
293

Visualizing the Execution of Multi-processor Real-Time Programs

Scott Flinn
William Cowan

Department of Computer Science
University of Waterloo

Waterloo, Ontario, N2L 3Gl

Abstract
This paper describes a monitor designed to provide graphi­
cal display of the execution of multi-processor real-time
programs. Two design principles, insisting that the monitor
should run in real-time and putting no special hooks for the
monitor into the operating system kernel , turn out to have
far-reaching consequences: the monitor can detect only the
state of the program, not its transactions, and any informa­
tion displayed must be a translation of fast actions within the
program into the slower time scale of human perception.
The result is a statistical notion of program state. When this
type of state is displayed graphically it is discovered to have
desirable scaling properties. In addition to the temporal scal­
ing that allows it to mediate between computer and human
time scales, it scales well with graphical demands imposed
by program complexity.

1. Introduction
Displaying the status of systems of interacting components
is probably the earliest widespread application of the graphi­
cal display of computer output. Typical examples are the
status displays of railroad systems, chemical plants, nuclear
reactors and air defence systems. These displays have sever­
al characteristics in common. They have minimal interactiv­
ity: the display configuration is delivered to users who have
little or no ability to change it, and must adapt themselves to
it. They use size to deal with structural complexity: display
surfaces for large systems may encompass a whole wall.
And they display their output in real-time, portraying events
that occur on time scales amenable to human perception:
trains take minutes moving from one block to another;
warning thresholds in process control are set at levels that
leave many seconds reaction time before dangerous condi­
tions obtain. Today's multi-processor real-time systems are

much more complex, yet programmers usually work without
the same level of graphical support. Display constraints are
more restrictive than in the older production systems. The
display surface is small, rarely larger than the screen of a
bit-mapped workstation. Visualization software copes with
the limited display space by providing interactive selection
of displayed information to the user. Furthermore, events
occur on time scales as short as microseconds, but it is usu­
ally highly undesirable to slow down the system, which has
an .important real-time component. We are currently devel­
oping a system to be used for visualizing the execution of
mUltiprocessor real-time programs. This paper describes the
issues encountered in creating such a system, and some of
the solutions we have discovered while experimenting with
programs that test components of the complete system.

There are many reasons to determine the behaviour of
real-time programs running on multiple interacting proces­
sors. For example:

• The programs must be debugged . Conventional debug­
gers show the behaviour of bugs that are well-localized,
but new visualization tools are needed for interactions
between high level program components.

• Resource utilization must be monitored, to measure how
much is used, when, and by which program components.

• Program execution must be monitored in production en­
vironments, to confirm ongoing correct behaviour.

• Visualization can be a form of dynamic documentation.
It is particularly useful when demonstrating or teaching
system operation to non-programmers.

• Many program development systems create building
blocks for program assembly by non-programmers [1].
Execution visualization is an essential support tool in
such systems.

Several ways of analysing faulty behaviour in these pro-

Graphics Interface '90

grams are not addressed here, since they are better handled
by different tools. Two prominent examples are faults in the
sequential execution of individual tasks, which are best ex­
posed in task-by-task execution using scaffolding [2] to sim­
ulate the interaction with other tasks, and techniques where­
by input is recorded so as to play back program execution at
varying speeds and granularity. (The latter is the subject of
ongoing research by two groups at Waterloo [3, 4].)

Execution visualization and monitoring has been ap­
proached from many directions. Most work has gone toward
the textual animation of algorithms in which small sections
of source code are presented on the screen, and portions are
highlighted as they are executed. A modern example is
Reiss's PECAN system [5]. There have also been graphical
extensions of this basic idea (6, 7, 8] . Subsets of the algo­
rithm visualization problem have also been examined, for
example, work of Fumas on viewing large information
structures through small virtual windows using fisheye
views [9], and of BOcker, Fischer and Nieper for providing
tools to be used as a software oscilloscope (10]. Execution
visualization has been prominent in parallel, distributed or
multi-task debugging. Cheung, Black and Manning have
produced a review of this work (11], which includes visual­
izing of inter-process communication in a message passing
environment (12], using instant replay to make parallel pro­
grams deterministic[13], and using special purpose hard­
ware to measure performance in real-time (14) . We are un­
aware, however, of work which attempts to display process
communication and activity in real-time without assuming
either hardware assistance, or special software assistance
from either the kernel or its applications. Any system that
does so must develop new techniques for visualizing task
execution and inter-task communication. It is specially im­
portant for the system to support effective visualization of
problems that are unique to program execution in multi-task,
multi-processor systems. For example,

