
183

Using Convex Differences in Hierarchical
Representations of Polygonal Maps

Ari Rappoport
Computer Science Department

The Hebrew University
Jerusalem. Israel 91904

arir@humus.huji.ac.il

Abstract

We discuss adaptive. hierarchical. spatial subdivisions of pla­
nar polygonal maps. These maps are extensively used in car­
tography. GIS. computer graphics and computer vision. Our
results are applicable to many subdivision schemes. including
quad trees. k-d trees. and binary space partitioning (ESP). We
focus on cell splitting rules and leaf organization methods.
introducing and comparing three of them. The simple rule re­
sults in short hierarchy trees but leaf operations are costly. The
convex rule enjoys efficient leaf operations at the expense of
taller trees . The convex differences rule combines both short
hierarchies and efficient operations to create the convex differ­
ences hierarchy (CDH). It utilizes the convex differences tree
(CDT) representation of simple polygons. We also present
vertex enlargement. a technique for reducing the map com­
plexity which results in shorter trees and simplified splitting
rules.

Keywords: Polygonal subdivisions. Geometric data bases.
Hierarchical data structures. Spatial data structures. Adaptive
data structures. Convex differences tree (COT). Convex dif­
ferences hierarchy. Convex decomposition of polygons.

Introduction

A polygonal map (or a planar polygonal subdivision) is a
subdivision of the plane into disjoint regions. each of which
is a polygon. The elements of the map are the regions. the
edges separating them. and the vertices where edges meet.
Polygonal maps arise in many applications. among which are
geographic information systems (GIS). cartography. computer
aided design. computer graphics and computer vision.

The main computational problem associated with polyg­
onal maps is how to represent them efficiently. storage- and
computation-wise. Some of the prevalent operations which
are to be performed on polygonal maps are point location
(given a point. which region does it belong to). segment cut­
ting (given a line segment. which regions does it intersect).
dynamic changes (insertion and deletion of edges or regions).
and overlay of one map on another.

The approaches towards the problem can be coarsely clas­
sified into theoretic. which aim at theoretical optimality. and
practical. which aim at good performance for maps encoun­
tered in practice.

The point location problem has received much theoretic
attention in the field of computational geometry [Pre8S).
[Ede87) . Optimal solutions require pre-processing time of
O(n log n). O(n) storage and point location time of O(log n).
n is the size of the map. which is the number of the vertices or
edges. It does not matter which of them. as they are linearly
related by Eulers' formula [Har69). Some optimal solutions
are the triangular hierarchy of Kirkpatrick [Kir83) and the
layered dag of Edelsbrunner. Guibas and Stolfi [Ede86) . Al­
though theoretically optimal. these algorithms have significant
disadvantages. First, the constants involved may be too large
to make the method practical. This is certainly true for the
Kirkpatrick algorithm. and maybe also for the layered dag.
Second. it is not clear at all that the structures they use are
able to efficiently support operations other than point location.
Third is the difficulty of implementation. The practicality of
these methods has not yet been demonstrated.

The second class of approaches towards polygonal maps
aims at practical usefulness. using schemes which are not the­
oretically optimal (some times they are not even analyzed

Graphics Interface '90

thoroughly) but which are claimed to achieve good perfor­
mance in practice. An advantage of these schemes is that
most of them are suited to many kinds of operations on the
map, not only for point location. Practical methods can be
classified according to a number of orthogonal characteristics.
Among them are whether the method organizes the embed­
ding space or the input data, whether the method adapts its
data structures to the input data or not, and whether the orga­
nization of the data is hierarchical or uni-level.

Here are some examples. The quadtree with its many
variants [SamS9a] is hierarchical, adaptive and space organiz­
ing. The grid file [NieS4] is uni-level, adaptive, and space
organizing. Object hierarchies [KayS6] organize the input
data and adapt to it. A uniform grid ([FraSS], [EdaS4]) is
uni-level, organizes the embedding space, and adapts to the
data in a very limited sense or not at all. The two books
of Samet [SamS9a],[SamS9b] contain a wealth of information
about spatial data structures as well as a large bibliography.

