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Abstract 
This paper describes a monitor designed to provide graphi­
cal display of the execution of multi-processor real-time 
programs. Two design principles, insisting that the monitor 
should run in real-time and putting no special hooks for the 
monitor into the operating system kernel , turn out to have 
far-reaching consequences: the monitor can detect only the 
state of the program, not its transactions, and any informa­
tion displayed must be a translation of fast actions within the 
program into the slower time scale of human perception. 
The result is a statistical notion of program state. When this 
type of state is displayed graphically it is discovered to have 
desirable scaling properties. In addition to the temporal scal­
ing that allows it to mediate between computer and human 
time scales, it scales well with graphical demands imposed 
by program complexity. 

1. Introduction 
Displaying the status of systems of interacting components 
is probably the earliest widespread application of the graphi­
cal display of computer output. Typical examples are the 
status displays of railroad systems, chemical plants, nuclear 
reactors and air defence systems. These displays have sever­
al characteristics in common. They have minimal interactiv­
ity: the display configuration is delivered to users who have 
little or no ability to change it, and must adapt themselves to 
it. They use size to deal with structural complexity: display 
surfaces for large systems may encompass a whole wall. 
And they display their output in real-time, portraying events 
that occur on time scales amenable to human perception: 
trains take minutes moving from one block to another; 
warning thresholds in process control are set at levels that 
leave many seconds reaction time before dangerous condi­
tions obtain. Today's multi-processor real-time systems are 

much more complex, yet programmers usually work without 
the same level of graphical support. Display constraints are 
more restrictive than in the older production systems. The 
display surface is small, rarely larger than the screen of a 
bit-mapped workstation. Visualization software copes with 
the limited display space by providing interactive selection 
of displayed information to the user. Furthermore, events 
occur on time scales as short as microseconds, but it is usu­
ally highly undesirable to slow down the system, which has 
an .important real-time component. We are currently devel­
oping a system to be used for visualizing the execution of 
mUltiprocessor real-time programs. This paper describes the 
issues encountered in creating such a system, and some of 
the solutions we have discovered while experimenting with 
programs that test components of the complete system. 

There are many reasons to determine the behaviour of 
real-time programs running on multiple interacting proces­
sors. For example: 

• The programs must be debugged . Conventional debug­
gers show the behaviour of bugs that are well-localized, 
but new visualization tools are needed for interactions 
between high level program components. 

• Resource utilization must be monitored, to measure how 
much is used, when, and by which program components. 

• Program execution must be monitored in production en­
vironments, to confirm ongoing correct behaviour. 

• Visualization can be a form of dynamic documentation. 
It is particularly useful when demonstrating or teaching 
system operation to non-programmers. 

• Many program development systems create building 
blocks for program assembly by non-programmers [1]. 
Execution visualization is an essential support tool in 
such systems. 

Several ways of analysing faulty behaviour in these pro-
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grams are not addressed here, since they are better handled 
by different tools. Two prominent examples are faults in the 
sequential execution of individual tasks, which are best ex­
posed in task-by-task execution using scaffolding [2] to sim­
ulate the interaction with other tasks, and techniques where­
by input is recorded so as to play back program execution at 
varying speeds and granularity. (The latter is the subject of 
ongoing research by two groups at Waterloo [3, 4].) 

Execution visualization and monitoring has been ap­
proached from many directions. Most work has gone toward 
the textual animation of algorithms in which small sections 
of source code are presented on the screen, and portions are 
highlighted as they are executed. A modern example is 
Reiss's PECAN system [5]. There have also been graphical 
extensions of this basic idea (6, 7, 8] . Subsets of the algo­
rithm visualization problem have also been examined, for 
example, work of Fumas on viewing large information 
structures through small virtual windows using fisheye 
views [9], and of BOcker, Fischer and Nieper for providing 
tools to be used as a software oscilloscope (10]. Execution 
visualization has been prominent in parallel, distributed or 
multi-task debugging. Cheung, Black and Manning have 
produced a review of this work (11], which includes visual­
izing of inter-process communication in a message passing 
environment (12], using instant replay to make parallel pro­
grams deterministic[ 13], and using special purpose hard­
ware to measure performance in real-time (14) . We are un­
aware, however, of work which attempts to display process 
communication and activity in real-time without assuming 
either hardware assistance, or special software assistance 
from either the kernel or its applications. Any system that 
does so must develop new techniques for visualizing task 
execution and inter-task communication. It is specially im­
portant for the system to support effective visualization of 
problems that are unique to program execution in multi-task, 
multi-processor systems. For example, 

