
Isotrak, and only reports the Euler angles for orientation: A 
stand-alone Isotrak, including the one that comes with the 
EyePhone, reports quaternions when so requested, so we have 
re-wired the DataGlove box to have separate paths to both the 
DataGlove and its internal Isotrak. 

4. Software Tools 

Producing a virtual reality user interface can require a 
considerable amount of programming. This suggests that a 
set of software tools should be developed to assist in the 

127 

development of this type of user interface, in the same way 
that we have produced software tools for other types of user 
interfaces (for example see [Green85] or 
[Singh89a; Singh89bD. The tools that we have developed so 
far address two types of applications. The first type of appli
cation involves adding a visualization component to an exist
ing program. We are using an application skeleton to address 
this problem. 'The other problem is the development of three 
dimensional environments that the user explores and interacts 
with. This type of application is supported by an interactive 
modeler and viewing program. Both of these software tools 
are described below. 

4.1. AppUcation Skeleton 

The application skeleton addresses the problem of 
adding a virtual reality user interface to an existing applica
tion. There are certain aspects of a virtual reality user inter
face that are essentially the same in all applications. For 
example, all applications must synchronize the workstations 
that are generating the images, perform viewing and stereo 
projections based on the viewer's current position and orien
tation, and provide navigation through the environment. The 
application skeleton handles these aspects of the user inter
face and provides a framework for the application 
programmer's code. This skeleton can be used with existing 
applications, or form the basis of new applications. 

To use the skeleton the application programmer must 
provide a procedure that produces an image of his data (the 
skeleton computes the viewing transformations). A call to 
this procedure must be placed at the appropriate place in the 
skeleton (this point in the code is indicated by a comment). 
After compiling the new version of the skeleton on both 
workstations, the user can interact with his data. The skeleton 
provides a default user interface that allows the user to walk 
around his data and navigate in the environment. Either a 
mouse or the navigation box can be used to move about the 
environment. The navigation box is the default device if it is 
connected, otherwise the mouse can be used for navigation. 
If the navigation box is used the three potentiometers on it are 
used to change the origin of the user's coordinate space. All 
the user's head motions will now be in respect to this new ori
gin. If button one on the navigation box is pressed, the poten
tiometers can be used to scale the user's movements. By 
default, the scale factor is 1.0 in all three dimensions. Thus, 
if the user moves an inch in his space, he will move an inch in 
the model space. If the mouse is used, the three mouse but
tons are used to move in the x, y and z directions, the scaling 
option is not available with the mouse. 

In many ways the skeleton provides a minimal virtual 
reality user interface, but it provides a very quick way of get
ting something running. IT the programmer already has a pro
cedure that can draw his data or model, then a virtual reality 
user interface for that model can be constructed in less than 
an hour. Thus, the skeleton provides a good prototyping tool, 
and a convenient mechanism for evaluating different display 

Graphics Interface '90 



teclmiques. 

4.2. interactive Modeler and Viewer 

One of the main applications of virtual reality user 
interfaces is exploring and interacting with three dimensional 
environments. These environments could represent the 
design of a new building [Brooks86], the environment that a 
remote manipulator is operating in [Fisher86], or a work of 
art. In all of these examples the environment consists of a 
number of objects that the user wants to explore or interact 
with. These objects are either static or have relatively simple 
motions (in comparisOn to fluid dynamics or other 'physical 
simulations). The design of this 'type of application consists 
of three main activities, designing the geometry of the indivi
dual objects, placing these objects in the environment, and 
designing ' their behavior. We have designed a simple set of 
tools for constructing this type of virtual reality user interface. 
This tool set is not intended to be a production tool, its main 
purpose is to identify the problems that need to be solved in 
order to produce usable tools. 

The tool set is divided into three main components. 
The first component is an interactive modeling program. This 
program is used to create the objects in the model and place 
them within the environment. The second component is the 
interactive viewing program that allows the user to explore 
the environment. The third component is an environment 
compiler which converts the output of the modeling program 
into the format required by the viewing program. 

The modeling program is based on two key concepts, 
which are primitives and masters. A primitive is a template 
that is used to create an object. The set of primitives in the 
modeling program can be extended at any time. At the 
present time a programmer must write a C procedure for each 
new primitive, but we are in the process of designing a spe
cial primitive definition language that :will simplify the con
struction of primitives. Most of the primitives in the modeler 
are parameterized. When the user creates an instance of the 
primitive, he specifies the parameter values for it using a set 
of graphical potentiometers. Each of the parameters has a 
default value that produces a reasonable object. For example, 
one of the default primitives is a floor. The parameters for 
this object are whether the floor is tiled, and the size of the 
tiles. 

A master is a collection of objects that is treated as a 
unit The objects in a master can be either primitives, or 
instance of other masters. When a object is added to a master 
the user interactively positions, scales, and orients the object 
within the master's coordinate system. An environment is 
produced by Creating instances of the masters. When an 
instance is created, the user can position, scale and orient it in 
the same way that objects are handled within masters . The 
transformations used to position the instances within the 
environments can be interactively edited. 