In this paper we discuss representation schemes for polyg­
onal maps which are based upon hierarchical, adaptive, dis­
joint spatial subdivisions. These are probably the most pop­
ular among the above methods. Our focus will be on the
point location operation, discussing only static maps. This is
a limitation, but static maps are very useful in many applica­
tion areas, including GIS, cartography and computer vision.
Our results are applicable to quadtrees, k-d trees, binary space
partitioning (BSP) and similar data structures.

The contributions of the paper include:

• Presentation of the convex differences hierarchy (COH) as
a method for hierarchical storage of polygonal maps. The
COH utilizes the convex differences tree (COT) represen­
tation of simple polygons [RapS9b] both as a splitting rule
and as a leaf organization scheme. As a splitting rule it
provides a better estimate to the complexity of the map
than the number of polygons or the number of edges. As
a leaf organization scheme it enables more efficient opera­
tions on polygons than the usual vertex list representation
or a convex decomposition.

• Introduction of vertex enlargement as a technique for re­
ducing the complexity of a polygonal map around vertices
having a high degree. Vertex enlargement simplifies cell
splitting rules and results in shorter hierarchy trees.

Hierarchical Methods for Polygonal Maps

In this section we discuss adaptive, hierarchical, exact repre­
sentations of polygonal maps . We limit ourselves to disjoint
hierarchies in the set theoretic sense, which are far more use­
ful than other hierarchies. The discussion is valid for other
types of geometric objects in addition to polygons.

Adaptive hierarchical methods organize a map in a tree.
Each node contains a region (cell) of the plane. If the part
of the map which lies in this region is too complex, the re­
gion is decomposed (split, subdivided) into a number of dis­
joint sub-regions. These are represented by child nodes of the
original node. The process continues recursively untill there

184

is no need to subdivide. The internal nodes of the tree hold
only structural information, while the leaf nodes hold the real
information about the data.

To use a hierarchical representation scheme, three main
decisions should be made: the nature of the decomposition
into sub-regions, the criterion of when to decompose, and the
organization of the data in the leaves of the resulting tree.
Following is a discussion on these issues. The paper focuses
on the last two.

The decision giving the particular scheme its name is the
first one, the nature of the decomposition into sub-regions.
The main distinction is between methods in which the decom­
position is guided by the data and those in which it is not.
The latter are still among the adaptive methods, because the
second issue, the splitting criterion, considers the input data.

Three popular methods are the quad tree [SamS9al, in
which a region is always decomposed into four equal sized
sub-regions using a horizontal and a vertical line; the k-d tree
[Ben75], in which the decomposition is made by horizontal
and vertical lines alternately, located so as to balance the load
between each of the two sub-regions; and binary space parti­
tioning (BSP) [FucSO], which is similar to the k-d tree in that
it tries to balance the load between SUb-regions, however the
decomposition is not restricted to be done by lines parallel to
the coordinates. The results of this paper are relevant to any
of these methods .

The second important decision to be made by a particular
hierarchical method is how to determine when a node has to
be decomposed. The rule of determination is referred to as
the splitting rule. This decision is independent of the splitting
method used. The general policy is to estimate the complexity
of the region and decompose the region if its complexity is
greater than some pre-defined, constant threshold value, the
splitting threshold. A basic distinction between complexity
measures is whether they are region based, edge based or
vertex based. In this paper we consider only region based
rules.

The third decision concerns the organization of the data in
the leaves of the tree and how to relate this data to the original
data (before the decompositions were performed). Considera­
tions here are efficiency of computations on the leaf node, the
amount of storage used, and numerical stability.

The three issues addressed above affect the structure and
nature of the hierarchy. There are other issues, such as the
physical storage of the tree and algorithmic issues concerning
the efficient creation of the tree. These issues are not dealt
with in the paper.

An important observation concerning polygonal maps
which is relevant to the rest of the paper is that the num­
ber of edges in the map can be much greater than the number
of polygons. This is the case in many maps of interest, such
as maps obtained by digitization of cartographic maps or maps
in which the polygonal regions are approximations for curved
regions.

