
244

Constrained, Grammar-Directed Generation of Landscapes

Mark Friedell and Jean-Louis Schulmann

Aiken Computation Labaatory
Harvard University

Cambridge, Massachusetts 02138

Abstract
Constrained, grammar-directed generative processes are

investigated as a computational paradigm for scene model­
ing. This paradigm provides a theoretical framework: for con­
structing modeling systems that perform an active function,
generating some components of the scene automatically. We
propose the term active computeT-aided design (ACAD) to
refer to this vision of user-computer cooperative scene
modeling.

Formal grammars are used to imbue the mode ling sys­
tem with an elementary "understanding" of the kinds of
scenes to be created. 1be grammar interpreter accepts com­
ponents of the scene created by the system user as con­
straints on the scene to be generated. This approach to scene
modeling harnesses the power of the computer to construct
scene detail, thereby freeing the human user to focus on
essential creative decisions.

1. Introduction

Scene modeling is frequently a very expensive, time­
consuming process. In contrast to the synthetic camera
framework: for scene rendering, there is no powerful and
comprehensive theory of modeling from which general­
purpose automated modeling systems may be constructed.
As a result, we observe that modeling consumes the majority
of the resoun:es expended in producing a "typical" graphics
application.

In a few very specialized applications, completely
automatic scene generation has been possible [MACINLA y]
[FEINER] [FRIEDELL]. In each of these special cases,
design decisions are sufficiently well understood (as a result
of the research cited above) that no human intervention is
required.

In this paper, we explore cooperative user-computer
modeling. We envision applications in which it is necessary
or desirable to allow human intervention in the design pr0-

cess. The goal is synergistic collaboration in which the
human user exercises creative control while the machine
rapidly constructs scene detail that is resonant with the prin­
ciple design decision made by the system user. We refer to
this vision of the computer as an active participant in design
as active computer-aided design (ACAD) to distinguish it
from the less complete role of the computer in conventional
computer-aided design.

To support technically this vision of ACAD, we propose
constrained interpretation of generative grammars as a com­
putational paradigm. Within this paradigm. the generative
grammar describes a language of scenes. It is used, in effect,
to imbue the modeling with an elementary understanding of
the type of scene to be constructed. Components of the
scene that are created by the user serve as constraints; the
grammar interpreter must select and apply rewriting rules to
produce a scene that incorporates the user's design decisions.

This paper explores the essential ingredients of ACAD
in the context of modeling three-dimensional landscapes,
including the built environment In section 2, we survey pre­
vious efforts to employ grammars as a means of describing
classes of objects in computer graphics and other disciplines,
and we propose in Section 3 a new type of grammar - the
landscape gTamntIlT - for our experimental application area.
Section 4 describes how landscape grammars are interpreted
to generate scenes that comply with design decisions made
externally, e.g., by human system users. Section 5 describes
the function, architecture and implementation of an opera­
tional prototype system and provides examples of its use.

Graphics Interface '90

2. Previous Work

Formal grammars have been used in several very dif­
ferent applications to describe objects and processes to con­
struct them. These efforts may be partitioned into 2
categories: those which manipulate topological structures
and those which manipulate geometric structures.

Formal grammars that manipulate topological structures
include graph grammars and lrsystems. Although most stu­
dies of graph grammars are designed to explore their theoret­
ical properties, some forms of graph grammars produce topo­
logical structures that can be interpreted graphically to
describe physical objects [VOLKER et al.) [HARTMtJf et
al.).

Undenmeyer developed lrsystems [UNDENMEYER)
as a theoretical model of the development of filamentous bio­
logical structures. lrsystems may be viewed as specialized
graph grammars restricted to mathematical trees. Recently,
Smith [SMITII) showed how lrsystems can be applied in
computer graphics to construct topological branching pat­
terns of physical trees .

Efforts to manipulate geometric structures via formal
grammars include the very widely known fractal curves and
surfaces [FOURNIER, FUSS ELL & CARPENTER), and the
less well known map grammars and shape grammars. Map
grammars are used in theoretical biology to model develop­
ments of tissue cultures and cell divisions [P AZ) .