• non-deterministic behaviour (especially in the resolution 
of critical races), 

• detection of deadlock and starvation, 
• error latency and propagation, 
• a very large state space, with much state and event infor­

mation to be displayed, and 
• tightly and loosely coupled program modules (tasks). 

Complicating the display problem is the necessity that the 
system run in real-time, with minimal effect on the behav­
iour of the program being visualized. 

This paper discusses issues that arise in the construc­
tion of monitors for visualizing execution of multi-processor 
real-time programs. Our current knowledge of these issues 
comes, not from the creation of a complete monitor, but 
from the creation and observation of monitor components, 
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part of a feasibility study for such a monitor. The next sec­
tion introduces the basic four stage design of a program 
monitoring system, including a discussion of constraints in­
fluencing the design. Sections 3, 4 and 5 describe the princi­
ple monitor stages, emphasizing aspects having to do with 
the graphical output. Section 6 then discusses some of the 
important issues of interaction and user control over the 
monitoring environment. Before going on, however, we in­
clude brief definitions of some important terms, necessary 
because terminology varies in this field. These definitions 
are based on distinctions made in documentation of the Har­
mony operating system [15], on which our system is based. 
A processor is a piece of hardware on which programs run. 
A task is a running entity, consisting of code and state. A 
program is the set of all tasks running on a collection of pro­
cessors. A meta-task is a collection of tasks, usually, but not 
necessarily, closely related. The system is the operating sys­
tem software that provides the program with the abstractions 
it needs to run. The state of a task is the complete set of in­
formation that determines its execution context. Often we 
are interested only in a subset of this information, in which 
case state is used to describe that information alone. A meta­
state is a set of states, usually closely related, to be dis­
played using a single representation . An event is a step in a 
task's execution that changes its state, and usually refers 
only to the abbreviated state. A transaction is an exchange 
of information between two tasks. 

2. Design Constraints 
The system discussed in this paper is specifically designed 
to monitor the execution of multi-task programs running 
under Harmony. Harmony is a real-time multi-task multi­
processor operating system designed by Morven Gentleman 
at the National Research Council of Canada for use in em­
bedded microprocessor applications [IS]. It has a shared 
memory and a dynamic task structure, with explicit Create 
and Destroy primitives. Tasks communicate and synchro­
nize by message passing, using Send-Receive-Reply with 
blocking Send. We expect to use it for monitoring execution 
of programs running as part of our experiment workstation. 
The intent of this workstation is to enable 'non­
programmers' to create multi-task programs by assembling 
experiment components specified by scripts [I]. Effective 
graphical monitoring of program execution is important for 
teaching the system as well as for debugging. 

Programs to be observed by the monitor run on a vari­
able I1umber of Dy-4 DVME134 boards connected by a 
VME bus; the monitor itself runs on an independent 
DVMEl34 board. Each board consists of an MC68020 pro­
cessor along with its associated memory and peripherals. A 
frame buffer is supplied for the monitor's graphical output. 
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The VME bus is connected by ethernet to a V AX. 8600 run­
ning Unix, on which programs are compiled and linked prior 
to downloading [16]. 

Any monitor interacting with a program at a low level 
has inevitable dependencies on the environment of the pro­
gram it monitors: in fact it is common practice to modify 
system software or even hardware to provide facilities for 
the monitor to use. Unfortunately such modifications make 
the monitor very system specific, significantly undermining 
the generality of results deduced from its performance. To 
minimize these complications we have accepted two con­
straints in this work: except for creation of the monitor by 
FirstUserTask no modifications are made to the kernel or to 
the monitored program, either code or data structures; and 
the monitored program is always to run with its execution, 
and particularly its timing, as unaffected by the monitor as 
possible. The first constraint forces the monitor to use only a 
subset of information that is potentially available in the sys­
tem. The second forces us to deal with timing differences 
between program and monitor. The constraints restrict what 
can be monitored. This paper argues that what remains pro­
vides a useful and easily implemented capability. The ulti­
mate test, however, lies in extensive experience with the 
completed monitor, something that lies in the future. 