Vertex Enlargement

An implicit assumption of the general hierarchical scheme out-

Graphics Interface '90

lined in the previous section is that decomposing a node re­
duces its complexity, otherwise the decomposition could go on
forever. A very natural region based splitting rule is to subdi­
vide the region if the number of polygons incident in it is too
large. However, a vertex of the polygonal map may have an

. arbitrary number of polygons meeting in it. No decomposition
reduces this number unless the splitting line passes through the
vertex. There is always a cell containing this vertex, and this
cell will be redecomposed.

One way of overcoming this difficulty is to include the
case of a single vertex in a cell in the splitting rule [Sam89a].
The modified splitting rule is 'if the number of polygons in the
cell exceeds the threshold, decompose it, unless there is only
one vertex in the cell'. The rule is very simple, but it may
result in a very fine decomposition at the neighbourhood of
vertices. In some types of maps, like road maps, the degree of
a vertex is not likely to be high, and the drawback vanishes.
In other types it may incur an inadmissible cost.

We suggest a new way of treating this situation. Before
the decomposition process is started, all vertices having a high
degree are found. Call such a vertex a cenJer vertex. Every
center vertex is replaced by a polygon which intersects only
the polygons adjacent to the vertex. The polygon is called
the new polygon. The edges of this polygon are formed by
connecting points on adjacent edges incident on the problem­
atic vertex, unless the angle between the edges is more than
180. The connecting points are called new vertices and the
segments connecting them new edges. The new polygons are
marked as such, with a pointer to the center vertex.

In Figure 1 we see a center vertex adjacent to four poly­
gons. The new edges are dashed. The polygon on the left
does not cause a new edge because the angle is more than
180.

Figure 1: Vertex enlargement.

If the new vertices are sufficiently close to the center ver­
tex, then the new edges will not cross existing edges and the
process will result in a new legal polygonal map. Taking care
of that is easy. In every polygon incident on the center vertex,
we find the vertex closest to the center vertex by examining
all vertices of the polygon. We take the new vertex has to be
closer to the center vertex than the two closest vertices of the
two polygons neighbouring the new vertex. In Figure 1 the
upper new vertex obeys this restriction while the one below
it does not. Note that if it is desired that the new polygon be
convex, the new vertices can be taken at a same distance from
the center, the minimum of all distances computed.

185

If the new polygon is very small the area around it will
again be finely decomposed, but this would result from high
map complexity in the vicinity of the vertex. This is so be­
cause a new polygon is small only if there are many original
vertices in the neighbourhood of the center vertex. In this case
finer decomposition around the vertex is not objectionable, as
this is the policy of hierarchical schemes.

The vertex enlargement method results in trees which are
shorter than trees created using the modified splitting rule.
Generally, the map complexity near a new polygon is reduced
when the splitting line passes through it. This happens much
sooner than when the center vertex becomes the only vertex
in the cell.

The Simple and Convex Splitting Rules

In this section we detail two natural region based splitting
rules, the simple rule and the convex rule, and in the next
section a new one, the convex differences rule . The simple
rule estimates the cell complexity according to the number of
polygons in it. The convex rule is the same, but with a pre­
processing that decomposes all polygons into convex pieces.
For each of the rules we discuss its advantages and disad­
vantages, give an accompanying leaf structure and analyze its
efficiency.

1. The Simple Splitting Rule
The simple splitting rule adopts the simplest criterion for the
complexity of a cell. The number of polygons which fall in the
cell serves as the complexity estimate. If this number exceeds
the splitting threshold the cell is subdivided. As explained
in the previous section, vertex enlargement ensures that the
recursive splitting will stop. The resulting structure is called
the simple hierarchy (SH) .

Leaf cells are not organized in any special way. Every
leaf stores a list of the polygons in it. To locate a polygon
containing a specific point, the tree is traversed top down
until the leaf that contains the point is found. Recall that the
spatial subdivision is disjoint, so a point can be located only
in regions which are sub-regions of a cell that contains the
point. Then a sequential search for the point is made in all
the polygons in the list. For every polygon, a point-polygon
classification algorithm [Pre85] is performed. The algorithm
takes time linear in the size of the polygon, so the cost of
searching in the leaf is linear in the number of edges of the
polygons in it.