The viewing program is based on BSP trees 
[Fuchs80, Fuchs83J . A BSP tree is a binary tree that has a 

128 

polygon at each of its nodes. The left subtree of the current 
node contains polygons that are behind the polygon at the 
node, and the right subtree contains polygons that are in front 
of the polygon at the current node. The normal to the 
polygon is used to determine its front and back sides. When a 
BSP tree is displayed, the eye position is compared to the 
polygon at each node as it is visited. The coordinates of the 
eye can be inserted into the plane equation for the polygon to 
determine Whether the eye is in front or behind the polygon. 
If the eye is in front of the polygon, the left subtree is 
displayed first. then the polygon at the current node followed 
by the right subtree. Otherwise, the right subtree is displayed 
first. followed by the polygon at the current node and the left 
subtree. The BSP tree is independent of the eye position, 
each time the viewer's eye changes the BSP tree is traversed. 
Thus, BSP trees are an efficient solution to the hidden surface 
problem for static environments. For large environments the 
construction of a good BSP tree can be quite time consuming, 
therefore, the scene compiler is used to pre-compute the BSP 
trees. 

The viewer has essentially the same user interface as 
the skeleton application. Each time that the user moves his 
head, the BSP tree is traversed to give the current view of the 
environment. The user can use either the mouse or the navi
gation box to change the origin of the user's coordinate sys
tern and to change the scale of his motions. With our current 
hardware configuration environments with a few hundred 
polygons give reasonably good response (between 5 and 10 
updates per second). The upper limit for this configuration is 
about 500 polygons. Our experience indicates that most 
interesting environments will have several thousand 
polygons, and this should be possible with current works ta
tion technology (one of the workstations we are using in our 
current configuration is 5 years old). 

The scene compiler converts the data structure used by 
the modeler into a set of BSP trees. Basically, each of the 
objects in the model is converted into a BSP tree. Using a set 
of BSP trees instead of one BSP tree for the entire environ
ment solves two problems. First, the size of the BSP tree 
grows quite quickly as the number of polygons in the environ
ment increases. When each node of the BSP tree is con
structed, the remaining polygons in the model must be 
divided into two disjoint groups depending on whether they 
ar.e in front of or behind the current polygon. The plane of 
the current polygon usually cuts several of the polygons in the 
environment, thus each of these polygons will give rise to two 
or more polygons in the BSP tree. As the number of 
polygons in the environment increases, the number of 
polygons that will be cut also increases (there is a greater pro
bability that any given polygon will be cut). Thus, for large 
environments it is hard to construct good BSP trees. For a 
convex polyhedron, none of the polygon planes cut any of the 
pOlygons in the polyhedron. Most of the objects that occur in 
the environments are basically convex, therefore, good BSP 
trees can easily be built for most of these objects. Thus, 
building a BSP tree for each object. and then ordering them 

Graphics Interface '90 



correctly for each view point, will result in fewer polygons to 

display, and fewer tree nodes to visit 

The second reason for building a separate tree for each 
object is to allow for simple motion in the environment. If 
each object has a separate BSP tree, it can be moved without 
recomputing all of the BSP trees in the environment. The 
only thing that will change is the order in which the trees 
must be displayed. We are currently developing algoritluns 
and heuristics that will accommodate these simple motions. 

s. Applications 

The hardware configuration and software tools 
described in the previous sections have been used to produce 
a number of virtual reality user interfaces. The development 
of one of these interfaces for fluid dynamics is described in 
this section. 

The starting point for the development of this user 
interface was an existing fluid ,dynamics program [Bul
garelli84]. This program is written in Fortran and runs on 
two of the computers in our department (a MIPS M/lOoo and 
a Myrias SPS-2). The main aim of the exercise was to add a 
virtual reality user interface to this program with minimal 
changes to the existing program code. The two main reasons 
for choosing this program were the availability of the source 
code, and that it appeared to be a typical scientific program. 

The fluid dynamics program runs on one of the proces
sors mentioned above and the virtual reality user interface 
runs on the Iris workstations. The two programs communi
cate over the etheI1'!et, with the user interface part of the 
application responsible for starting the fluid dynamics code. 
This particular configuration minimizes the changes that must 
be made to the fluid dynamics program. The following 
changes have been made to the fluid dynamics program. 
First, the program now reads all of its boundary conditions 
.from a file (the original version of the program read some of 
the boUndary conditions from a file, and others were set with 
assignment statements). Second, the format of the output was 
changed slightly so it was easier for the user interface com
ponent to read. Third; the output routine was modified to read 
a packet of data each time a packet of results was sent to the 
user interface .. This packet exchange is used to synchronize 
the two programs, and to pass data from the user interface to 
the fluid dynamics program. The data in the packet indicates 
changes in the boundary conditions for the computation. 
Fourth, the routines that enforce the boundary conditions 
were modified to accept data from the user interface. These 
modifications involved less than 5% of the fluid dynamics 
program code. 