Accepting the constraints has far-reaching consequenc­
es, listed below. 

1. The monitor must reside entirely on a dedicated proces­
sor from which it can read system data structures. 

2. The monitor may not write in either program or system 
memory. 

3. The monitor cannot synchronize with events in the pro­
gram. It determines the state of a program by reading 
its data structures, and must infer the existence of 
events or transactions by observing changes in state. In 
fact , while observation of a state change guarantees that 
at least one event has occurred, observation of no state 
change does not guarantee that no event has occurred. 

4. The monitor does not necessarily see the program in a 
consistent state since the acqu isition of state informa­
tion is not atomic with respect to program execution. 
For this reason display of the measured state may be 
misleading. It can indicate, for example, the presence of 
deadlock when none is present. Deciding how to inter­
pret the information gathered and how to display it in­
teracts with monitor timing. 

5. Information that changes faster than perceptual integra­
tion times of the human observer cannot be displayed. 
This limitation restricts the monitor to displaying states 
that persist for seconds. All is not lost, however, since 
statistical information often persists in time. Suppose a 
task is in one state most of the time and in a second 
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state the remainder of the time. The proportions can be 
long-lived even though the persistence of either state is 
very short. This observation is applicable, since consis­
tency conditions for statistical measures differ from 
consistency conitions of a single sample. The essential 
open question is: Are there statistical quantities persist­
ing as long as visual integration times that are useful for 
program monitoring? Two examples provide prime 
facie evidence that there are. The first is the utility of 
profiling tools [17]. The second is the persistence in 
time of conditions indicating starvation or deadlock. 
(Programs that accept input are by their very nature in­
determinate. In sequential programs without a real-time 
component, it is often possible to enumerate all logical­
ly distinct inputs and test the program against them, 
making it deterministic for any given input set. For 
real-time programs such enumeration is impossible, 
making program execution effectively indeterminate. 
Interestingly, statistical measurement of program exe­
cution is useful because, although there are no program 
invariants in the usual sense for indeterminate pro­
grams, there may well be statistical invariants.) 

6. Without special debugging code, the monitor cannot ob­
tain semantic information from the program being mon­
itored. This limitation bounds the level at which pro­
gram behaviour can be interpreted. In particular, state 
information from any task is restricted to that informa­
tion, common to all tasks, which may be extracted from 
the system asynchronously. If the program introduces 
task states at a higher level of abstraction, the monitor 
cannot represent them. Similarly, while message con­
tents might be partially obtained by the monitor, it can­
not associate a meaning with the message. 
Data acquisition and display is based on a single struc­

ture to which all tasks are related . Harmony maintains a 
simple task structure based on a parent/child relationship in 
which each child is created by a unique parent. Thus the task 
structure is a tree rooted at the FirstUserTask. Figure 1 
shows a hypothetical task tree spread across four processors, 
including the monitor processor. Integrating the monitor 
with the task tree makes it possible to find the root of the 
tree without using a load map. Task creation and destruction 
create problems for this scheme. Since they change the tree, 
data acquisition must be done carefully if spurious informa­
tion is to be avoided. They also complicate the display re­
quirements, since the monitor must be capable of displaying 
the result of a task partly existing and partly not existing. 
(Consistency is further discussed in section 3.) 