• non-deterministic behaviour (especially in the resolution
of critical races),

• detection of deadlock and starvation,
• error latency and propagation,
• a very large state space, with much state and event infor­

mation to be displayed, and
• tightly and loosely coupled program modules (tasks).

Complicating the display problem is the necessity that the
system run in real-time, with minimal effect on the behav­
iour of the program being visualized.

This paper discusses issues that arise in the construc­
tion of monitors for visualizing execution of multi-processor
real-time programs. Our current knowledge of these issues
comes, not from the creation of a complete monitor, but
from the creation and observation of monitor components,

294

part of a feasibility study for such a monitor. The next sec­
tion introduces the basic four stage design of a program
monitoring system, including a discussion of constraints in­
fluencing the design. Sections 3, 4 and 5 describe the princi­
ple monitor stages, emphasizing aspects having to do with
the graphical output. Section 6 then discusses some of the
important issues of interaction and user control over the
monitoring environment. Before going on, however, we in­
clude brief definitions of some important terms, necessary
because terminology varies in this field. These definitions
are based on distinctions made in documentation of the Har­
mony operating system [15], on which our system is based.
A processor is a piece of hardware on which programs run.
A task is a running entity, consisting of code and state. A
program is the set of all tasks running on a collection of pro­
cessors. A meta-task is a collection of tasks, usually, but not
necessarily, closely related. The system is the operating sys­
tem software that provides the program with the abstractions
it needs to run. The state of a task is the complete set of in­
formation that determines its execution context. Often we
are interested only in a subset of this information, in which
case state is used to describe that information alone. A meta­
state is a set of states, usually closely related, to be dis­
played using a single representation . An event is a step in a
task's execution that changes its state, and usually refers
only to the abbreviated state. A transaction is an exchange
of information between two tasks.

2. Design Constraints
The system discussed in this paper is specifically designed
to monitor the execution of multi-task programs running
under Harmony. Harmony is a real-time multi-task multi­
processor operating system designed by Morven Gentleman
at the National Research Council of Canada for use in em­
bedded microprocessor applications [IS]. It has a shared
memory and a dynamic task structure, with explicit Create
and Destroy primitives. Tasks communicate and synchro­
nize by message passing, using Send-Receive-Reply with
blocking Send. We expect to use it for monitoring execution
of programs running as part of our experiment workstation.
The intent of this workstation is to enable 'non­
programmers' to create multi-task programs by assembling
experiment components specified by scripts [I]. Effective
graphical monitoring of program execution is important for
teaching the system as well as for debugging.

Programs to be observed by the monitor run on a vari­
able I1umber of Dy-4 DVME134 boards connected by a
VME bus; the monitor itself runs on an independent
DVMEl34 board. Each board consists of an MC68020 pro­
cessor along with its associated memory and peripherals. A
frame buffer is supplied for the monitor's graphical output.

Graphics Interface '90

The VME bus is connected by ethernet to a V AX. 8600 run­
ning Unix, on which programs are compiled and linked prior
to downloading [16].

Any monitor interacting with a program at a low level
has inevitable dependencies on the environment of the pro­
gram it monitors: in fact it is common practice to modify
system software or even hardware to provide facilities for
the monitor to use. Unfortunately such modifications make
the monitor very system specific, significantly undermining
the generality of results deduced from its performance. To
minimize these complications we have accepted two con­
straints in this work: except for creation of the monitor by
FirstUserTask no modifications are made to the kernel or to
the monitored program, either code or data structures; and
the monitored program is always to run with its execution,
and particularly its timing, as unaffected by the monitor as
possible. The first constraint forces the monitor to use only a
subset of information that is potentially available in the sys­
tem. The second forces us to deal with timing differences
between program and monitor. The constraints restrict what
can be monitored. This paper argues that what remains pro­
vides a useful and easily implemented capability. The ulti­
mate test, however, lies in extensive experience with the
completed monitor, something that lies in the future.

