
49

Towards Generalised Motion Dynamics for Animation

Charles Herr and Brian Wyvill

Department of Computer Science, University of Calgary.
2500 University Drive N.W.

Calgary, Alberta, Canada, T2N IN4

Abstract

Dynamic simulation has the advantage that the motion
is produced from a model of the real world. However,
including such physical descriptions in an animation sys­
tem in a general way is difficult due to the problem of
describing the simulation in high level terms. The low­
est level primitives are forces, torques and masses and
a set of differential equations that relate these primi­
tives to the motion. We describe here an approach to
integrating a high level set of primitives into a general
purpose animation system via an intermediate language
called CHARLI. Interactive user interfaces can be built
on top of CHARLI to allow a user to specify motion
dynamics for a fairly complex set of interacting bodies.

Key words: Computer Graphics, animation, motion
control, dynamics.

Introduction

The use of dynamics for motion control in animation has
attained some popularity in research systems. However,
before such techniques can become standard a number
of outstanding problems must be overcome. Barzel and
Ban [Barze! & Barr 1988] recently stated these prob­
lems as follows:

• Simulations are hard to implement Many dy­
namical simulation problems are solved by special
purpose software. A program which defines an ar­
ticulated figure may not be easily generalisable to
solve for a deformable object under various exter­
nal forces.

• Simulations are hard to control With a purely
dynamic approach it is often difficult for an anima­
tor to produce a desired motion.

• Simulations are slow Computationally intensive
simulations may compete with rendering in the
overal cost of an animation production.

In this work we have two main goals:

1. Generality As with earlier work in this area we
wish to achieve a generalised way of simulating the
dynamics of a broad class of mechanical systems.
This includes the geometry, forces and constraints
on the system.

2. Integration with an animation system In ad­
dition we are concerned with the integration of
such simulation techniques with our existing ob­
ject oriented animation system in a natural and
usable way. We wish to provide simultaneous ac­
cess to dynamic and traditional kinematic anima­
tion techiques.

Previous Work

A considerable volume of literature exists on techniques
for performing dynamic simulations to solve various
problems. Many of these techniques are discussed in
the mechanical engineering literature, particularly for
the design of mechanisms. However, they are also ap­
plicable for use in computer animation systems.

Haug Of interest to computer animation system de­
signers is a survey paper by Haug in [Haug 1984], who
discusses the derivation of differential equations using
a minimum set of independent generalised coordinates
vs. a much larger set of dependent coordinates and con­
straint equations relating them. The use of such a mini­
mum set results in a small number of complex equations.
The use of a large set of coordinates produces a large
number of very simple equations. The latter approach
amounts to constructing parts of the model separately
and assembling the parts using constraints.

Nikravesh Also from the mechanical engineer­
ing literature is a survey paper by Nikravesh in
[Nikravesh 1984]. In particular he discusses the control
of numerical error in the integration of the differential
equations. Violations in the constraint equations are
used as feedback terms to correct the violations in the
next time step.

Graphics Interface '90

Wilhelms A good example of dynamics for human
body animation was by Wilhelms in her PhD work.
She used the Gibbs-Appel formulation for the dynamical
analysis [Wilhelms 1985].

Al'lllstrong A recursive method for fast solution of
the dynamics equa tions for tree structured (i.e. open
loop) models is in [Armstrong & Green 1985].

Isaacs Two papers by Isaacs and Co­
hen, [Isaacs & Cohen 1987] and [Isaacs & Cohen 1988]
discuss the problems of generalising dynamic simulation
by allowing users to construct models by selecting joints
from a joint library and specifying their connectivity.
The complex kinematic constraints they provide facili­
tate kinematic driving and the construction of models
with closed loops. The dynamics are formulated using
Lagrange's equations.

Barzel At the same time related work was developed
by Barzel and Barr [Barzel & Barr 1988] who are also
concerned with generality and usability. A wide variety
of models can be constructed by choosing and combin­
ing approriate elements from body, applied force, and
constraint libraries.

Haurnann
Haumann and Parent in [Ha umann & Parent 1988) fo­
cus on the simula tion of fl exible objects such as bounc­
ing blobs and waving flags using masses connected by
springs and calculations of aerodynamic drag.