The monitor is configured into a simple four stage de­
sign capable of gathering and displaying state information 
within the constraints. Collector, condenser and display 
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Figure 1. Diagram of a hypothetical task structure. The 
circles show tasks, the rectangles processors, and the 
lines parent-child relationships. 1 is the FirstUserTask 
and M is the root of the monitor. 

stages are implemented as functions which, together with 
necessary local data structures, define a 'module'. Associat­
ed with each task is a list of those modules that determine 
how that task will be displayed. The coordinator is imple­
mented as a separate task which repeatedly builds a local 
version of the task tree, then applies the module functions 
for each task in the tree. The co1\ector is the source of the in­
formation displayed on the screen. It reads system data 
structures and records information locally to be processed 
by the corresponding condenser. The condenser is then in­
voked to provide the summarizing of data needed to mediate 
between the microsecond time scale of data co1\ection and 
the several second time scale of the display. The final dis­
play stage converts the co1\ection of summarized informa­
tion produced by the condenser into graphical images for 
display to the user. 

Note that all four of the stages can be modified on the 
basis of interactive input from the user. The components of 
a module are discussed in detail in Sections 3 to 5. User in­
teraction is then discussed in Section 6. 

3. Col\ection of State Information 
The collection of state information is relatively straightfor­
ward. Each collector is responsible for some of the state 
information for each task in the tree. Typical parts of the 
task state are 

• execution state (running, ready, blocked), 
• position in various queues (ready queue, message queue, 

etc.), 
• current correspondent, 
• waiting correspondents, 
• priority, 
• i/o connections, and 
• owned or locked resources. 

For each task in the tree the coordinator ca1\s each of the as-
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sociated collector functions, which determine the task state 
from the system data structures. This information is then 
processed by the condensers. The set of operations is cyclic, 
with a frequency determined by the user. The sampling fre­
quency controls the amount of interference between the 
monitor and the program: at its fastest we are able to use 
about half the memory bandwidth for sampling, greatly af­
fecting the real-time response of the monitored program but 
missing very few events; contrarily there is no limit on the 
low side, except that the program is seen at a coarser granu­
larity. 

There are two features to be noted. First, to maximize 
the portability of the monitor it is important to isolate pecu­
liarities of the kernel data structures. They are represented as 
subordinate functions of the collectors. The coordinator!col­
lector model makes adding or deleting a new data field as 
simple as adding a module whose collector knows the loca­
tion of the data relative to the task descriptor. Similarly, 
changes in the task structure, such as a separate task tree for 
each processor, requires changes limited to the coordinator. 
The requirement that the monitor should be able to read the 
data structures of the system, however, cannot be changed. 
In systems without a shared memory space, as Harmony 
has, kernel modifications are needed to allow the collectors 
to operate. 

A more complex issue is creation and destruction of 
tasks. Because the monitor does not synchronize with the 
program, it is possible for a task to be destroyed between its 
detection by the coordinator and subsequent accesses by col­
lectors. If the collector checks the validity of the task at the 
end of its access, it can throwaway information that may be 
corrupted. When a task is in the process of being destroyed 
it is possible for some collectors to access it validly while 
others fail to do so. Since each collector report is a small 
part of the statistical display generated by the monitor, how­
ever, any perturbation is minor. Tasks that are missed by the 
collectors on a given cycle because they are created between 
the coordinator access and the collector access are also a 
minor perturbation. It is even possible, though unlikely, for 
a task to be missed altogether when the monitor is run with a 
long cycle time (very low interference) and the create/de­
stroy cycle is very short. At all times the user must be aware 
that the monitor is sensitive to a granularity of computation 
comparable to the cycle time and that events of smaller 
granularity may be missed. 

4. Condensation of State Information 
The condenser accepts information from the collectors and 
processes it into a form suitable for display. As much as 
possible of the temporal processing is concentrated there, 
while other aspects of the display are handled by the last 

Graphics Interface '90 



stage. Thus, in general, the condenser accepts input at a rate 
it cannot control, sorts and summarizes it, then puts out the 
summaries. 

Two aspects of the condenser function influence the 
interactive quality of the monitor. The first is the creation of 
data summaries. Human perceptual systems cannot follow 
displays that change their contents much faster than several 
times a second, during which time there can be thousands of 
samples taken by the collectors. Since different types of data 
are suited to different types of summary, a wide range of 
summarization techniques is needed. Here are a few exam­
ples. 

