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Abstract 

We discuss adaptive. hierarchical. spatial subdivisions of pla­
nar polygonal maps. These maps are extensively used in car­
tography. GIS. computer graphics and computer vision. Our 
results are applicable to many subdivision schemes. including 
quad trees. k-d trees. and binary space partitioning (ESP). We 
focus on cell splitting rules and leaf organization methods. 
introducing and comparing three of them. The simple rule re­
sults in short hierarchy trees but leaf operations are costly. The 
convex rule enjoys efficient leaf operations at the expense of 
taller trees . The convex differences rule combines both short 
hierarchies and efficient operations to create the convex differ­
ences hierarchy (CDH). It utilizes the convex differences tree 
(CDT) representation of simple polygons. We also present 
vertex enlargement. a technique for reducing the map com­
plexity which results in shorter trees and simplified splitting 
rules. 

Keywords: Polygonal subdivisions. Geometric data bases. 
Hierarchical data structures. Spatial data structures. Adaptive 
data structures. Convex differences tree (COT). Convex dif­
ferences hierarchy. Convex decomposition of polygons. 

Introduction 

A polygonal map (or a planar polygonal subdivision) is a 
subdivision of the plane into disjoint regions. each of which 
is a polygon. The elements of the map are the regions. the 
edges separating them. and the vertices where edges meet. 
Polygonal maps arise in many applications. among which are 
geographic information systems (GIS). cartography. computer 
aided design. computer graphics and computer vision. 

The main computational problem associated with polyg­
onal maps is how to represent them efficiently. storage- and 
computation-wise. Some of the prevalent operations which 
are to be performed on polygonal maps are point location 
(given a point. which region does it belong to). segment cut­
ting (given a line segment. which regions does it intersect). 
dynamic changes (insertion and deletion of edges or regions). 
and overlay of one map on another. 

The approaches towards the problem can be coarsely clas­
sified into theoretic. which aim at theoretical optimality. and 
practical. which aim at good performance for maps encoun­
tered in practice. 

The point location problem has received much theoretic 
attention in the field of computational geometry [Pre8S). 
[Ede87) . Optimal solutions require pre-processing time of 
O( n log n). O( n) storage and point location time of O(log n). 
n is the size of the map. which is the number of the vertices or 
edges. It does not matter which of them. as they are linearly 
related by Eulers' formula [Har69). Some optimal solutions 
are the triangular hierarchy of Kirkpatrick [Kir83) and the 
layered dag of Edelsbrunner. Guibas and Stolfi [Ede86) . Al­
though theoretically optimal. these algorithms have significant 
disadvantages. First, the constants involved may be too large 
to make the method practical. This is certainly true for the 
Kirkpatrick algorithm. and maybe also for the layered dag. 
Second. it is not clear at all that the structures they use are 
able to efficiently support operations other than point location. 
Third is the difficulty of implementation. The practicality of 
these methods has not yet been demonstrated. 

The second class of approaches towards polygonal maps 
aims at practical usefulness. using schemes which are not the­
oretically optimal (some times they are not even analyzed 
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thoroughly) but which are claimed to achieve good perfor­
mance in practice. An advantage of these schemes is that 
most of them are suited to many kinds of operations on the 
map, not only for point location. Practical methods can be 
classified according to a number of orthogonal characteristics. 
Among them are whether the method organizes the embed­
ding space or the input data, whether the method adapts its 
data structures to the input data or not, and whether the orga­
nization of the data is hierarchical or uni-level. 

Here are some examples. The quadtree with its many 
variants [SamS9a] is hierarchical, adaptive and space organiz­
ing. The grid file [NieS4] is uni-level, adaptive, and space 
organizing. Object hierarchies [KayS6] organize the input 
data and adapt to it. A uniform grid ([FraSS], [EdaS4]) is 
uni-level, organizes the embedding space, and adapts to the 
data in a very limited sense or not at all. The two books 
of Samet [SamS9a],[SamS9b] contain a wealth of information 
about spatial data structures as well as a large bibliography. 

In this paper we discuss representation schemes for polyg­
onal maps which are based upon hierarchical, adaptive, dis­
joint spatial subdivisions. These are probably the most pop­
ular among the above methods. Our focus will be on the 
point location operation, discussing only static maps. This is 
a limitation, but static maps are very useful in many applica­
tion areas, including GIS, cartography and computer vision. 
Our results are applicable to quadtrees, k-d trees, binary space 
partitioning (BSP) and similar data structures. 