Wilhelms In later work by Wilhelms, Moore and
Skinner [Wilhelms et al 1988], further low-level control
issues are discussed such as collision detection and re­
sponse, friction, and joint limits. Their system uses the
fast recursive dynamics formulation of Armstrong and
Creen.

Miller A more specialised but interesting use of dy­
namics was in work by Miller [Miller 1988] to drive the
animation of a snake model.

T erzopoulous Terzopoulous, Platt, and Fleischer in
[Terzopoulo et al 1989] have also worked on deformable
solids called goop and fluids called glop. These are an­
imat.ed using a variety of techniques. The deformable
solids are modeled with partial differential equations de­
rived using elasticity theory. The fluids are modeled as
discrete particles with attractive and repulsive forces be­
tween them.

van Overveld In this work, [O verveld 1989] a very
fast approximate but in teractive solution of differential
equations is offered for an arbitrary mesh of masses con­
nected by springs.

50

Pentland A very fast solution of dynamics equations
is given in [Pentland & Williams 1989]. Dynamic mod­
els are constructed using finite element analysis. Di­
agonalization of the mass matrix for their systems of
differential equations and elimination of high frequency
vibrations permit the extremely fast solution.

The CHARLI Modelling and Animation
Language

In many areas where the computer has been used to
aid an exisiting task such as draughting, systems have
been designed to keep the spirit of earlier methods so
that the designer does not have to cope with an entirely
new way of thinking. Computer animation of three di­
mensional models does not lend itself to the same ap­
proach. The animator is working within the 3D world
and not with sequences of 2D drawings. Although in­
teractive graphical tools can often be used to specify
animation sequences, sometimes essen tially algorithmic
animation is required and a language description is more
suitable.

In our system we ha ve ta ken the view that all anima­
tion and model descriptions should be language based .
Interactive interfaces may also be used to build or mod­
ify the da ta structures but each session is saved in the
form of a language script which may be further edited
later using a text editor. While the current trend in
the design of computer graphics systems is to break
down the process of specifying and generating images
into a number of separate parts, we are exploring a
system which closely couples these separate parts, al­
lowing intense interaction between them (for details see
[Chmilar & Wyvill 1989]). The system integrates the
specification of model geomet ry, model and scene s truc­
ture, and animation. The system is based on a kernel
which controls a modelling and animation data-structure.
Although interactive programs may communicate di­
rectly with the kernel, the universal form of data com­
munication in the system is by means of a powerful mod­
elling and animation language called CHARL!. Such a
scripting language can be used to describe models or
motions which are algorithmic in nature and awkward
to describe interactively. We have extended this lan­
guage to allow the description of dynamical models. The
language also allows a kinematic description of motion
and thus an animator can achieve a spectrum of control
from pure kinematic to pure dynamic control with an
inbetween stage where certain quantities are kinemati­
cally controlled and others are driven dynamically. The
language has variables, scoping, operations, casting and
animation control; a full description is to be found in
[Chmilar & Wyvilll 989] .

Adding Dynamics to CHARLI

The following are the key elements of the CHARL!
la ngu age:

Graphics Interface '90

Comment~ begin with '#' and continue to end 0/ line
var r, theta-initial, theta...dot..initial;
dynamic theta;

#assign animation track to r
r = {D at D IleC alowmout 1.8 at 2 sec};

set initial position and velocity of theta
theta.initial = pi;
theta_dot.initial = -1;
theta = inltia1(theta-initial, theta...dot..initial);

Figure 1: Valid declarations and assignments

Variables There are two data types; variables which
can take constant, kinematic animation track, or
path values; and dynamic variables which take dy­
namic initialisations.

Primitives Geometric primitives; line, polygon (others
may be added). Dynamic Primitives; masses and
labels. Masses affect the simulation whereas labels
are merely convenient attachment points.

Transformations Geometric transformations can be
used to change the location and orientation of the
primitives.

Constraints Geometric transformations provide the ba­
sic model construction mechanism. Constraints
can be added to facilitate the building of closed
loop models and also to provide alternative and of­
ten more convenient ways of constructing models.
Dynamic primitives can be constrained to a path
or to maintain a constant or time varying distance
from another dynamic primitive.