As stated earlier, the number of edges in a cell can be
much greater than the number of polygons in it. This means
that the complexity measure was inaccurate: the number of
polygons in a cell is not a good measure for the complexity
of operations on the cell.

2. The Convex Splitting Rule
Operations on convex polygons are more efficient than op­
erations on general or simple polygons. Point-polygon clas­
sification, intersection with a line, and intersection detection
between two convex polygons take logarithmic time ([Cha87],

Graphics Interface '90

[Rap89aJ). Intersecting two convex polygons takes linear time
[Or082).

This motivates an improved splitting rule. As a prelimi­
nary step, all polygons are subdivided into convex parts. This
is easy to achieve, e.g. by triangulation 1. The complexity
measure is again the number of polygons incident in the cell,
and leaf cells hold a list of these polygons. This results in the
convex hierarchy (CH) .

The advantage of the convex rule is that operations on a
leaf are much faster. The number of polygons in a cell is now
a more accurate measure for the complexity of the cell.

The disadvantage of the convex scheme is that the total
number of polygons can be much greater after their subdivi­
sion into convex parts. In Figure 2 there are only two poly­
gons. The lower one is convex. In every convex subdivision
of the upper one (an example convex subdivision is shown
dashed; ignore the dotted edge for the moment) the number
of convex parts is at least the number of edges, becaune every
edge participates in a different convex part.

, ,

Figure 2: Two polygons (solid lines) and a convex decom­
postion (dashed lines). The dotted line is a COT edge of the
upper polygon.

Note that the convex decomposition can be deferred to the
end of the process, with successive spliuings if it results in
more polygons than the threshold value. It is not clear which
option is better.

The Convex Differences Hierarchy (CDH)

The convex differences hierarchy (CDH) results from the con­
vex differences splitting rule and leaf organization method.
The rule utilizes the efficiency of operations upon convex
polygons without significantly deepening the hierarchy tree. It
is based on the convex differences tree (CDT) representation
for simple polygons [Rap89b), [Tor84]. A simple polygon is
represented as a tree. the root of the tree contains the convex
hull of the polygon. For every connected component of the
difference between the convex hull and the polygon there is
a son node (child) of the root. This difference is viewed as
a simple polygon, to be represented recursively by the child
node. An example is given in Figure 3.

1 Algorithms for optimal convex decomposition with and without
the introduction of new vertices (Steiner points) are given in [Cha85)
and [Gre83) respectively.

186

Figure 3: An example of a polygon and its COT.

PointClassify(p,N)
/* p is a point, N is a node, initially the root * /
if p is outside the convex hull of N

return OUT;
for a 11 sons of N

if PointClassify (p, son) - IN
return OUT ;

return IN ;

Figure 4: Point-polygon classification with the CDT.

In a previous work [Rap89bJ we showed that the space
occupied by the COT is linear in the number of vertices of the
polygon. An efficient O(k log k) algorithm for converting to
the COT representation from the vertex list representation was
given, where k is the number of edges of the polygon. It was
also shown how to perform commonplace operations on the
COT. These operations include point classification, segment
intersection, Boolean operations between two polygons and
sorting of the vertices in an arbitrary direction.

The operations are done by performing a tree traversal
on the COT, calling efficient convex polygon algorithms to
operate on the nodes. For example, an algorithm for point­
polygon classification with the COT is given in Figure 4. The
algorithm uses the fact that a point is inside a node of the
COT if and only if it is inside the convex hull of the node and
outside of all the children of the node.

For certain families of polygons, some of the operations
were shown to be much more efficient than when using the
standard vertex-list representation.

These families include polygons which obey one or both
of the following conditions. The bounded depth condition is
obeyed when the depth of the COT is bounded by a small
constant (e.g. 5). In general, the depth of a COT can be
linear in the number of vertices of the polygon [Rap89bJ, but
it takes highly complicated shapes, such as fractals developed
into deep recursion, to achieve that.