The contributions of the paper include: 

• Presentation of the convex differences hierarchy (COH) as 
a method for hierarchical storage of polygonal maps. The 
COH utilizes the convex differences tree (COT) represen­
tation of simple polygons [RapS9b] both as a splitting rule 
and as a leaf organization scheme. As a splitting rule it 
provides a better estimate to the complexity of the map 
than the number of polygons or the number of edges. As 
a leaf organization scheme it enables more efficient opera­
tions on polygons than the usual vertex list representation 
or a convex decomposition. 

• Introduction of vertex enlargement as a technique for re­
ducing the complexity of a polygonal map around vertices 
having a high degree. Vertex enlargement simplifies cell 
splitting rules and results in shorter hierarchy trees. 

Hierarchical Methods for Polygonal Maps 

In this section we discuss adaptive, hierarchical, exact repre­
sentations of polygonal maps . We limit ourselves to disjoint 
hierarchies in the set theoretic sense, which are far more use­
ful than other hierarchies. The discussion is valid for other 
types of geometric objects in addition to polygons. 

Adaptive hierarchical methods organize a map in a tree. 
Each node contains a region (cell) of the plane. If the part 
of the map which lies in this region is too complex, the re­
gion is decomposed (split, subdivided) into a number of dis­
joint sub-regions. These are represented by child nodes of the 
original node. The process continues recursively untill there 
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is no need to subdivide. The internal nodes of the tree hold 
only structural information, while the leaf nodes hold the real 
information about the data. 

To use a hierarchical representation scheme, three main 
decisions should be made: the nature of the decomposition 
into sub-regions, the criterion of when to decompose, and the 
organization of the data in the leaves of the resulting tree. 
Following is a discussion on these issues. The paper focuses 
on the last two. 

The decision giving the particular scheme its name is the 
first one, the nature of the decomposition into sub-regions. 
The main distinction is between methods in which the decom­
position is guided by the data and those in which it is not. 
The latter are still among the adaptive methods, because the 
second issue, the splitting criterion, considers the input data. 

Three popular methods are the quad tree [SamS9al, in 
which a region is always decomposed into four equal sized 
sub-regions using a horizontal and a vertical line; the k-d tree 
[Ben75], in which the decomposition is made by horizontal 
and vertical lines alternately, located so as to balance the load 
between each of the two sub-regions; and binary space parti­
tioning (BSP) [FucSO], which is similar to the k-d tree in that 
it tries to balance the load between SUb-regions, however the 
decomposition is not restricted to be done by lines parallel to 
the coordinates. The results of this paper are relevant to any 
of these methods . 

The second important decision to be made by a particular 
hierarchical method is how to determine when a node has to 
be decomposed. The rule of determination is referred to as 
the splitting rule. This decision is independent of the splitting 
method used. The general policy is to estimate the complexity 
of the region and decompose the region if its complexity is 
greater than some pre-defined, constant threshold value, the 
splitting threshold. A basic distinction between complexity 
measures is whether they are region based, edge based or 
vertex based. In this paper we consider only region based 
rules. 

The third decision concerns the organization of the data in 
the leaves of the tree and how to relate this data to the original 
data (before the decompositions were performed). Considera­
tions here are efficiency of computations on the leaf node, the 
amount of storage used, and numerical stability. 

The three issues addressed above affect the structure and 
nature of the hierarchy. There are other issues, such as the 
physical storage of the tree and algorithmic issues concerning 
the efficient creation of the tree. These issues are not dealt 
with in the paper. 

An important observation concerning polygonal maps 
which is relevant to the rest of the paper is that the num­
ber of edges in the map can be much greater than the number 
of polygons. This is the case in many maps of interest, such 
as maps obtained by digitization of cartographic maps or maps 
in which the polygonal regions are approximations for curved 
regions. 

Vertex Enlargement 

An implicit assumption of the general hierarchical scheme out-
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lined in the previous section is that decomposing a node re­
duces its complexity, otherwise the decomposition could go on 
forever. A very natural region based splitting rule is to subdi­
vide the region if the number of polygons incident in it is too 
large. However, a vertex of the polygonal map may have an 

. arbitrary number of polygons meeting in it. No decomposition 
reduces this number unless the splitting line passes through the 
vertex. There is always a cell containing this vertex, and this 
cell will be redecomposed. 