We illustrate the use of the dynamical elements in
CHARLI with a series of script excerpts.

Example - Declarations and assignments
Figure 1 shows some valid CHARLI declarations and

assignments.

Example - Transformations
Figure 2 shows a triple pendulum. The CHARLI script
in figure 3 illustrates how it might be constructed and
animated using geometric transformations.

Example - Constraints
The use of constraints often results in shorter and

clearer model specifications. The script in figure 4 pro­
duces the same animation as the script in figure 3.

Kinematic Control

For dynamics to be useful to the animator, it is im­
portant to be able to vary the degree of control that
the simulation has over the models. In CHARLI this
is done by allowing parts of the model to be animated

51

Figure 2: Triple Pendulum

kinematically, whilst other parts are animated dynam­
ically. The dynamic parts react to the motions of the
kinematic parts.

Animator control through geometric
transformations

Arguments to transformations can be tracks, or im­
port or dynamic variables. Tracks, see [Gomez 1985],
are explicit functions of time built into the CHARLI sys­
tem. Import variables are external functions written
in a programming language. They allow the specifica­
tion of custom time and force functions not available
within the system. If the argument to a transforma­
tion is an import variable or track, the part of the
model specified by the transformation changes as an ex­
plicit function of time. We say the degree of freedom
is driven. If the argument is a dynamic variable, the
part of the model changes according to the influences of
applied forces and the motions of other objects in the
system.

Animator control through constraints

A disadvantage of using geometric transformations is
that only tree structured models can be constructed.
The distance and path constraints allow the construc­
tion of models with closed loops. A disLconstraint
forces a mass or label to be a certain distance away
from another mass or label. A path constraint forces
the motion of a mass or label to lie on a point, line
or spline path, much like a bead sliding along a wire.
The arguments to the point, line and spline generation
functions are import variables or tracks.

An example: The balloon pendulum

We want to produce an animation of the mechanical
system in figure 5. The top end of the pendulum arm
moves on a smoothly curved wire. The pendulum arm

Graphics Interface '90

var length;
dynamic thetaO, thetal , theta2;

#The pendulum bobs are to be drawn as boxes
def square

end;

square contains a polygon primitive. The
parameters are vertex triplets in x, y,z order.
polygon(0,0,0, 1,0,0, 1,1,0,0,1,0) scale(O.l);

#definc the pendulum bobs as mass objects
def mO mass(l.O) ; square; end;
def m1 mass(2.0) ; square; end;
def m2 mass(S.O); square; end;

length = 1;
thetaO = initial(O, 0);
theta1 = initial(O, 0);
theta2 = initiat(O, 0);

def p2

end;
def pi

end;
def pO

end ;

m2 translatex(length) rotatez(theta2);
m1;
#..x, ..y and ..z give position of a defined object
line(ml..x, m1_y, 0, m2..x, m2..y, 0);

p2 translatex(length) rotatez(thetal) ;
mO;
line(mO..x, mO_y, 0, ml..x, mLy, 0);

pl t,· .. nslatex(1ength) rotatez(thetaO);
Ii".,(0, 0 , 0 , m1..x , ml..y, 0) ;

#lnstantialc the pendulum at the origin
pO;

Figure 3: Triple pendulum using transformations

is a piston whose length we can change at will. The
buttom end is attached to an odd springy bob.

mO is constrained to always lie on the smoothly curved
wire. To construct the pendulum arm, we must spec­
ify how it changes length over time. The bob is built
by forcing the distances dist(ml, m2), dist(m2, m3),
dist(m3, m4), dist(m4, m5) and dist(m.5, ml) to re­
main constant, forming a pentagon. Spring forces are
added between all pentagon masses that are not im­
mediate neighbours. Attaching Illl to lab ell completes
the mechanism. Figure 6 shows the balloon pendulum
CIIARL! script. Figure 7 shows the motion of a many
sided pendulum bob.