Accepting the constraints has far-reaching consequenc­
es, listed below.

1. The monitor must reside entirely on a dedicated proces­
sor from which it can read system data structures.

2. The monitor may not write in either program or system
memory.

3. The monitor cannot synchronize with events in the pro­
gram. It determines the state of a program by reading
its data structures, and must infer the existence of
events or transactions by observing changes in state. In
fact , while observation of a state change guarantees that
at least one event has occurred, observation of no state
change does not guarantee that no event has occurred.

4. The monitor does not necessarily see the program in a
consistent state since the acqu isition of state informa­
tion is not atomic with respect to program execution.
For this reason display of the measured state may be
misleading. It can indicate, for example, the presence of
deadlock when none is present. Deciding how to inter­
pret the information gathered and how to display it in­
teracts with monitor timing.

5. Information that changes faster than perceptual integra­
tion times of the human observer cannot be displayed.
This limitation restricts the monitor to displaying states
that persist for seconds. All is not lost, however, since
statistical information often persists in time. Suppose a
task is in one state most of the time and in a second

295

state the remainder of the time. The proportions can be
long-lived even though the persistence of either state is
very short. This observation is applicable, since consis­
tency conditions for statistical measures differ from
consistency conitions of a single sample. The essential
open question is: Are there statistical quantities persist­
ing as long as visual integration times that are useful for
program monitoring? Two examples provide prime
facie evidence that there are. The first is the utility of
profiling tools [17]. The second is the persistence in
time of conditions indicating starvation or deadlock.
(Programs that accept input are by their very nature in­
determinate. In sequential programs without a real-time
component, it is often possible to enumerate all logical­
ly distinct inputs and test the program against them,
making it deterministic for any given input set. For
real-time programs such enumeration is impossible,
making program execution effectively indeterminate.
Interestingly, statistical measurement of program exe­
cution is useful because, although there are no program
invariants in the usual sense for indeterminate pro­
grams, there may well be statistical invariants.)

6. Without special debugging code, the monitor cannot ob­
tain semantic information from the program being mon­
itored. This limitation bounds the level at which pro­
gram behaviour can be interpreted. In particular, state
information from any task is restricted to that informa­
tion, common to all tasks, which may be extracted from
the system asynchronously. If the program introduces
task states at a higher level of abstraction, the monitor
cannot represent them. Similarly, while message con­
tents might be partially obtained by the monitor, it can­
not associate a meaning with the message.
Data acquisition and display is based on a single struc­

ture to which all tasks are related . Harmony maintains a
simple task structure based on a parent/child relationship in
which each child is created by a unique parent. Thus the task
structure is a tree rooted at the FirstUserTask. Figure 1
shows a hypothetical task tree spread across four processors,
including the monitor processor. Integrating the monitor
with the task tree makes it possible to find the root of the
tree without using a load map. Task creation and destruction
create problems for this scheme. Since they change the tree,
data acquisition must be done carefully if spurious informa­
tion is to be avoided. They also complicate the display re­
quirements, since the monitor must be capable of displaying
the result of a task partly existing and partly not existing.
(Consistency is further discussed in section 3.)

The monitor is configured into a simple four stage de­
sign capable of gathering and displaying state information
within the constraints. Collector, condenser and display

Graphics Interface '90

Figure 1. Diagram of a hypothetical task structure. The
circles show tasks, the rectangles processors, and the
lines parent-child relationships. 1 is the FirstUserTask
and M is the root of the monitor.

stages are implemented as functions which, together with
necessary local data structures, define a 'module'. Associat­
ed with each task is a list of those modules that determine
how that task will be displayed. The coordinator is imple­
mented as a separate task which repeatedly builds a local
version of the task tree, then applies the module functions
for each task in the tree. The co1\ector is the source of the in­
formation displayed on the screen. It reads system data
structures and records information locally to be processed
by the corresponding condenser. The condenser is then in­
voked to provide the summarizing of data needed to mediate
between the microsecond time scale of data co1\ection and
the several second time scale of the display. The final dis­
play stage converts the co1\ection of summarized informa­
tion produced by the condenser into graphical images for
display to the user.