Shape grammars are a tool of theoretical architecture.
TIley serve as a mechanism for describing an architectural
style by specifying a "language" of buildings [MITCHELL)
[STINY). Shape grammars are not, in general, amenable to
implementation within computer systems, but must be inter­
preted "loosely" by people who can recognize can recognize
approximately correct applications for rewriting rules and
produce the appropriately altered rule application.

Finally, ontogenic grammars are the bases of all object
modeling in GMS-l, an experimental generative modeling
system [BEYER & FRIEDELL). With GMS- l, every object
description is expressed in two parts: 1.) a generative pr0-

cess, articuiated in terms of an ontogenic grammar, that con­
structs the object's topological structure; and 2.) an explicit
geometric interpretation for the topological structure. TIle
theory of ontogenic grammars and GMS-l were designed to
integrate, through a uniform representation scheme, the use
of conventional polygonal boundary representation with
fractal curves and surfaces, lrsystems, particle systems
[REEVES], and other, specialized generative modeling
processes.

245

3. Landscape Grammars

yTIte words in the language generated by a landscape
grammar are not ordinary three-dimensional scene descrip­
tions, but rather landscape schonaJa, which serve as two­
dimensional "blueprints" of three-dimensional scenes.
Landscape schemata comprise area, line and point features
which specify the identities, locations, orientations and
abstract shapes of the objects in the scene. A simple transli­
teration process, described in Section 4, reformulates sche­
mata in terms of conventional scene descriptions that may be
rendered by ordinary three-dimensional rendering tech­
niques.

The area features of a landscape schema form a contigu­
ous tiling of polygons delineating geographic regions of vari­
ous types such u forest, residential area and industrial site.
Superimposed over this tiling of area features is a collection
of line features describing lineal phenomena such as roads,
rivers and power lines. Point features located within area
features describe objects such as buildings and trees. Area
features and point features are directionally oriented as
shown by the vectors in Figure 3.1.

t
Feres:

Forest -

Figure 3.1 A Simple Landscape Schema

Landscape grammars guide directly the manipulation of
geometry, rather than develop topological structures whose
geometric properties must be later derived. A landscape
grammar is described in terms of two types of rewriting
rules, one that rewrites area features and another that gen­
erates points. As shown in Figure 3.2, the left side of an
area-rewriting rule specifies the type of an area feature along
with minimum and maximum area requirements. These area
requirements are expressed approximately in terms of the
minimum and maximum width and height of a box bounding
the area feature to be rewritten.

The right side of an area-rewriting rule is a rectangular
mosaic of polygonal regions. This mosaic is referred to a
partitioning space and the polygonal regions are termed area
maslc.s. The partitioning space is directionally oriented, as is
each area mask. Additionally, each area mask is annotated
with an area-feature type. An area-rewriting rule may be
applied to any area in the schema whose type and

Graphics Interface '90

type .. be _ . FotM1

t
den ..
tr •• , -. ~I -ID t hel;h

• • moo wtCl\n

• • -.-
Fisure 3.2 Rule for Rewriting Area Features

dimensions satisfy the specifications given by the rule's left
side.

When an area-rewriting rule is applied, the rule's parti­
tioning space is rotated so that its orientation vector is paral­
lel to that of the area feature being rewritten. Next, the parti­
tioning space is scaled independently in both orthogonal
dimensions to form a bounding box around the area feature
as shown in Figure 3.3. Finally, assuming the width and
height of this bounding box satisfy satisfy the geometric con­
straints given by the left side of the rule, new area features
are created by finding the polygonal intersections of the area
feature being rewritten with each mask in the partitioning
space. The types and orientations of the new areas features
are given by the area masks.

Figure 3.3 Rewriting Forest Area Feature in Figure 3.1

Rules for generating point features are similar to those
for rewriting area features, and their left sides are identical.
Instead of a partitioning space on the right side, however, a
point-generation rule has a generation space. A generation
space is an oriented rectangular region that is populated by
generation points, each of which is oriented and annotated
with a point-feature type, as shown in Figure 3.4.

When a point-generation rule is applied, the generation
space is rotated and scaled as described above for partition­
ing spaces. Assuming the generation space satisfies the spa­
tial constraints given by the left side of the rule, point

246

features are created in the schema corresponding to the
types, locations and orientations of the generation points in
the rule. The application of a point-generating rule is illus­
trated in Figure 3.5.