Implementation of CHARLI dynamics

Lagrange's Equations
CIIARL! derives a system of differential equations

(DE 's) from the geometric information in a CHARLI
script. It generates data that is passed to a standard
numerical DE solver. Lagrange's equations are at the
heart of CHARL! dynamics. They allow automatic gen­
eration of the DE's from the kinetic and potential energy

52

var length;
dynamic xroot, yroot, xO, yO, xl, yl, x2, y2;

#squa re, mO, ml and m2 definitions are
as in the previous script

def mroot mass(l.O); end;

length = 1;
xO = initial(length, 0);
yO = initial(O, 0);
xl = initial(2 * length, 0);
yl = initial(O, 0);
x2 = initial(3 * length, 0);
y2 = initial(O , 0);

#instantiating the mass at the origin
with no transformation list
#fixes it there
mroot;
mO t"au~l"tex(xO) translatey(yO);
m1 trau"l .. tex(xl) translatey(yl);
m2 translatex(x2) translatey(y2);

dist...constraint(mroot, mO, length)
dist...constraint(mO, ml, length) ;
dist...constraint(ml, m2, length) ;
line(mroot..x, mroot_y, 0, mO..x, mO_y, () I.
line(mO..x, mO_y, 0, m1..x, ml..y, 0);
line(m1..x, mLy, 0, m2..x, m2_y, 0) ;

Figure 4: Triple pend defined using constraints

Spline path

slength remains constant
r changes according to a
user specified function of
time. mO follows the
spline
path.

Springs

Figure 5: A balloon pendulum

Graphics Interface '90

var r, sideJength, mass_const, pi;
var equiJJength, spring..constant, damping..constant;
dynamic theta, xO, yO, xl, yl, x2 , y2;
dynamic x3, y3, x4, y4, x5, y5;

length = I;
mass..const = 1.0;
.ideJength = 5.0;
equilJength = 8.090170;
spring-constant = 1.0;
damping_constant = 3.0;

theta = Initial(-pi / 2, 0);
xO = Inltlal(-IO .OOOOOO, 0);
yO = Inltla1(IO .OOOOOO, 0);
xl = Inltla1(-IO .OOOOOO, 0);
yl = Inltia1(O.OOOOOO, 0) ;
x2 = Inltlal(-14.045085, 0);
y2 = Inltial(-2.938926, 0);
x3 = Inltlal(-12 .500000, 0);
y3 = Inltlal(-7.694209, 0) ;
x4 = Inltlal(-7.500000, 0) ;
y4 = Inltlal(-7.694209, 0);
x5 = inltial(-5.954915 , 0);
y5 = Inltla1(-2.938926, 0);

pl i6 a 6pline path
pi = IIpline(-IO , 10, 0, -5 , 0, 0,

5, 0, 0, 10, 10, 0);
r = {IO at 0 lIec linear 0 at 10 sec};

def labell label(); end;

mO to m5 are defined a$ maue$
def mO m8.ll1l(mass_const) ; end;
def ml m8.ll1l(mass_const); end;
def m2 m8.lls(mass_const) ; end;
def m3 m8.lls(mass_const) ; end;
def m4 masll(mass_const); end;
def m5 mass(mass-const); end;

53

def pend..arm
mO °
lab~ll tranlllatey(r) rotatez(theta);

end;

pend..arm tranlllatex(xO) translatey(yO);
dlst...coWltralnt(labell, ml, 0);
path_constralnt(mO, pi);

ml translatex(xl) translatey(yl);
m2 translatex(x2) translatey(y2);
m3 tranBlatex(x3) translatey(y3) ;
m4 tranlllatex(x4) translatey(y4);
m5 translatex(x5) translatey(y5);

dlst...coWltralnt(ml, m2, sideJength);
dlst...coWltralnt(m2, m3, sideJength);
dlst...coWltralnt(m3, m4, sideJength);
dlst...coWltralnt(m4, m5, sideJength);
dist...coWltraint(m5, ml, sideJength);