The development of the user interface started with the 
application skeleton described in section 4.1. The first step in 
developing the user interface was to produce images of the 
fluid flow. This was done by using the height of the water 
surface at each point on the computation grid to define a 
polygonal mesh representing the fluid surface. The polygons 
in this mesh are displayed in back to front order based on the 

129 

position of the viewer's eye (since the mesh is rectangular and 
located at a fixed position in space, this is fairly easy to do). 
With this version of the user interface the user could view the 
flow as it developed over time, and he could walk around, or 
through, the flow to obtain different views of it 

The other chang~ to the skeleton program was adding 
the interaction with the DataGlove. If the hand comes in con
tact with the surface of the flow, the boundary conditions 
must be changed. There are two types of contact possible, 
one type is to slap the fluid, which involves momentary con
tact with the fluid and a transfer of velocity (really momen
tuM. but in the computations it turns into a velocity boundary 
condition) to the part of the flow that the hand comes in con
tact with. This type of contact can be handled by sampling 
the position of the DataGlove at fixed intervals of time. If the 
position of the DataGlove intersects the flow, then its velocity 
is computed from previous positions and sent to the fluid 
dynamics program as a change in velocity boundary condi
tion. The second type of contact occurs when the hand is 
placed in the flow and held at that position. This type of con
tact results in a new position boundary condition. The fluid 
dynamics program has not be modified to handle this type of 
boundary condition, - therefore, this type of contact has not 
been added to the user interface. 

6. Conclusions 

In this paper we have described our experiences with 
developing virtual reality user interfaces. This experience has 
suggested a number of research directions, which we will 
briefly outline. 

. Fast graphics hardware is important for virtual reality 
user interfaces. Our experience indicates that displays capa
ble of drawing 20,000 polygons per second are required. This 
type of display technology is available commercially, but it is 
expensive and two displays are required for stereo. We need 
cheap displays that can draw large numbers of polygons. We 
also need devices that can produce sound and tactile feed
back. On the input side we need better devices for interacting 
wi~ the environment. 

One of the main problems with developing virtual real
ity user interfaces is an almost total lack of good software 
tools. The tools that we have discussed are a start in this 
direction, but much more needs to be done. Our tools do not 
address the problem of dynamic objects in the environment 
To handle this type of object we need efficient hidden surface 
algorithms, and ways of modeling and . describing their 
motions. The description of their motion must include how 
they interact with other objects in the environment. We also 
need better tools for adding user interfaces to existing appli
cations and producing good visualizations of their data. 

Reference.s 

Brooks86. 
F. P. Brooks, Walkthrough - A Dynamic Graphics 

Graphics Interface '90 



System for Simulating Virtual Buildings, Proceedings 
1986 Workshop on Interactive 3D Graphics, 1986, 9-
21. 

Bulgarelli84. 
U. Bulgarelli, V. Casulli and D. Greenspan, Presswe 
Methods for the Numerical Solwion of Free Swface 
Fluid Flows, Pineridge Press, Swansea. UK, 1984. 

Fisher86. 
S. S. Fisher, M. McGreevy, 1. Humphries and · W. 
Robinett, ~irtual Environment Display System, 
Proceeding of ACM 1986 Workshop on Interactive 3D 
Graphics, 1986; 77 -81. 

Fuchs80. 
H. Fuchs, Z. Kedem and B. Naylor, On Visible Surface 
Generation by A Priori Tree Structures; Siggraph' 80 
Proceedings, 1980, 124-133. 

Fuchs83. 
H. Fuchs, G. Abram and E. Grant, Near Real-Time 
Shaded Display of Rigid Objects, Siggraph' 83 
Proceedings, 1983,65-69. 

Green85. 
M. Green, The University of Alberta User Interface 
Management System, Siggraph'85 Proceedings, 1985, 
205-213. 

Green89. 
M. Green, Artificial Reality: A New Metaphor for User 
Interfaces, International Conference on CAD & CG, 
Beijing, China, 1989. 

Krueger83. 
M. W. Krueger, Artificial Reality, Addison Wesley, 
Reading, MA, 1983. 

Shoemake85. 
K. Shoemake, Animating Rotation with Quaternion 
Curves, Siggraph' 85 Proceedings, 1985, 245-254. 

Singh89a. 
G. Singli and M. Green, A High-Level User Interface 
Management System, Proceedings ofCHJ'89, 1989 .. 

Singh89b. 

130 

G. Singh and M. Green, Generating Graphical 
Interfaces from High-Level Descriptions, Proceeding of 
Graphics Interface'89, 1989. 

Zimmerman81. 
T. G. Zimmerman and J. Lanier, A Hand Gesture 
Interface Device, Proceedings of CHI and Graphics 
Interface 1987,1981,189-192. 

Graphics Interface '90 