3.1 The Organization or Landscape Grammars

Except for the simplest circumstances, a landscape
grammar described by an unstructured collection rules is
both incomprehensible and unmodifiable. We achieve better
results by organizing area-rewriting rules into three kinds of
reusable, higher-level abstractions: repiaceme1lls, subdivi­
sions, and residues. Graphical notations for these abstrac­
tions are used to create a diagram of the structure of a gram­
mar, which facilitates its desisn, codin3, testing and later
modification.

•
max wldtt.

•
~atl.or. JX)l.:'::.!

f o: \.!We

Fisure 3.4 Rule for Generating Point Features

these generation points do not
proctJce p:>int features in schema

tree p:>int
features

Fisure 3.5 Applying a Point-Generation Rule

Replacements transform one area feature into a fixed
number of other area features. They are ordinarily coded
with a single area-rewriting rule and are described diagram­
matically with a hyperedge. Figure 3.6 illustrates the
replacement of a residential block by space for a single-

Graphics Interface '90

family dwelling, 2 horizontal roads, and 2 vertical roads.

re.idential blOCk

.,te
vertic. '
ro.d

Figure 3.6 A Replacement

247

Subdivisions transform an area feature of one type into 1
or more area features of another type. This mechanism is
used to convert a single area feature of unknown size into a
collection of area features of whose dimensions are bounded
by known quantities. We use a double-headed arrow to
describe a subdivision, as shown in Figure 3.7, which depicts
a residential area being subdivided into a collection of
residential blocks.

re.ident~1 .,..

j
Figure 3.7 A Subdivision

Residues replace one area feature by another, with the
possible generation of 1 or more additional, residual area
features of a third type. Figure 3.8 shows a residue that
replaces a horizontal road with a pavement area feature, pr0-

ducing some number of road-shoulder residue features.

3.2 Theoretical Observations

Although the rules in a landscape grammar are applied in
a context-free fashion, the degree to which this limits the
generative power of landscape grammars is not clear. In par­
ticular, context-free multi-pointed hypergraph grammars
(CFMPHGG) [HABEL & KREOWSKI] can be reformulated
in terms of landscape grammars by replacing hyperedges
with area features and nodes with edge boundaries between
area features. Since the generative power of CFMPHGG is
known to include some, but DOt all, context-sensitive string
languages, landscape grammars are at least that powerful.

The practical limits of landscape grammars are also not
yet fully understood, and we are still leuning how write
rules for increasingly complex landscape languages. To
date, our principal challenge has been to avoid contextually
inappropriate rule applications. For example, a specific
landscape grammar might include a point-generation rule to
create a church on a corner building lot in a residential com­
munity. The grammar might also include a rule to create an

automotive service station on the same type of corner lot
Although both rules make sense in isolation, we might prefer
that contiguous corner lots in the generated landscapes not be
used to construct a church and a service station side by side.

\----_~.d Shoulder

pavement

Figure 3.8 A Residue

To avoid this kind of difficulty, we would expand the set
of area-feature types in the grammar to include specific
corner lots for churches and service stations, and devise
replacement structures in the grammar to ensure that these
two special types of corner lots may never be continuous.
Essentially, contextual applicability predictates are stated
implicitly in the context-free rules. Occasionally, when the
applicability of a rule depends on a complex context, this
approach is difficult to follow. We are presently exploring
disciplines for writing grammars that are intended to make
this process easier and more reliable. Ultimately, however, it
may be necessary to employ a context-sensitive grammar.
This option would unfortunately make the grammar inter­
preter more difficult to construct and the interpretation pro­
cess potentially much more expensive.

4. Constrained Interpretation

The task. of the grammar interpreter is to create a schema
for a landscape that is

1. in the language of landscapes defined by the landscape
grammar; and

2. compliant with all of the user's design decisions.

The user's design decisions are expressed in the form of an
initial, undeveloped schema, which we refer to as the start
schema. The start schema specifies the identities, locations,
and orientations of any area, line or point features that user
chooses to include. From a language-theoretic perspective,
the start schema is the starting configuration for the genera­
tive process described by the grammar. The final schema is
then a word in the language defined by the grammar that
consists only of "terminal symbols" understood by the
schema transliteration process. The output of the translitera­
tion process is a conventional three-dimensional scene
description. The user's design decisions, captured in the
start schema, may be viewed as constraints on the behavior

Graphics Interface '90

of the generative process described by the landscape gram­
mar.