One way of overcoming this difficulty is to include the 
case of a single vertex in a cell in the splitting rule [Sam89a]. 
The modified splitting rule is 'if the number of polygons in the 
cell exceeds the threshold, decompose it, unless there is only 
one vertex in the cell'. The rule is very simple, but it may 
result in a very fine decomposition at the neighbourhood of 
vertices. In some types of maps, like road maps, the degree of 
a vertex is not likely to be high, and the drawback vanishes. 
In other types it may incur an inadmissible cost. 

We suggest a new way of treating this situation. Before 
the decomposition process is started, all vertices having a high 
degree are found. Call such a vertex a cenJer vertex. Every 
center vertex is replaced by a polygon which intersects only 
the polygons adjacent to the vertex. The polygon is called 
the new polygon. The edges of this polygon are formed by 
connecting points on adjacent edges incident on the problem­
atic vertex, unless the angle between the edges is more than 
180. The connecting points are called new vertices and the 
segments connecting them new edges. The new polygons are 
marked as such, with a pointer to the center vertex. 

In Figure 1 we see a center vertex adjacent to four poly­
gons. The new edges are dashed. The polygon on the left 
does not cause a new edge because the angle is more than 
180. 

Figure 1: Vertex enlargement. 

If the new vertices are sufficiently close to the center ver­
tex, then the new edges will not cross existing edges and the 
process will result in a new legal polygonal map. Taking care 
of that is easy. In every polygon incident on the center vertex, 
we find the vertex closest to the center vertex by examining 
all vertices of the polygon. We take the new vertex has to be 
closer to the center vertex than the two closest vertices of the 
two polygons neighbouring the new vertex. In Figure 1 the 
upper new vertex obeys this restriction while the one below 
it does not. Note that if it is desired that the new polygon be 
convex, the new vertices can be taken at a same distance from 
the center, the minimum of all distances computed. 

185 

If the new polygon is very small the area around it will 
again be finely decomposed, but this would result from high 
map complexity in the vicinity of the vertex. This is so be­
cause a new polygon is small only if there are many original 
vertices in the neighbourhood of the center vertex. In this case 
finer decomposition around the vertex is not objectionable, as 
this is the policy of hierarchical schemes. 

The vertex enlargement method results in trees which are 
shorter than trees created using the modified splitting rule. 
Generally, the map complexity near a new polygon is reduced 
when the splitting line passes through it. This happens much 
sooner than when the center vertex becomes the only vertex 
in the cell. 

The Simple and Convex Splitting Rules 

In this section we detail two natural region based splitting 
rules, the simple rule and the convex rule, and in the next 
section a new one, the convex differences rule . The simple 
rule estimates the cell complexity according to the number of 
polygons in it. The convex rule is the same, but with a pre­
processing that decomposes all polygons into convex pieces. 
For each of the rules we discuss its advantages and disad­
vantages, give an accompanying leaf structure and analyze its 
efficiency. 

1. The Simple Splitting Rule 
The simple splitting rule adopts the simplest criterion for the 
complexity of a cell. The number of polygons which fall in the 
cell serves as the complexity estimate. If this number exceeds 
the splitting threshold the cell is subdivided. As explained 
in the previous section, vertex enlargement ensures that the 
recursive splitting will stop. The resulting structure is called 
the simple hierarchy (SH) . 

Leaf cells are not organized in any special way. Every 
leaf stores a list of the polygons in it. To locate a polygon 
containing a specific point, the tree is traversed top down 
until the leaf that contains the point is found. Recall that the 
spatial subdivision is disjoint, so a point can be located only 
in regions which are sub-regions of a cell that contains the 
point. Then a sequential search for the point is made in all 
the polygons in the list. For every polygon, a point-polygon 
classification algorithm [Pre85] is performed. The algorithm 
takes time linear in the size of the polygon, so the cost of 
searching in the leaf is linear in the number of edges of the 
polygons in it. 

As stated earlier, the number of edges in a cell can be 
much greater than the number of polygons in it. This means 
that the complexity measure was inaccurate: the number of 
polygons in a cell is not a good measure for the complexity 
of operations on the cell. 