• Quantitative summaries, like mean, standard deviation, 
minimum and maximum, for data that are numerical, 
such as memory in use or number of transactions detect­
ed. 

• Proportions of samples in a given category for data that 
is qualitative, such as execution state. Such proportions 
estimate the amount of time a task spends in a given 
state. 

• For propenies like memory utilization the user must get 
an impression of change in time. Changes can happen so 
fast that the user cannot see contrasts between past and 
present. In such a case, not the value of the current sam­
ple, but a weighted average of the last sample and the 
current one should be reported. The weighting deter­
mines the rate at which the past dies away. 

The second is the detection of events and transactions. 
Since the monitor is not synchronized with the program, 
events and transactions are inferred from observed changes 
in state. This inference is made by the condenser. Since 
other systems have different states and different events it is 
important for portability to embody the rules in a data-base. 
Since it is impossible to be sure that all events and/or trans­
actions of a given type have been detected, the values deter­
mined by the condenser are a lower limit. Note that some 
events or transactions, like interrupts or message exchanges, 
which are usually completed in less than a millisecond, are 
effectively instantaneous on the time scale of the user. They 
should be reported as numbers of events per display period, 
reported either raw or as a moving average. Other transac­
tions, like the transfer of very large blocks of data, can be 
extended on the time scale of the user. In Harmony many 
transactions have a set of intermediate states occurring be­
tween initial and final ones. The condenser can use them to 
provide the display controller with the information needed 
to support displays that indicate the progress of the program 
through a transaction. 

5. Graphical Techniques 
The graphical interface of a program like the execution 
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monitor is very complicated. In the interest of preserving 
space, this discussion is limited to aspects of the monitor in­
terface that we consider to be unique. The first is attentional 
selection. The display is intended to be as rich as possible in 
information, with the user attending selectively to the subset 
of it that is of interest at any given moment. A road map is a 
useful analogy. It contains far more information than an ob­
server can take in at a glance, or even as the result of con­
centrated study, but the information is organized so that it is 
easy to attend only to a small subset: the roads between Tor­
onto and Ottawa, for example, or rivers running into Lake 
Ontario. Because the monitor display is animated, effective 
organizational principles are more complicated than for a 
road map, which is static. Another obstacle is the limited 
resolution of current display surfaces compared to printed 
material. Finally, because most aspects of the display must 
be based on monitor-supplied defaults, the monitor itself 
must recognize structures that should be visually associated 
and choose presentation methods that provide the visual as­
sociation effectively. 

A second novelty of this program is that the informa­
tion displayed is almost exclusively statistical. This infor­
mation is nominal or numeric. Task state is an example of 
nominal information. The condenser generates numbers that 
are, in essence, the proportion of time spent by a task in 
each state. Consider the problem of presenting this informa­
tion, taking colour as the modality for the sake of concrete­
ness. One option is to produce a single percept that is an ap­
propriate average. If the task has only two states, READY 
and ACTIVE for example, code one as yellow, the other as 
green. Then states consisting of mixtures of the two can be 
represented as intermediate yellow-green colours with the 
proportions of yellow and green determined by the time 
spent in each state during the sample period. Suppose, how- · 
ever, that another state is added, BLOCKED for example, 
which is coded as red. There is now no unambiguous inter­
pretation of a yellow colour. It might be 100% READY and 
it might be 50% ACTIVE and 50% BLOCKED. Different 
colours might be chosen to make the three state display un­
ambiguous but, since colour vision is three dimensional, am­
biguity is unavoidable for four or more states. A better solu­
tion divides the task symbol into regions, coloured by state 
and proportional in size to the time spent in the state, as in 
figure 2. 

Note that this solution provides some useful scale in­
variance and in doing so subsumes the rejected mixing idea, 
since viewing the display from a distance produces a percept 
that is the mixture of the colours. Another feature of this so­
lution is that it effectively limits the number of displayed 
states to something like ten (19). In Harmony, the number of 
task states greatly exceeds ten, but many states are closely 
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Figure 2. Possible colouring of a task state, using tex­
tures to stand for colours. This particular task symbol il­
lustrates a possible problem. Presumably proportion is 
associated with area in the symbol, but humans do not 
make size judgments that are linear with area. Thus, 
precise estimation wold require a differently structured 
symbol. 

related. They are grouped into meta-states for display by a 
single colour. The meta-state solution is important regard­
less of stimulus dimensionality, since comprehension of a 
large number of states is a significant problem. It is also im­
portant in task grouping, as explained below. 