Since each area feature in the start schema is developed
in a context-free fashion by the scene grammar, area-feature
constraints are satisfied easily. Point features in the start
IChema are much more difficult to accommodate. We must
ensure that the final schema contains all user-specified point
features and that they are embedded in area features only IS

allowed by the point-generation rules of the landscape gram­
mar. To guarantee that these requirements are met, the
application of rewriting rules is carefully restricted.

Consider an area feature, A, containing a point feature,
P , in a partially developed schema. Assume that rule R is
chosen as a candidate to rewrite A and that the dimensions
of A satisfy the geometric constraints on the applicability of
R. R can now be applied to A only if for each new region
that would be created, Ni, one of the following conditions is
met:

1. Ni does not contain P ;

2. Ni is allowed to contain P directly (which can be deter­
mined by examining the point-generating rules of the
scene grammar); or

3. Ni may be developed into a subschema that correctly
includes P (development of this subschema might
require many applications of area-rewriting rules).

In principle, a geometric theorem prover is needed to deter­
mine whether the requirements for applying rule R are met.
We have found in practice, however, that a much simpler
and faster technique requiring only a symbolic theorem
prover and a relati';ely simple point-in-polygon inclusion test
works very well in almost all cases.

For each Ni, we first use the inclusion test to determine
if P lies within Ni . If it does not, clause 1 is satisfied. If it
does, we then check the point-generating rules of the gram­
mar to see if Nj is allowed to contain P directly. If so,
clause 2 is satisfied.

If neither cause 1 nor clause 2 is satisfied, we are faced
with the more challenging task of determining whether Ni
could be developed into a lubschema such that some area
feature in the subschema would correctly contain P. We
attempt to make this determination by considering the con­
verse of what is required, specifically, that no such
sublChema could be developed from Ni' We attempt to
prove that this is the case with a comparatively simple sym­
bolic theorem prover that uses the rules of the landscape
grammar as inferences in a forwaro-<:haining fashion.
Because this is just a symbolic theorem prover, only the
identities of area features are reasoned about; their geometric
properties are ignored completely. If we succeed in proving
the converse of what is required to satisfy clause 3, then rule
R cannot be used to rewrite area feature A . If the proof
fails, however, we presume optimistically that the required

248

lubschema could be generated. Of course, this presumption
could be false, since the failure of the proof does not neces­
sarily mean that the conditions for meeting clause 3 can, in
fact, be met When these presumptions occasionally fail in
practice, user intervention is required to avoid generating an
incorrect landscape.

s. An Experimental Prototype

We have implemented an experimental landscape gen­
erator which we use as a tool in our exploration of active
computer-aided design technology. This system accepts
from the user the identities, locations and orientations of
area, line and point features which the user wishes to include
in the landscape, and then generates a complete scene that is
consistent with these design decisions. The top-level archi­
tecture of the system is shown in Figure 5.1. The Landscape
Composer accepts design decisions from the user and pro­
duces a complete landscape schema using a user-specified
landscape grammar. The Landscape Instantiator transforms
the schema into a conventional three-dimensional graphical
description which may be rendered by an ordinary renderer.

The Composer establishes a start schema from the user's
design decisions through the use of two kinds of unembed­
ding operations, whose effects on the start schema allow the
development of area features to proceed independently. Any
area feature that contains a line feature is split along the line
feature and any area feature that surrounds another area
feature is split to eliminate the surrounding relationship. The
results of these unembedding steps for the example in Figure
3.1 are shown in Figure 5.2.

The Interpreter develops a complete schema in two
sequential phases: area-feature development and point­
feature generation. During the first phase, an area feature is
selected arbitrarily for rewriting. Next, all rewriting rules
that are applicable to the type of the selected area feature are
collected, and one is chosen probabilistically, based on the
rules' assigned. priorities. If the geometric applicability cri­
teria of the rule are satisfied by the area feature, and if the

Graphics Interface '90

~

scene
grammar

......