The bounded node condition is obeyed whenever the num­
ber of nodes in a COT is bounded by a constant. This condi­
tion is much stronger than the previous one, since every level
of the COT can have many nodes. Many of the polygons
which arise in computer graphics or computer aided design
obey this condition.

For polygons which obey the bounded depth condition, the
construction time of the COT is linear in the number of ver-

Graphics Interface '90

tices. For polygons which obey the bounded node condition,
the operations of point-polygon classification and segment­
polygon intersection require logarithmic time [Rap89b].

The reason for the efficiency of the operations on the COT
is two-fold. The polygon is represented in a hierarchy, which
enables fast pruning of redundant paths. For example, if the
point to be classified is outside of the convex hull of the
polygon, this will be detected at the first step of testing against
the root of the COT. The second reason is that each level of the
hierarchy is represented by a convex polygon, which permits
very efficient operations.

We can now explain the convex differences splitting rule
and leaf structure. As a preliminary step we perform vertex
enlargement, the replacement of high degree vertices by poly­
gons around them. The decomposition process is initiated as
in the simple scheme, with the splitting rule being the number
of polygons in a cell (any decomposition process can easily
produce this number). When this number is under the splitting
threshold T, the CDT representation of all polygons in the cell
is computed. Now the decomposition process is resumed, the
splitting threshold being the total number ofCDT rwdes in the
cell. Decomposing a cell entails a recalculation of the COT's
of all polygons in the new sub cells . For leaf nodes we again
keep a list of all polygons in them, similar to the simple and
convex schemes, but represented as COT's.

Note that the number of CDT nodes is never smaller than
the number of polygons, because every polygon has at least
one CDT node. Hence, it never happens that a cell should be
split according to the first (simple) rule and is found to be too
simple in the second (convex differences) rule. There is no
need to reunite decomposed cells.

When the original map is convex, i.e. all the participating
polygons are convex, the three splitting rules coincide, because
a polygon is convex if and only if its COT has one node.

As an example for a CDH see Figure 2. The figure shows
one cell which contains two polygons. The lower one is con­
vex and its COT has one node. The CDT of the upper poly­
gon has two nodes, the root containing the convex hull of
the polygon (it has one edge not belonging to the polygon,
shown dotted), and a child node containing the part of the
lower polygon bounded by the dotted edge. The total number
of polygons belonging to the CDH of the cell is three, all of
them convex. Note that they are not disjoint. As noted earlier,
the number of polygons in a convex decomposition of the cell
is arbitrarily large.

Comparison

We have already noted that for general hierarchical schemes
the splitting criterion is independent of the nature of the de­
composition. Its major effect is on the depth of the tree. The
leaf organization policy, which is somehow related to the split­
ting rule, affects the time to perform the desired operation on
the leaf. Hence, the only parameters we need for comparing
the presented splitting rules, apart from the splitting threshold
T, are the depth of the hierarchy tree and the average number
of edges in a polygon after the decomposition.

187

1. Depth of the Hierarchy Tree
Among the three rules, the simple rule results in the shortest
trees. This is a consequence of the already stated fact that the
number of CDT nodes and the number of convex parts of a
cell are not smaller than the number of polygons in it.

Next in depth of its trees is the convex differences hierar­
chy. It is hard to determine exactly how much deeper are its
trees compared to the simple rule. This depends on how far
the polygons are from being convex and how noisy are their
edges. If the polygons obey the bounded node condition there
is not much of a difference. If they obey the bounded depth
condition we can expect the difference to be a small constant.
Note that considering the total number of CDT nodes in the
splitting rule results in averaging the effect of complex shaped
polygons with this of simpler polygons in the cell.

The deepest trees result from convex decomposition. In
Figure 2, the CDT has three nodes as compared to an arbitrar­
ily large number of convex parts. This phenomenon is very
common in maps whose edges are a result of an approximation
process.

2. Storage and Construction Time
The arguments concerning storage are the same as those for
the depth of the tree. The best rule is the simple rule and the
worst is the convex rule. The storage occupied by a COT is
linear in the number of polygon vertices, and the depth of the
CDH is close to that of the SH. Hence the storage requirements
of the CDH are not much greater than those of the SH, and
are certainly smaller than those of the CH.