Note that all four of the stages can be modified on the
basis of interactive input from the user. The components of
a module are discussed in detail in Sections 3 to 5. User in­
teraction is then discussed in Section 6.

3. Col\ection of State Information
The collection of state information is relatively straightfor­
ward. Each collector is responsible for some of the state
information for each task in the tree. Typical parts of the
task state are

• execution state (running, ready, blocked),
• position in various queues (ready queue, message queue,

etc.),
• current correspondent,
• waiting correspondents,
• priority,
• i/o connections, and
• owned or locked resources.

For each task in the tree the coordinator ca1\s each of the as-

296

sociated collector functions, which determine the task state
from the system data structures. This information is then
processed by the condensers. The set of operations is cyclic,
with a frequency determined by the user. The sampling fre­
quency controls the amount of interference between the
monitor and the program: at its fastest we are able to use
about half the memory bandwidth for sampling, greatly af­
fecting the real-time response of the monitored program but
missing very few events; contrarily there is no limit on the
low side, except that the program is seen at a coarser granu­
larity.

There are two features to be noted. First, to maximize
the portability of the monitor it is important to isolate pecu­
liarities of the kernel data structures. They are represented as
subordinate functions of the collectors. The coordinator!col­
lector model makes adding or deleting a new data field as
simple as adding a module whose collector knows the loca­
tion of the data relative to the task descriptor. Similarly,
changes in the task structure, such as a separate task tree for
each processor, requires changes limited to the coordinator.
The requirement that the monitor should be able to read the
data structures of the system, however, cannot be changed.
In systems without a shared memory space, as Harmony
has, kernel modifications are needed to allow the collectors
to operate.

A more complex issue is creation and destruction of
tasks. Because the monitor does not synchronize with the
program, it is possible for a task to be destroyed between its
detection by the coordinator and subsequent accesses by col­
lectors. If the collector checks the validity of the task at the
end of its access, it can throwaway information that may be
corrupted. When a task is in the process of being destroyed
it is possible for some collectors to access it validly while
others fail to do so. Since each collector report is a small
part of the statistical display generated by the monitor, how­
ever, any perturbation is minor. Tasks that are missed by the
collectors on a given cycle because they are created between
the coordinator access and the collector access are also a
minor perturbation. It is even possible, though unlikely, for
a task to be missed altogether when the monitor is run with a
long cycle time (very low interference) and the create/de­
stroy cycle is very short. At all times the user must be aware
that the monitor is sensitive to a granularity of computation
comparable to the cycle time and that events of smaller
granularity may be missed.

4. Condensation of State Information
The condenser accepts information from the collectors and
processes it into a form suitable for display. As much as
possible of the temporal processing is concentrated there,
while other aspects of the display are handled by the last

Graphics Interface '90

stage. Thus, in general, the condenser accepts input at a rate
it cannot control, sorts and summarizes it, then puts out the
summaries.

Two aspects of the condenser function influence the
interactive quality of the monitor. The first is the creation of
data summaries. Human perceptual systems cannot follow
displays that change their contents much faster than several
times a second, during which time there can be thousands of
samples taken by the collectors. Since different types of data
are suited to different types of summary, a wide range of
summarization techniques is needed. Here are a few exam­
ples.

• Quantitative summaries, like mean, standard deviation,
minimum and maximum, for data that are numerical,
such as memory in use or number of transactions detect­
ed.

• Proportions of samples in a given category for data that
is qualitative, such as execution state. Such proportions
estimate the amount of time a task spends in a given
state.

• For propenies like memory utilization the user must get
an impression of change in time. Changes can happen so
fast that the user cannot see contrasts between past and
present. In such a case, not the value of the current sam­
ple, but a weighted average of the last sample and the
current one should be reported. The weighting deter­
mines the rate at which the past dies away.