Landscape
Composer

~
"'S design us

dec
(co

isions
nstraints)

modeling
system
interface

::::

--

"-
.....

instantiation
pr imit ives

--- --
landscape
schema .. Landscape

Instantiator

scene
descriptiO

~

rendering
system

Figure 5.1 Architecture of Landscape Generator

n

area feature contains no point features, then the rule is
applied. If the area feature does contain point features, the
Interpreter's embedded theorem is used to verify, as dis­
cussed in Section 4, that the application of the rule is compa­
tible with the point features. If for some reason the selected
rule cannot be applied, another rule is chosen. If no rule can
be applied, the area feature is marked as a terminal feature
and becomes part of the final landscape schemL

Figure 5.2 UnembeddiDB of Figure 3.1

Point-feature generation is applied to only those area
features that do not already contain point features specified
by the user. For each of these initially empty area features, a
process similar to that for area-feature development is used
to select and apply a point-generation rule. After area-

249

feature development and point-feature generation are com­
plete, the final schema is passed to the Landscape Instantia­
tor.

The Instantiator is a simple process that assembles a
three-dimensional scene description using the landscape
schema as a "blueprint." For each area feature, an appropri­
ate color or texture defin~tion is selected from a table associ­
ated with the Landscape Grammar. Point features are
replaced by corresponding three-dimensional object descrip­
tions. Typical point features include houses of various kinds,
factories, office buildings, churches, trees, cars, boats, etc.
For some types of point features, a stochastic process is used
to select among different graphical instantiations to create a
sense of natural variation. For example, this technique may
be used to instantiate the trees in a forest.

5.1 Examples

Consider first a very simple example: a grammar
describing, in coarse detail, subwban developments of tract
houses. The example grammar expresses these scenes only
in terms of houses, yards, roads, and soil along road should­
ers, and is almost as trivial as the IfChitectural vision of the
developers who undertake tract-house projects.

residential area

residential block

road site

\..---.... +road shoulder

vertical
road

soil_4 --t
pavement~4~-------------~

Figure 5.3 Structure of Example Grammar

The organizational structure of the grammar is shown in
Figure 5.3. Figure 5.4 shows graphically the area-rewriting
rule that replaces residential blocks with yards, vertical roads

Graphics Interface '90

and horizontal roads. The textual form of the rules for the
residue ItruCture that transforms vertical roads into pavement
and road shoulder soil is given in Figure 5.5. Note the use of
recursion in this residue structure and the limit case of the
recursion that is triggered by the rules' geometric applicabil­
ity predicates. Finally, Figure 5.6 presents a point-generating
rule for creating a house. The scene language described by
this very simple grammar permits almost no variability the
generated scenes. The only design decisions permitted to the
user lie the IClection and placement of • few different typea
ofhoUICI.

...

horizontal ro.d

c • i ::l n- e
!. house site ..
0 . 2
• 1:
a. • >

horizontal /Md

Figure 5.4 Replacement of Residential Block

..... lObo __

~ID
•

..

t

..
•

Figure 55 Residue Structure for Vertical Roads

A somewhat more complex grammar, described in

250

approximately 300 lines of text, was developed from this
limple example and used to create the scenes in Figures 5.7
and 5.8. This extension of the example grammar defines a
much more variable landscape language and permits the user
to make many more design decisioDl, thereby enabling the
lpecification residential areas, industrial areas, forests,

t

.... D ""'0'" m",
~ "'9'" . D

t ""

ftWI.dU'I _ C

Figure 5.6 Point-Generating Rule to Create a House

Figure 5.7 ACAD-Generated Scene I

·r--­.- ..
~-=J:.~ ...w..

Figure 5.8 ACAD-Generated Scene 2

bodies of water, houses, industrial buildings, trees and roads.

Graphics Interface '90

6. Conclusions and Future Research

We have explored constrained, grammar-directed gen-
erative processes as a theoretical model for graphical scene

. modeling. This model encompasses fully automatic, com­
pletely manual, and, most important, cooperative user­
computer scene generation.

Our vision of user-computer cooperative modeling
places the computer in an active role, creating detail in the
scene that resonates with creative choices made by the
human user. We suggest that such cooperative modeling
systems be referred to as active compuuT-aided design
(ACAD) systems.

In this paper, we have described an experimental ACAD
system for modeling landscapes, including the built environ­
ment. We have discussed the type of scene grammar which
this system uses and how the system represents and accom­
modates design decisions made by the system user.