2. The Convex Splitting Rule 
Operations on convex polygons are more efficient than op­
erations on general or simple polygons. Point-polygon clas­
sification, intersection with a line, and intersection detection 
between two convex polygons take logarithmic time ([Cha87], 
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[Rap89aJ). Intersecting two convex polygons takes linear time 
[Or082). 

This motivates an improved splitting rule. As a prelimi­
nary step, all polygons are subdivided into convex parts. This 
is easy to achieve, e.g. by triangulation 1. The complexity 
measure is again the number of polygons incident in the cell, 
and leaf cells hold a list of these polygons. This results in the 
convex hierarchy (CH) . 

The advantage of the convex rule is that operations on a 
leaf are much faster. The number of polygons in a cell is now 
a more accurate measure for the complexity of the cell. 

The disadvantage of the convex scheme is that the total 
number of polygons can be much greater after their subdivi­
sion into convex parts. In Figure 2 there are only two poly­
gons. The lower one is convex. In every convex subdivision 
of the upper one (an example convex subdivision is shown 
dashed; ignore the dotted edge for the moment) the number 
of convex parts is at least the number of edges, becaune every 
edge participates in a different convex part. 

, , 

Figure 2: Two polygons (solid lines) and a convex decom­
postion (dashed lines). The dotted line is a COT edge of the 
upper polygon. 

Note that the convex decomposition can be deferred to the 
end of the process, with successive spliuings if it results in 
more polygons than the threshold value. It is not clear which 
option is better. 

The Convex Differences Hierarchy (CDH) 

The convex differences hierarchy (CDH) results from the con­
vex differences splitting rule and leaf organization method. 
The rule utilizes the efficiency of operations upon convex 
polygons without significantly deepening the hierarchy tree. It 
is based on the convex differences tree (CDT) representation 
for simple polygons [Rap89b), [Tor84]. A simple polygon is 
represented as a tree. the root of the tree contains the convex 
hull of the polygon. For every connected component of the 
difference between the convex hull and the polygon there is 
a son node (child) of the root. This difference is viewed as 
a simple polygon, to be represented recursively by the child 
node. An example is given in Figure 3. 

1 Algorithms for optimal convex decomposition with and without 
the introduction of new vertices (Steiner points) are given in [Cha85) 
and [Gre83) respectively. 
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Figure 3: An example of a polygon and its COT. 

PointClassify(p,N) 
/* p is a point, N is a node, initially the root * / 
if p is outside the convex hull of N 

return OUT; 
for a 11 sons of N 

if PointClassify (p, son) - IN 
return OUT ; 

return IN ; 

Figure 4: Point-polygon classification with the CDT. 

In a previous work [Rap89bJ we showed that the space 
occupied by the COT is linear in the number of vertices of the 
polygon. An efficient O( k log k) algorithm for converting to 
the COT representation from the vertex list representation was 
given, where k is the number of edges of the polygon. It was 
also shown how to perform commonplace operations on the 
COT. These operations include point classification, segment 
intersection, Boolean operations between two polygons and 
sorting of the vertices in an arbitrary direction. 

The operations are done by performing a tree traversal 
on the COT, calling efficient convex polygon algorithms to 
operate on the nodes. For example, an algorithm for point­
polygon classification with the COT is given in Figure 4. The 
algorithm uses the fact that a point is inside a node of the 
COT if and only if it is inside the convex hull of the node and 
outside of all the children of the node. 

For certain families of polygons, some of the operations 
were shown to be much more efficient than when using the 
standard vertex-list representation. 

These families include polygons which obey one or both 
of the following conditions. The bounded depth condition is 
obeyed when the depth of the COT is bounded by a small 
constant (e.g. 5). In general, the depth of a COT can be 
linear in the number of vertices of the polygon [Rap89bJ, but 
it takes highly complicated shapes, such as fractals developed 
into deep recursion, to achieve that. 

The bounded node condition is obeyed whenever the num­
ber of nodes in a COT is bounded by a constant. This condi­
tion is much stronger than the previous one, since every level 
of the COT can have many nodes. Many of the polygons 
which arise in computer graphics or computer aided design 
obey this condition. 