Regarding construction time, the arguments are less clear.
A convex decomposition takes time, but it enables the de­
composition process to be carried more efficiently by using
the logarithmic time algorithm for intersecting a line against
a convex polygon [Rap89a]. This is also true for the COT.
However, we discuss static maps, and construction time is the
least important factor of our comparison.

3. Point Location in a Leaf
In all three schemes, point location is done by first traversing
the hierarchy tree to reach the cell containing the given point
and then searching the list of polygons incident in the cell and
classifying the point against each. The time to reach the cell
is a function of the depth of the tree, which we have already
discussed

The splitting threshold T gives an upper bound on the
number of point-polygon classifications. Denote bye, e e, e ed

the average number of edges of a polygon in a cell in the sim­
ple, convex, and convex differences hierarchies respectively.

In the simple rule, classifying a point against a polygon is
done by firing a ray from the point to infinity and counting the
number of intersections with the edges of the polygon [Pre8S].
This costs O(e) operations. Hence the cost of point location
in a leaf is O(Te).

In the convex rule, the cost of point location is
O(T log ee), because of the logarithmic time algorithm for
classifying a point against a convex polygon[Pre85], [Rap89a].
ee is expected to be much smaller than e. In the case of trian-

Graphics Interface '90

gulation, ee = 3, the cost of the classification against a single
polygon is constant, and the point location cost is O(T).

In the convex differences hierarchy, the worst case cost of
point location is O(T log eed), but there is a potential saving
due to the hierarchical nature of the COT representation of a
polygon. Specifically, if the point was found to be outside of
a node of the COT, there is no need to test for inclusion in
any of its descendants. e cd is also smaller than e, but larger
than ee.

In summary, the point location operation is most efficient
in the CH, with no significant difference from the CDH. It is
most costly in the SH.

Note that in all methods, if the point is located within
a new polygon (one which has resulted from the vertex en­
largement preprocess), the point should be classified against
the neighbourhood of the center vertex using the original data.
This can be done in time logarithmic in the number of edges
meeting at the center vertex using binary search for the angle,
as shown in [Rap89a].

4. Conclusion
Many maps are obtained by manual design, approximation, or
sampling of smooth data. In such cases, the polygons in the
map are not very complex, i.e. their COT's have a limited
number of nodes and a bounded depth. Hence, the depth
of the hierarchy tree resulting from the CD splitting rule is
almost the same as the depth resulting from the simple rule.
The operations on a leaf are much more efficient, especially
when e, the average number of edges per polygon, is large.
In this case the CDH is superior to the SH.

The convex splitting rule results in much deeper hierarchy
trees occupying a lot more storage. It enables fast operations
on the leaves, but there is not much of a difference from leaf
operation time in the convex differences scheme. As a result
the CD rule is beuer than the convex rule, since the depth of
the tree becomes the important factor.

The advantage of the CDH diminishes when dealing with
maps whose polygons have very complicated boundaries, e.g.
fractals . In this extreme case the depth of the COT of a
polygon, as well as the number of polygons in a convex de­
composition, are large, and we can expect the SH to be better
than the CH and the CDH.

To focus the discussion, point location was the only op­
eration dealt with. The nature of the conclusions holds for
other operations also. Most operations done on polygons pos­
sess efficient algorithms when the polygons are convex. As
a result, the leaf organization in the convex and convex dif­
ferences rules facilitates more efficient operations than this of
the simple rule, while the depth of the CD trces is smaller
than this of the convex trees.

Future Research

An obvious direction to continue this research is to extend our
results to dynamic situations. In particular, vertex enlargement
should be adapted to changing maps.

The COT cell organization can be applied to non-adaptive

188

schemes simply by computing the COT's of all regions in
the cell. Operations on the cell are more efficient than when
keeping the regions in the vertex list representation. Of course,
we no longer have control on the number of COT nodes in the
cell because non-adaptive schemes do not decompose cells.