Specify 6pring and damping force6 between maooeo
sprlngJUld_damper(ml, m3, equilJength ,

spring-constant , damping_constant) ;
spring...and_damper(m2, m4, equilJength,

spring_constant, damping_constant);
springJUld_damper(m3, m5, equilJength,

spring_constant , damping_constant);
spring...and_damper(m4, ml, equilJength,

spring_constant, damping...constant);
sprlng...and_damper(m5, m2, equilJength,

spring..constant, damping_constant);

lIne(mO.x, mO-y, 0, ml.x, ml-y, 0);
polygon(ml.x, ml-y, 0, m2.x, m2-y, 0,

m3.x, m3-y, 0 , m4.x, m4-y, 0, m5.x, m5-y, 0);
Draw the opline path

path(pl);

Figure 6: Balloon pendulum script

expressions for a mechanical system. They also allow
for the easy introduction of additional coordinates and
constraint equations.

8L _ ~ 8L + ~ ~k 81k = _Q.
8qi dt 8gi L.J 8q.

k=1

i = 1, ... , n where

L = T - U is the Lagrangian (the difference between
the kinetic and potential energies of the system).

ql ... qn are called generalized coordinates. They com­
pletely specify the position of the mechanical sys­
tem.

gl . .. gn are called generalized velocities. They com­
pletely specify the velocity of the mechanical sys­
tem.

Q. is the force applied to the i'th coordinate. This can
be any sort of force, e.g. a linear force if q. is a
translation, or a torque if q. is a rotation.

/1 ... Im are constraint equations involving the coordi-
nates.

~k is the force required to maintain the k'th constraint.

We can introduce new coordinates as long as this rela­
tionship is maintained:
number degrees of freedom = number coordi­

nates - number constraint equations.
The number of degrees of freedom in a mechanical sys­
tem is the minimum number of coordinates required to
completely describe the state of the system.

Generating the Differential Equations
By introducing additional coordinates and constraints,

we can simplify the derivation of the equations so that
we don't require the use of complex symbolic mathe­
matics software. For example, consider the mechanical
system shown in figure 8.

We have a mass m attached to one end of a spring.
The other end of the spring is pulled in the direction

Graphics Interface '90

~
Frame 0

~
Frame 35

7:
Frame 70

r

54

~ 6 ;y d "et '1;
Frame 5 Frame 10 Frame 15 Frame 20 Frame 25 Frame 30

~ ~ ~ ~ "-b 'c;
Frame 40 Frame 45 Frame 50 Frame 55 Frame 60 Frame 65

'c(~ C;J QJ QJ
Frame 75 Frame 80 Frame 85 Frame 90 Frame 95

Figure 7: Frames from the balloon pendulum sequence

Path of top end of spring

indicated in figu rt; 8. The CHARLI script m figure 9
describes the action.

dynamic r , theta ;
var x, y, equiIJength, spring..con stant ,

damping_constant ;

equiIJength = 5;
spring_constant = 3;
dam ping_constant = 1.5;

de! square

end;

polygon(-O. l , -0.1, 0, 0.1, -0. 1, 0,
0 .1, 0.1, 0, -0 .1, 0.1, 0);

de! bob
masa(10) ;
square;

end;

x = {O at 0 sec slowin 7.2 at 10 sec};
y = {O at 0 sec slowin 7.2 at 10 sec} ;
r = initial(equil.Jength , 0);
theta = initial(-pi / 2 , 0);

sprlngJlJld_damper(r , equiIJength,
spring_constant, damping_constant) ;

mO translatex(r)
rotatez(theta)
tran8Iatex(x)
translatey(y);

line(bob..x , bob.,}', 0, x , y, 0);

Figure 8: Pulling a spring

Figure 9: Script for the pulled spring

The kinetic and potential energies of the mechanical sys­
tem are

1 (. 2 . 2 . 2) T = -m mx + m y + m.
2

Graphics Interface '90

and
U = mgh = mgm",

where

m is the mass of particle.

m", m", and mz specify its position.

(m" 2 + mll 2 + mz 2) is its speed squared.

g is the acceleration due to gravity.

We can find m z , m ll and m z from the geometric trans­
formations in the CHARLI script.