The second is the detection of events and transactions.
Since the monitor is not synchronized with the program,
events and transactions are inferred from observed changes
in state. This inference is made by the condenser. Since
other systems have different states and different events it is
important for portability to embody the rules in a data-base.
Since it is impossible to be sure that all events and/or trans­
actions of a given type have been detected, the values deter­
mined by the condenser are a lower limit. Note that some
events or transactions, like interrupts or message exchanges,
which are usually completed in less than a millisecond, are
effectively instantaneous on the time scale of the user. They
should be reported as numbers of events per display period,
reported either raw or as a moving average. Other transac­
tions, like the transfer of very large blocks of data, can be
extended on the time scale of the user. In Harmony many
transactions have a set of intermediate states occurring be­
tween initial and final ones. The condenser can use them to
provide the display controller with the information needed
to support displays that indicate the progress of the program
through a transaction.

5. Graphical Techniques
The graphical interface of a program like the execution

297

monitor is very complicated. In the interest of preserving
space, this discussion is limited to aspects of the monitor in­
terface that we consider to be unique. The first is attentional
selection. The display is intended to be as rich as possible in
information, with the user attending selectively to the subset
of it that is of interest at any given moment. A road map is a
useful analogy. It contains far more information than an ob­
server can take in at a glance, or even as the result of con­
centrated study, but the information is organized so that it is
easy to attend only to a small subset: the roads between Tor­
onto and Ottawa, for example, or rivers running into Lake
Ontario. Because the monitor display is animated, effective
organizational principles are more complicated than for a
road map, which is static. Another obstacle is the limited
resolution of current display surfaces compared to printed
material. Finally, because most aspects of the display must
be based on monitor-supplied defaults, the monitor itself
must recognize structures that should be visually associated
and choose presentation methods that provide the visual as­
sociation effectively.

A second novelty of this program is that the informa­
tion displayed is almost exclusively statistical. This infor­
mation is nominal or numeric. Task state is an example of
nominal information. The condenser generates numbers that
are, in essence, the proportion of time spent by a task in
each state. Consider the problem of presenting this informa­
tion, taking colour as the modality for the sake of concrete­
ness. One option is to produce a single percept that is an ap­
propriate average. If the task has only two states, READY
and ACTIVE for example, code one as yellow, the other as
green. Then states consisting of mixtures of the two can be
represented as intermediate yellow-green colours with the
proportions of yellow and green determined by the time
spent in each state during the sample period. Suppose, how- ·
ever, that another state is added, BLOCKED for example,
which is coded as red. There is now no unambiguous inter­
pretation of a yellow colour. It might be 100% READY and
it might be 50% ACTIVE and 50% BLOCKED. Different
colours might be chosen to make the three state display un­
ambiguous but, since colour vision is three dimensional, am­
biguity is unavoidable for four or more states. A better solu­
tion divides the task symbol into regions, coloured by state
and proportional in size to the time spent in the state, as in
figure 2.

Note that this solution provides some useful scale in­
variance and in doing so subsumes the rejected mixing idea,
since viewing the display from a distance produces a percept
that is the mixture of the colours. Another feature of this so­
lution is that it effectively limits the number of displayed
states to something like ten (19). In Harmony, the number of
task states greatly exceeds ten, but many states are closely

Graphics Interface '90

Figure 2. Possible colouring of a task state, using tex­
tures to stand for colours. This particular task symbol il­
lustrates a possible problem. Presumably proportion is
associated with area in the symbol, but humans do not
make size judgments that are linear with area. Thus,
precise estimation wold require a differently structured
symbol.

related. They are grouped into meta-states for display by a
single colour. The meta-state solution is important regard­
less of stimulus dimensionality, since comprehension of a
large number of states is a significant problem. It is also im­
portant in task grouping, as explained below.