For polygons which obey the bounded depth condition, the 
construction time of the COT is linear in the number of ver-
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tices. For polygons which obey the bounded node condition, 
the operations of point-polygon classification and segment­
polygon intersection require logarithmic time [Rap89b]. 

The reason for the efficiency of the operations on the COT 
is two-fold. The polygon is represented in a hierarchy, which 
enables fast pruning of redundant paths. For example, if the 
point to be classified is outside of the convex hull of the 
polygon, this will be detected at the first step of testing against 
the root of the COT. The second reason is that each level of the 
hierarchy is represented by a convex polygon, which permits 
very efficient operations. 

We can now explain the convex differences splitting rule 
and leaf structure. As a preliminary step we perform vertex 
enlargement, the replacement of high degree vertices by poly­
gons around them. The decomposition process is initiated as 
in the simple scheme, with the splitting rule being the number 
of polygons in a cell (any decomposition process can easily 
produce this number). When this number is under the splitting 
threshold T, the CDT representation of all polygons in the cell 
is computed. Now the decomposition process is resumed, the 
splitting threshold being the total number ofCDT rwdes in the 
cell. Decomposing a cell entails a recalculation of the COT's 
of all polygons in the new sub cells . For leaf nodes we again 
keep a list of all polygons in them, similar to the simple and 
convex schemes, but represented as COT's. 

Note that the number of CDT nodes is never smaller than 
the number of polygons, because every polygon has at least 
one CDT node. Hence, it never happens that a cell should be 
split according to the first (simple) rule and is found to be too 
simple in the second (convex differences) rule. There is no 
need to reunite decomposed cells. 

When the original map is convex, i.e. all the participating 
polygons are convex, the three splitting rules coincide, because 
a polygon is convex if and only if its COT has one node. 

As an example for a CDH see Figure 2. The figure shows 
one cell which contains two polygons. The lower one is con­
vex and its COT has one node. The CDT of the upper poly­
gon has two nodes, the root containing the convex hull of 
the polygon (it has one edge not belonging to the polygon, 
shown dotted), and a child node containing the part of the 
lower polygon bounded by the dotted edge. The total number 
of polygons belonging to the CDH of the cell is three, all of 
them convex. Note that they are not disjoint. As noted earlier, 
the number of polygons in a convex decomposition of the cell 
is arbitrarily large. 

Comparison 

We have already noted that for general hierarchical schemes 
the splitting criterion is independent of the nature of the de­
composition. Its major effect is on the depth of the tree. The 
leaf organization policy, which is somehow related to the split­
ting rule, affects the time to perform the desired operation on 
the leaf. Hence, the only parameters we need for comparing 
the presented splitting rules, apart from the splitting threshold 
T, are the depth of the hierarchy tree and the average number 
of edges in a polygon after the decomposition. 
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1. Depth of the Hierarchy Tree 
Among the three rules, the simple rule results in the shortest 
trees. This is a consequence of the already stated fact that the 
number of CDT nodes and the number of convex parts of a 
cell are not smaller than the number of polygons in it. 

Next in depth of its trees is the convex differences hierar­
chy. It is hard to determine exactly how much deeper are its 
trees compared to the simple rule. This depends on how far 
the polygons are from being convex and how noisy are their 
edges. If the polygons obey the bounded node condition there 
is not much of a difference. If they obey the bounded depth 
condition we can expect the difference to be a small constant. 
Note that considering the total number of CDT nodes in the 
splitting rule results in averaging the effect of complex shaped 
polygons with this of simpler polygons in the cell. 

The deepest trees result from convex decomposition. In 
Figure 2, the CDT has three nodes as compared to an arbitrar­
ily large number of convex parts. This phenomenon is very 
common in maps whose edges are a result of an approximation 
process. 

2. Storage and Construction Time 
The arguments concerning storage are the same as those for 
the depth of the tree. The best rule is the simple rule and the 
worst is the convex rule. The storage occupied by a COT is 
linear in the number of polygon vertices, and the depth of the 
CDH is close to that of the SH. Hence the storage requirements 
of the CDH are not much greater than those of the SH, and 
are certainly smaller than those of the CH. 

Regarding construction time, the arguments are less clear. 
A convex decomposition takes time, but it enables the de­
composition process to be carried more efficiently by using 
the logarithmic time algorithm for intersecting a line against 
a convex polygon [Rap89a]. This is also true for the COT. 
However, we discuss static maps, and construction time is the 
least important factor of our comparison. 