[mz my mz 1] = [0 0 0 1] Tx (r)

Rz (9)

Tx (x)

Ty (y),

where Tx(translatex), Ty(translatey) and Rz(rotatez)
are standard four by four homogeneous transformation
matrices. Multiplying the transformation matrices yields
m z , m"" and m z • Applying Lagrange's equations yields
the DE's. Deriving the equations in this direct manner
often gives a set of very complicated DE's. [Haug 1984]
gives an example. We introduce additional coordinates
0'1, PI, 0'2 and P2 to break up the transformation ma­
trix list (For illustrative purposes, this example is in
two dimensions) . For each transformation a new pair of
coordinates is introduced:

[0'1 1] = [r 0 1] [~'1 '1
e
o

o
1
o

~ 1

~ 1

Now instead of just theta and r being dynamical vari­
ables, we have m z , my, r, e, '1, 0'1, PI, 0'2 and P2 . A
corresponding set of constraint equations are found by
the system from the above matrix expressions:

It 0'1 - re = 0

h PI - r'1 = 0

h 0'2 - 0'1 - X = 0

h. P2 - PI = 0

15 mz - 0'2 = 0

16 m ll - P2 - Y = 0

fr e + '1
2 -1=0

55

We use e, '1, and constraint equation fr
9 because 1/-re is a simpler expression than
The Lagrangian Lis:

L 1 (. 2 . 2) = 2'm m" + m", - mgm",

instead of
d 2
dt'" cos(9).

Applying Lagrange's Equations to the above gives us
nine DE's in the 16 variables m", my, r, e, '1, 0'1, PI, 0'2,

P2, ~1' ~2, ~3, ~4' ~5, ~6 and ~1. To get the additional
seven equations needed for a solvable system, we use
the second time derivatives of 11 . .. fr [Marion 1970].
Figure 10 shows the DE's expressed in matrix form (zero
elements are represented by"."):

The coefficient matrix has the following desirable prop-
erties:

• Very simple, often constant entries

• Very sparse

• Symmetric

Solving the differential equations
There are two phases to solving the differential equa­

tions:

1. Solve the sparse linear system to find the accelera­
tions.

2. Use the accelerations to compute the system state
at the next time step.

Currently our system solves the linear system of acceler­
ations using Gaussian elimination with partial pivoting.
The integration of the DE's is done using fourth order
Runge-Kutta.

Implementation - disLconstraints
A dist-constraint is specified in a CHARLI script

by
dist-constraint(mo, m1, I(t»;

where

mo, m1 are masses or labels.

I (t) is a cons tan t or track.

If I(t) is a non-zero constant, the following equation is
used to implement the constraint:

Differentiating twice with respect to time gives us the
constraint equation. If I(t) is constant zero, ml% =
mo", m1y = mOy, and m}z = moz • The constraint eval­
uates to 0 = O. To implement a zero distance constraint,
three equations are used:

ml", = mo",

If I(t) is a track and therefore time-varying, CHARLI
checks for zero distance while the simulation is running
and uses the approriate equations.

Graphics Interface '90

56

-m 1 fflz -Qm.,
-m 1. ffll! -Qm~ +mg

-€ -" ;: -Qr
-r 2€ { -Qe

-r 211 ii -Q,.,
1 -1 al 0

1 -1 Pi 0
1 -1 a2 0

1 -1 P2 = 0
-€ -r 1 ~l 2re
-" -r 1 ~2 2ri!

-1 1 ~3 x
-1 1 ~4 0

1 -1 1 ~5 0
1 -1 ~6 y

2€ 2" ~7 -2(e2 + i!2)

Figure 10: DE's in matrix form

Implementation - path_constraints

A path_constraint is specified by one of:

path_constraint(mo, point(xo, Yo, zo))
path_constraint(mo, line(xo, Yo, Zo, Xl, Yl, Zl))
path_constraint(mo, spline(xo, Yo, Zo, ... , Xn, Yn, Zn))

where

mo is a mass or label.

Xo, Yo, Zo, ... Xn, Yn, Zn are constants or tracks, n 2:
3.