In the example above hue was chosen to display nomi­
nal information, a suitable choice [20, 21J. When numeric 
information, such as the number of transactions between 
two tasks, is to be displayed, size is a better variable. Sup­
pose, for example, that transactions between two tasks were 
to be displayed as an arrow linking the tasks. Making the 
width of the arrow proportional to the number of transac­
tions detected is an effective dispiay technique. An interest­
ing feature of this display solution is that it requires the 
tasks to be in close spatial proximity. Thus, tasks must be 
grouped together for display. Task grouping can be done ac­
cording to a variety of criteria, position in the creation tree, 
processor on which the task runs, transaction rates or even 
according to the logic of the program, which is implicitly 
defined by the user. Task display is greatly simplified when 
these criteria lead to the same grouping, and it is very likely 
true that ease of task display is closely related to ease of pro­
grammer comprehension. 

As the monitored program becomes more complicated 
the display can be simplified by collapsing well-structured 
groups of tasks into a meta-task. A meta-task has simple 
transaction properties, but its state space is the Cartesian 
product of the states of its component tasks. Thus, explicit 
state display is not possible. Fortunately there are many 
types of higher order statistical summary that can be created 
from the states of the individual tasks. Well-chosen summa­
ries, which might be created by dithering the meta-task sym­
bol, can have the useful property of resembling scaled veri­
ons of the task group, thereby providing useful visual conti­
nuity under scaling. 

The ability to recognize objects easily at different 
scales is a very useful property of the visual system, one that 
must be utilized when the information to be displayed be-
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gins to exceed the capacity of the display medium. Sampling 
is an information gathering technique that scales well in 
time, since most statistical measures change little as sam­
pling rates change. Similarly, summary statistics like the 
mean amount of each state in a meta-task statistical state can 
be made to scale with program complexity. Experimentation 
with our monitor will demonstrate whether or not there are 
measures of program performance of this type that are use­
ful to the programmer. 

The effects of differing time scales is also important 
when animating processes that are extended in time. In one 
of our tests, transactions were animated to test the effective­
ness of animation at giving the impression ·of information 
moving from one task to another. In fact, the result was just 
the opposite: the animation, which consisted of small com­
ets moving from one task to another, confused users. Why? 
For motion to be visible the animation had to be extended 
over about a second, during which time the comet was dis­
played several times at intermediate positions. Harmony 
message passing, on the other hand, consists of three trans­
actions, a send, a receive and a reply, often extended over 
less than a millisecond. Very quickly the temporal sequence 
of the transactions was lost as the monitor fell behind, and 
the comets created uninfonnative confusion. The result is 
obvious once time scales are considered. Harmony message 
passing is normally instantaneous to the human visual sys­
tem. On the rare occasions when it takes times the order of a 
few seconds it is important to give the user the impression 
of progress through a sequence of states extended in time. 
Cooperation between the condenser and the display is need­
ed to identify sequences that should be animated so as to 
show them appropriately to the user. 

6. Interaction 
Providing interactive control of monitor operation is, at 
present, quite unexplored. The user's job controlling the 
monitor is difficult for two reasons. 

• The monitor operates under a variety of constraints, on 
communication, processing and display. When manipu­
lation of a variable hits a constraint the situation is al­
most always confusing for the user, especially so when 
he is operating in a control space of high dimension. 

• The number of potential choices for a user is very high. 
• The monitor should present the user with a display that 

is right enough that only tuning is needed. 
It is important to allow the user to interact with all three 
components of the monitor. Interaction with the first two 
stages is sparse and easy to implement: the intensity of data 
collection by the collectors must be adjustable, and the sum­
marization modes used in the condenser must be controlled. 
Management of the display is a more difficult issue. In ac-
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cord with our intention of presenting a maximum of infor­
mation, allowing the user's visual system to select among it, 
we have so far concentrated our attention on the creation of 
useful defaults. All the same two important issues of interac­
tion are worth mentioning. 