At present, we arc expanding the ideas presented in this
paper in three ways. First, we are investigating the user of
conformal mappings in rewriting rules for manipulating
geometry. Potentially, this would allow structures such as
the partitioning space and the generation space discussed in
Section 3 to conform precisely to feature being manipulated.
Second, we arc exploring representations for rewriting rules
that manipulate directly three-dimensional features rather
than using an intermediate representation such as the
landscape schema. Third, we arc exploring ways to "tighten
the loop" of interaction between the user and the system,
possibly allowing the user to guide more precisely the
system's choice of rewriting rules.

Scene modeling is the most expensive part of most
computer-graphics applications. In stark contrast to render­
ing technology, modeling technology has not improved
significantly during the last 15 years. We believe that this
lack of progress is due, in large measure, to the absence of a
comprehensive theoretical framewoTt for modeling - one
that is comparable to the synthetic camera theory of render­
ing. This paper explores the foundations of a theoretical per­
spective for modeling from which algorithms and architec­
tures for active computer-aided design may be developed
and integrated.

7. References

[BEYER & FRIED ELL]
Beyer, T. and Friedell, M. "Generative Scene Modelling."
PTocudi"lls of EurogTaphics '87, Elsevier Science Publishers
(North Holland) 1987.

251

[FEINER]
Feiner, S. "APEX: An Experiment in the Automated Creation
of Pictorial ExplaDltiOlls." IEEE CGciA, November 1985.

[FOURNIER, FUSS ELL & CARPENTER]
Fournier, AIain, Don Fussell and Loren Carpenter, "Computer
Rendering of Stochulic Models", CommJUIicaJio1U of the ACM
25,6, pp. 371-384 (June 1982).

[FRIEDELL]
Friedell, M. "Automatic Synthesis of Graphical Object
Descri~ons. " ACM Complller Graphic.!, 18,3.

[HABEL & KREOWSKI]
Habel, Annegret and Kreowski, Hans-Jorg. Some StnlCtlll'al
Aspect.! of Hypergraph Language.! GeMrated by Hyperedge
Replacenvfl1. Lecture Notes in Computer Science 11247,
Springer-Verlag 1987.

[HAR1MUT et al.]
Hartmul, E., Nagl, M. and Rozcnberg, G. Graph.Grammar.!
aNi Their Application to Computer Scunce . Lecture Note, in
Computer Science 11153, Springer-Verlag 1983.

[LINDENMA YER]
Lindenmayer, A. "Mathematical Models for Cellular Interac­
tions in Development, Parts I and Il." JOIII'Mi of Theoretical
Biology, 18, pp. 280-315, (1968) .

[MACKlNLA y]
MacKinlay, 1. "Automating the Design of Graphical Presenta­
tions of RelatiOllal Information." ACM TrtvlSaclio1U 011 Graph·
ics, 5, 2.

[MITCHELL]
Mitchell, W. J, "Synthesis and Style." Proceedi"lls of the
IfI1ernatioMi Conference on tM Application of Complllers ill
Architecture. Building Desigll, aNI Urban PIa"'""Il. Berlin,
(May 1979).

[PAZ]
Paz, A. "Geometry Versus Topology in Map Grammars." In .
Hartman, Nag!, and Rozenberg (Eds.), Graph-Grammars aNi
Their ApplicaJion to Complller Scunce. Lecture Notes in Com­
pIter Science 11153, Springer-Verlag 1983.

[REEVES]
Reeves, William, "Particle Systems-A Technique for Modeling
a Cass of Fuzzy Objects," ACM Complll~r Graphics 17, 3, pp.
359-376 (July 1983).

[STlNY]
Stiny, G., "Introduction to shape and shape grammars,"
EnvirONMfI1 aNi PlaMing B, 7, pp. 343-351 (1980).

[SMITH]
Smith, A. R. "Plants, Fractals, and Formal Languages." ACM
Computer Grapltics, 18,3.

(VOLKER et al .]
VoIur, C., Hartmut, E. and Rozenberg, G. Graph-Grammars
aNi Their ApplicaJion la ComptIler Scunce aNi Biology. Lec­
ture N<tes in CompIter Science '73, Springer-Verlag 1976.

Graphics Interface '90