In the example above hue was chosen to display nomi­
nal information, a suitable choice [20, 21J. When numeric
information, such as the number of transactions between
two tasks, is to be displayed, size is a better variable. Sup­
pose, for example, that transactions between two tasks were
to be displayed as an arrow linking the tasks. Making the
width of the arrow proportional to the number of transac­
tions detected is an effective dispiay technique. An interest­
ing feature of this display solution is that it requires the
tasks to be in close spatial proximity. Thus, tasks must be
grouped together for display. Task grouping can be done ac­
cording to a variety of criteria, position in the creation tree,
processor on which the task runs, transaction rates or even
according to the logic of the program, which is implicitly
defined by the user. Task display is greatly simplified when
these criteria lead to the same grouping, and it is very likely
true that ease of task display is closely related to ease of pro­
grammer comprehension.

As the monitored program becomes more complicated
the display can be simplified by collapsing well-structured
groups of tasks into a meta-task. A meta-task has simple
transaction properties, but its state space is the Cartesian
product of the states of its component tasks. Thus, explicit
state display is not possible. Fortunately there are many
types of higher order statistical summary that can be created
from the states of the individual tasks. Well-chosen summa­
ries, which might be created by dithering the meta-task sym­
bol, can have the useful property of resembling scaled veri­
ons of the task group, thereby providing useful visual conti­
nuity under scaling.

The ability to recognize objects easily at different
scales is a very useful property of the visual system, one that
must be utilized when the information to be displayed be-

298

gins to exceed the capacity of the display medium. Sampling
is an information gathering technique that scales well in
time, since most statistical measures change little as sam­
pling rates change. Similarly, summary statistics like the
mean amount of each state in a meta-task statistical state can
be made to scale with program complexity. Experimentation
with our monitor will demonstrate whether or not there are
measures of program performance of this type that are use­
ful to the programmer.

The effects of differing time scales is also important
when animating processes that are extended in time. In one
of our tests, transactions were animated to test the effective­
ness of animation at giving the impression ·of information
moving from one task to another. In fact, the result was just
the opposite: the animation, which consisted of small com­
ets moving from one task to another, confused users. Why?
For motion to be visible the animation had to be extended
over about a second, during which time the comet was dis­
played several times at intermediate positions. Harmony
message passing, on the other hand, consists of three trans­
actions, a send, a receive and a reply, often extended over
less than a millisecond. Very quickly the temporal sequence
of the transactions was lost as the monitor fell behind, and
the comets created uninfonnative confusion. The result is
obvious once time scales are considered. Harmony message
passing is normally instantaneous to the human visual sys­
tem. On the rare occasions when it takes times the order of a
few seconds it is important to give the user the impression
of progress through a sequence of states extended in time.
Cooperation between the condenser and the display is need­
ed to identify sequences that should be animated so as to
show them appropriately to the user.

6. Interaction
Providing interactive control of monitor operation is, at
present, quite unexplored. The user's job controlling the
monitor is difficult for two reasons.

• The monitor operates under a variety of constraints, on
communication, processing and display. When manipu­
lation of a variable hits a constraint the situation is al­
most always confusing for the user, especially so when
he is operating in a control space of high dimension.

• The number of potential choices for a user is very high.
• The monitor should present the user with a display that

is right enough that only tuning is needed.
It is important to allow the user to interact with all three
components of the monitor. Interaction with the first two
stages is sparse and easy to implement: the intensity of data
collection by the collectors must be adjustable, and the sum­
marization modes used in the condenser must be controlled.
Management of the display is a more difficult issue. In ac-

Graphics Interface '90

cord with our intention of presenting a maximum of infor­
mation, allowing the user's visual system to select among it,
we have so far concentrated our attention on the creation of
useful defaults. All the same two important issues of interac­
tion are worth mentioning.

• Effective meta-task control is essential. Interactive con­
trol must cohere effectively with other grouping dimen­
sions, such as creation trees and transaction intensity, as
mentioned above. It must be possible to open and close
meta-tasks, and to turn on and off graphical indications
of current grouping strategies used by the monitor.