3. Point Location in a Leaf 
In all three schemes, point location is done by first traversing 
the hierarchy tree to reach the cell containing the given point 
and then searching the list of polygons incident in the cell and 
classifying the point against each. The time to reach the cell 
is a function of the depth of the tree, which we have already 
discussed 

The splitting threshold T gives an upper bound on the 
number of point-polygon classifications. Denote bye, e e, e ed 

the average number of edges of a polygon in a cell in the sim­
ple, convex, and convex differences hierarchies respectively. 

In the simple rule, classifying a point against a polygon is 
done by firing a ray from the point to infinity and counting the 
number of intersections with the edges of the polygon [Pre8S]. 
This costs O( e) operations. Hence the cost of point location 
in a leaf is O(Te). 

In the convex rule, the cost of point location is 
O(T log ee), because of the logarithmic time algorithm for 
classifying a point against a convex polygon[Pre85], [Rap89a]. 
ee is expected to be much smaller than e. In the case of trian-
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gulation, ee = 3, the cost of the classification against a single 
polygon is constant, and the point location cost is O(T). 

In the convex differences hierarchy, the worst case cost of 
point location is O(T log eed), but there is a potential saving 
due to the hierarchical nature of the COT representation of a 
polygon. Specifically, if the point was found to be outside of 
a node of the COT, there is no need to test for inclusion in 
any of its descendants. e cd is also smaller than e, but larger 
than ee. 

In summary, the point location operation is most efficient 
in the CH, with no significant difference from the CDH. It is 
most costly in the SH. 

Note that in all methods, if the point is located within 
a new polygon (one which has resulted from the vertex en­
largement preprocess), the point should be classified against 
the neighbourhood of the center vertex using the original data. 
This can be done in time logarithmic in the number of edges 
meeting at the center vertex using binary search for the angle, 
as shown in [Rap89a]. 

4. Conclusion 
Many maps are obtained by manual design, approximation, or 
sampling of smooth data. In such cases, the polygons in the 
map are not very complex, i.e. their COT's have a limited 
number of nodes and a bounded depth. Hence, the depth 
of the hierarchy tree resulting from the CD splitting rule is 
almost the same as the depth resulting from the simple rule. 
The operations on a leaf are much more efficient, especially 
when e, the average number of edges per polygon, is large. 
In this case the CDH is superior to the SH. 

The convex splitting rule results in much deeper hierarchy 
trees occupying a lot more storage. It enables fast operations 
on the leaves, but there is not much of a difference from leaf 
operation time in the convex differences scheme. As a result 
the CD rule is beuer than the convex rule, since the depth of 
the tree becomes the important factor. 

The advantage of the CDH diminishes when dealing with 
maps whose polygons have very complicated boundaries, e.g. 
fractals . In this extreme case the depth of the COT of a 
polygon, as well as the number of polygons in a convex de­
composition, are large, and we can expect the SH to be better 
than the CH and the CDH. 

To focus the discussion, point location was the only op­
eration dealt with. The nature of the conclusions holds for 
other operations also. Most operations done on polygons pos­
sess efficient algorithms when the polygons are convex. As 
a result, the leaf organization in the convex and convex dif­
ferences rules facilitates more efficient operations than this of 
the simple rule, while the depth of the CD trces is smaller 
than this of the convex trees. 

Future Research 

An obvious direction to continue this research is to extend our 
results to dynamic situations. In particular, vertex enlargement 
should be adapted to changing maps. 

The COT cell organization can be applied to non-adaptive 
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schemes simply by computing the COT's of all regions in 
the cell. Operations on the cell are more efficient than when 
keeping the regions in the vertex list representation. Of course, 
we no longer have control on the number of COT nodes in the 
cell because non-adaptive schemes do not decompose cells. 

An algorithm to efficiently split a COT along a line can 
accelerate the CDH construction time. Such an algorithm is 
useful at the stage when we already have the COT's of all 
polygons in the cell and it has to be decomposed. 

We have not compared our region based approach to edge 
based approaches. Edge based approaches generally decom­
pose the space finer than region based approaches. The choice 
between them probably depends on the nature of the data. 
Various experiments with large size real data should be per­
formed. 
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