An algorithm to efficiently split a COT along a line can
accelerate the CDH construction time. Such an algorithm is
useful at the stage when we already have the COT's of all
polygons in the cell and it has to be decomposed.

We have not compared our region based approach to edge
based approaches. Edge based approaches generally decom­
pose the space finer than region based approaches. The choice
between them probably depends on the nature of the data.
Various experiments with large size real data should be per­
formed.

Acknowledgements

I want to sincerely thank Prof. Hanan Samet, who motivated
this research, commented on a preliminary version, and pro­
vided continuous support.

References

[Ben75] Bentley I.L., Multidimensional binary search trees
used for associative searching, CACM 18(9):509-517,
1975.

[Cha85] Chazelle, B., Dobkin, D., Optimal convex decompo­
sitions, in: Computational Geometry, G. Toussaint (editor),
North-Holland, 1985.

[Cha87] Chazelle, B., Dobkin, D., Intersection of convex
objects in two and three dimensions, Journal of the ACM
34(1):1-27,1987.

[Eda84] Edahiro, M., Kokubo, I., Asano, T., A new point
location algorithm and its practical efficiency - comparison
with existing algorithms, ACM Transaction On Graphics,
3(2):86-109, 1984.

[Ede86] Edelsbrunner, H., Guibas, L.J., Stolfi, I., Optimal
point location in a monotone subdivision, SIAM Journal on
Computing, 15(2):317-340, 1986.

[Ede87] Edelsbrunner, H., Algorithms in Combinatorial Ge­
ometry, EATCS Monographs on Theoretical Computer Sci­
ence, Springer-Veriag, Berlin, 1987.

[Fra88] Franklin, W.R., Akman, V., An adaptive grid for
polyhedral visibility in object space: an implementation,
Computer Journal, 31(1):56-60, 1988.

[Fuc80] Fuchs H., Kedem, Z.M., Naylor, B.F., On visible
surface generation by a priority tree structure, Computer
Graphics 14(3):124-133, 1980 (SIGGRAPH '80).

[Gre83] Grcene, D.H., The decomposition of polygons into
convex parts, in: Advances In Computing Research, F.
Preparata (editor), vol.1, JAI Press Inc., London England,
1983.

Graphics Interface '90

[Har69] Harary, F., Graph Theory, Addison-Wesley, Reading,
Mass. 1969.

[Kay86] Kay, T.L., Kajiya, J.T., Ray tracing complex scenes,
Computer Graphics 20-(4):269-278, 1986 (SIGGRAPH
'86).

[Kir83] Kirkpatrick, D., Optimal search in planar subdivi­
sions, SIAM Journal on Computing, 12(1):28-35, 1983.

[Nie84] Nievergelt, l., Hinterberger H., Sevcik, K.C., The
grid file: an adaptable, symmetric multikey file structure,
ACM Transaction on Data Base Systems, 9(1):38-71, 1984.

[Or082] O'Rourke, J., Chen, C.B, Olson, T, and Naddor, D.,
A new linear algorithm for intersecting convex polygons,
Computer Vision, Graphics and Image Processing, 19:384-
391, 1982.

[PreSS] Preparata, F., Shamos, M. I., Computational Geom­
etry: An Introduction, Springer-Verlag, New-York, 1985.

[Rap89a] Rappoport, A,. An efficient algorithm for line and
polygon clipping, Technical Report 89-27, Computer Sci­
ence Department, The Hebrew University, 1989.

[Rap89b] Rappoport, A., The convex differences tree rep­
resentation for simple polygons and its use in computer
graphics, Technical Report 89-28, Computer Science De­
partment, The Hebrew University, 1989.

[Sam89a] Samet, H., The Design and Analysis of Spatial
Data Structures, Addison-Wesley, Reading, Mass. 1989.

[Sam89b] Samet, H., Applications of Spatial Data Structures:
Computer Graphics, Image Processing, and GIS, Addison­
Wesley, Reading, Mass. 1989.

[Tor84] Tor S. B., Middleditch A. E., Convex decomposi­
tion of simple polygons, ACM Transactions on Graphics,
3(4):244-265, 1984.

189

Graphics Interface '90