• Interaction functionality of a 'wait for state' variety is an
important visualization tool, existing as breakpoint set­
ting in hardware such as logic analysers, and in software
in all types of debuggers. In an environment where state
is non-detenninistic because it is statistical, 'wait for
state' functionality must be generalized. One generaliza­
tion is obvious, since some interesting events, like dead­
lock, produce states of prolonged duration. Other defini­
tions of state, like interrupt service routines running
more frequently than input data rates, are also likely to
be useful.

In sum, interacting with display modalities remains
largely unexplored. Such fundamental issues as direct vs in­
direct manipulation are not obvious in an environment as
complex as this one.

7. Conclusions
We have described a monitor we are building for the inter­
active visualization of the execution of muti-task real-time
programs. Two simple principles, running the monitor at the
speed of the monitored program and non-modification of the
program or the kernel of the operating system under which it
runs, have surprisingly far-reaching consequences, including
the alteration of task state to a statistical quantity. Statistical
state coincides with problems matching the user's time scale
to the time scale of the executing program. Since the user
can only perceive states on a much longer time scale than
program operation, visualization techniques coricentrate on
configurations that are prolonged in time. Our experience in
creating graphical techniques suitable for displaying statisti­
cal state is still in its infancy.

Even at this early stage of our project it is possible to
derive some concrete conclusions. One concerns task struc­
turing. The multiplicity of criteria for the visual creation of
task groupings on the monitor display reveals a multiplicity
of criteria on which task structuring can be perfonned. It is
important for programmers to restrict themselves to task
structuring that is consistent across criteria if they want to
produce programs with a structure that is easy to grasp. For
example, analysis of remote delay [22] demonstrates that

299

dynamic task structure is an essential part of multi-task sys­
tems. Task grouping considerations revealed by the monitor
show that some program locations are to be preferred over
others as sites for task creation and destruction, at least if
structural simplicity is a programming objective .

Another conclusion concerns the nature of statistical
state. As programs become more complex-, the ability to re­
late activities that occur at different program granularities
becomes more and more important. Visual tools are clearly
important for this objective, particularly since the visual sys­
tem has highly evolved capabilities for making correlations
between views of objects at different scales. Interestingly,
problems creating good visual representations of statistical
state seem to be closely related to scaling problems. In the
monitoTlhey arise in the temporal domain, but graphical dis­
play considerations show them to be important spatially as
well. Further study of them is likely to provide important
tools for graphical display of complex systems.

Finally it is worth mentioning that the techniques dis­
cussed in this paper are likely to have application outside the
domain of real-time systems. Consider, for example, proba­
bilistic algorithms [23] . Because they are non-detcnninistic
they cannot, by definition, have program invariants. By
techniques similar to the ones discussed in this paper it is
possible to define statistical invariants for them, providing
possibilities for verification and insight into quanitities that
are interesting when displaying their execution. Such algo­
rithms use random numbers that are pseudo-random in most
cases. Thus, at the granularity of the internal operation of
the random number generator such algorithms become de­
tenninistic; at a larger granularity they are non-determinis­
tic. Most programs, particularly those involving time and/or
external input in an essential way, are similar in being deter­
ministic at small granularities and non-deterministic at large
granularities. Thus, the issues discussed in this paper are
likely to have ever wider applicability as the increasing size
and complexity of programs forces us to understand them at
levels that are more and more removed from the actual ma­
chine on which they execute.

8. Acknowledgements
This research was supported in part by the National Science
and Engineering Research Council of Canada and by Digital
Equipment Canada. The authors also wish to thank Kelly
Booth and Marceli Wein for many helpful discussions.

9. References
[I] L.R. Bartram, K.S, Booth, W.B. Cowan, 1.D. Morri­

son, and P.P. Tanner, "A System for Conducting Ex­
periments Concerning Human Factors in Interactive
Graphics", Proc. Graphics Interface 1988, pp. 34-42.

Graphics Interface '90

[2] J. Bentley, More Programming Pearls, Addison-Wes­
ley: Reading, 1988, pp. 27-36.

[3] W.-H. Cheung, Process and Event Abstraction for De­
bugging Distributed Programs, University of Water­
loo, Department of Computer Science, Ph.D. Thesis,
1989.