• Effective meta-task control is essential. Interactive con­
trol must cohere effectively with other grouping dimen­
sions, such as creation trees and transaction intensity, as 
mentioned above. It must be possible to open and close 
meta-tasks, and to turn on and off graphical indications 
of current grouping strategies used by the monitor. 

• Interaction functionality of a 'wait for state' variety is an 
important visualization tool, existing as breakpoint set­
ting in hardware such as logic analysers, and in software 
in all types of debuggers. In an environment where state 
is non-detenninistic because it is statistical, 'wait for 
state' functionality must be generalized. One generaliza­
tion is obvious, since some interesting events, like dead­
lock, produce states of prolonged duration. Other defini­
tions of state, like interrupt service routines running 
more frequently than input data rates, are also likely to 
be useful. 

In sum, interacting with display modalities remains 
largely unexplored. Such fundamental issues as direct vs in­
direct manipulation are not obvious in an environment as 
complex as this one. 

7. Conclusions 
We have described a monitor we are building for the inter­
active visualization of the execution of muti-task real-time 
programs. Two simple principles, running the monitor at the 
speed of the monitored program and non-modification of the 
program or the kernel of the operating system under which it 
runs, have surprisingly far-reaching consequences, including 
the alteration of task state to a statistical quantity. Statistical 
state coincides with problems matching the user's time scale 
to the time scale of the executing program. Since the user 
can only perceive states on a much longer time scale than 
program operation, visualization techniques coricentrate on 
configurations that are prolonged in time. Our experience in 
creating graphical techniques suitable for displaying statisti­
cal state is still in its infancy. 

Even at this early stage of our project it is possible to 
derive some concrete conclusions. One concerns task struc­
turing. The multiplicity of criteria for the visual creation of 
task groupings on the monitor display reveals a multiplicity 
of criteria on which task structuring can be perfonned. It is 
important for programmers to restrict themselves to task 
structuring that is consistent across criteria if they want to 
produce programs with a structure that is easy to grasp. For 
example, analysis of remote delay [22] demonstrates that 
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dynamic task structure is an essential part of multi-task sys­
tems. Task grouping considerations revealed by the monitor 
show that some program locations are to be preferred over 
others as sites for task creation and destruction, at least if 
structural simplicity is a programming objective . 

Another conclusion concerns the nature of statistical 
state. As programs become more complex-, the ability to re­
late activities that occur at different program granularities 
becomes more and more important. Visual tools are clearly 
important for this objective, particularly since the visual sys­
tem has highly evolved capabilities for making correlations 
between views of objects at different scales. Interestingly, 
problems creating good visual representations of statistical 
state seem to be closely related to scaling problems. In the 
monitoTlhey arise in the temporal domain, but graphical dis­
play considerations show them to be important spatially as 
well. Further study of them is likely to provide important 
tools for graphical display of complex systems. 

Finally it is worth mentioning that the techniques dis­
cussed in this paper are likely to have application outside the 
domain of real-time systems. Consider, for example, proba­
bilistic algorithms [23] . Because they are non-detcnninistic 
they cannot, by definition, have program invariants. By 
techniques similar to the ones discussed in this paper it is 
possible to define statistical invariants for them, providing 
possibilities for verification and insight into quanitities that 
are interesting when displaying their execution. Such algo­
rithms use random numbers that are pseudo-random in most 
cases. Thus, at the granularity of the internal operation of 
the random number generator such algorithms become de­
tenninistic; at a larger granularity they are non-determinis­
tic. Most programs, particularly those involving time and/or 
external input in an essential way, are similar in being deter­
ministic at small granularities and non-deterministic at large 
granularities. Thus, the issues discussed in this paper are 
likely to have ever wider applicability as the increasing size 
and complexity of programs forces us to understand them at 
levels that are more and more removed from the actual ma­
chine on which they execute. 
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