[4] M. Gauthier, Visualizing the Output of the Psychology
Workstation, University of Waterloo, Department of
Computer Science, Masters Essay, 1990 (in progress).

[5] Steven P. Reiss, "PECAN: Program Development En­
vironments that Support Multiple Views", IEEE Trans.
on Software Engineering, SE Vol. 11, No. 3, March
1985, pp. 276-285.

[6] Ronald M. Baecker, "An Application Overview of
Program Visualization", Computer Graphics, Vol. 20,
No. 4, July 1986, p. 325.

[7] Marc H. Brown, "Perspectives on Algorithm
Animation", Proc. ACM SIGCHI'88 Conf. on Human
Factors in Computing Systems, pp. 33-38.

[8] Marc H. Brown, Robert Sedgewick, "A System for Al­
gorithm Animation", Computer Graphics, Vol 18, No.
3, July 1984, pp. 177-186.

[9) George W. Fumas, "Generalized Fisheye Views",
Proc. ACM SIGCHI'86 Conf. on Human Factors in
Computing Systems, pp. 16-23.

[10) Heinz-Dieter BOcker, Gerhard Fischer and Helga
Nieper, "The Enhancement of Understanding through
Visual Representation", Proc. ACM SIGCHI'86 Conf.
on Human Factors in Computing Systems, pp. 44-50.

[11) W.H. Cheung, J.P. Black, E. Manning, "A Study of
Distributed Debugging", Research Report CS-88-44,
Faculty of Mathematics, University of Waterloo, Wa­
terloo, Ont., October 1988.

[12) Jeffrey Joyce, Greg Lomow, Konrad Slind, and Brian
Unger, "Monitoring Distributed Systems", ACM
Transactions on Computer Systems, Vol. 5, No. 2,
May 1987, pp. 121-150.

[13) T.J. LeBlanc, J.M. Mellor-Crummey, "Debugging Par­
allel Programs with Instant Replay", IEEE Trans. on
Computers, Vol. C-36, No. 4, April 1987, pp. 471-482.

[14] Dieter Wybranietz and Dieter Haban, "Monitoring and
Performance Measuring Distributed Systems During
Operation", ACM 0-89791-254-3/88/0005/0197, pp.
197-206.

(15) W.M. Gentleman, "Using the Harmony Operating
System", Tech. report NRCC-ERB-966 Division of
Electrical Engineering, National Research Council of
Canada, December, 1983.

(16) K.S . Booth, W.B. Cowan, D.R. Forsey, "Multitasking
Support in a Graphics Workstation", Proc. 1 st Interna­
tional Conference on Computer Workstations, (No-

300

vember, 1985) pp. 82-89.
[17] J. Bentley, More Programming Pearls, Addison-Wes­

ley: Reading, 1988, pp. 3-13.
(18) J. M. Chambers, W. S. Cleveland, B. Kleiner and P. A.

Tukey, Graphical Methods for Data Analysis, Dux­
bury Press: Boston, 1983.

(19) R. M. Boynton and C. X. Olson, "Locating the Basic
Colors in the OSASpace", Color Research and Appli­
cation, 12, 1987, pp. 94-105.

(20) W. B. Cowan, "Color psychophysics and display tech­
nology: avoiding the wrong answers and finding the
right questions", Image Processing, Analysis, Mea­
surement and Quality, Gary W. Hughes, Patrick E.
Mantey, Bernice Rogowitz, Editors, Proc. SPIE 901,
1988, pp. 186-193.

(21) c. Ware and J. C. Beatty, "Using Color Dimensions to
Display Data Dimensions", Human Factors, 30(2),
1988, pp. 127-142.

(22) B. Liskov, M. Herlihy and L. Gilbert, "Limitations of
Synchronous Communication with Static Process
Structure in Languages for Distributed Computing",
ACM Symposium on Principles of Programming Lan­
guages, 1986,pp. 150-159.

(23) D. J. A. Welsh, "Randomized algorithms", Discrete
Applied Mathematics, 5, 1983, pp. 133-145.

Graphics Interface '90