A point path_constraint is essentially handled like a
zero distance disLconstraint.
A line path_constraint is implemented by introduc­
ing a new dynamical variable u and using the paramet­
ric equations of a line passing through the two points
po = (XO,YO,zo) and Pi = (Xl,Yl,zd·

moz = (Xl - xo)u + Xo

mOll = (Yl - yo)u + Yo

moz = (Zl - zo)u + Zo

When mo is positioned in the CHARL! script, it should
lie on the line (If is doesn't, CHARLI has a mechanism
for pulling it onto the line). Since Po and Pi can be
tracks and thus time varying, CHARL! checks through­
out the simulation that they are not coincident. If they
are, CHARL! handles their degeneration into a point
constraint. Differentiating twice with respect to time
gives (for moz) :

If Xo or Xl are not time dependent, i.e., not tracks, first
and second derivative terms involving them will vanish.

Spline path_constraints are implemented using cubic
B-splines. As with lines, CHARLI introduces a new dy­
namical variable u and uses the parametric spline equa­
tions

n

P(u) = L PiNi.4(U)
_=0

where

Pi = (Xi, Yi, Zi) is the i'th control point.

Ni .4(U) is the i'th cubic B-spline basis function.
[Newman & Sproull1979]

Spline path_constraints are handled essentially the
same as line constraints, with one difference. Since B­
splines are piecewise continuous, Ni .4(U) is not the same
function for all values of u. The equations constraining
mo change as mo moves. Thanks to the second order
continuity provided by cubic B-splines, the transitions
between spline segments are fairly smooth. The same
mechanism that pulls a mass or label onto a line path
also serves to keep a mass or label from deviating from
a spline path.

Ensuring constraint satisfaction

It is well known in control systems and circuit the­
ory that circuits described by second order differential
equations such as

y=o
are unstable. Outside noise (such as numerical integra­
tion error) can be amplified. Circuits such as

are stable. Writing our distance and path constraints
in this form will prevent constraint violations. Practical
experience has shown that, for most problems, 'Y and 6
values between 5 and 50 are adequate. [Nikravesh 1984].

Graphics Interface '90

The case 'Y = 6 corresponds to critical damping and
results in the fastest integration error correction. This
technique was used by [Isaacs & Cohen 1988] in their
dynamic animation system. It is this mechanism that
we use to initially satisfy dist and path constraints and
ensure that they remain satisfied.

Pi+l

~Elements

mi+l

Springs

Avalanche Slope

Jump Slope

• DenoleS Mass

Figure 11: Skier chased by avalanche

A more complex e xample

Figure 11 depicts a crude skier and shows the parts that
will be animated. Here's how CHARLI is used to ani-

57

slope converge and diverge, the distance between mfoot
and mhip varies accordingly. This changing distance
and the disLconstraints involving mknee cause the
skier's legs to pump up and down as he skis down the
hill. The upper part of the body is driven kinematically.

The skis The skis are formed from a number of masses
constrained to lie on the jump slope. DisLconstraints
are specified between adjacent Si'S so that the skis re­
main the same length. Figure 12 shows the skier trying
to outrun the avalanche.

Limitations of CHARLI dynamics

CHARLI allows the specification of dynamical systems
that are singular in certain configurations (the linear
system of accelerations has no solution) . A sophisticated
CHARLI user can generally avoid this problem through
careful script writing. An unsophisticated CHARLI user
will have no idea why his simulation is blowing up. It
would be much better to notify the user when he has
specified a dynamical system that has singularities. We
lack the mathematical sophistication to know ifit is pos­
sible to detect all such systems. We do, however, have
some limited understanding of a certain class of singu­
lar dynamical systems. This class arises if not enough
masses are in the system and they are not in the cor­
rect places. Consider the double pendulum illustrated
in figure 13. It is specified by the script in figure 14 .

Point O. If there is no mass here the
system is singular. (for 8 1 =0. It)

mate the sequence: m l

The avalanche The avalanche is constructed from
a chain of avalanche elements. Each mass mi is con­
strained to lie on the avalanche slope using a
path_constraint. Spring forces act between adjacent
7ni'S. A damping force proportional to the speed of
the avalanche acts on mass m1 to stretch the avalanche
out. In each avalanche element, the line from mi to Pi
remains perpendicular to the spring connecting mi to
7ni+1. Lines are drawn between adjacent Pi'S to form
the outline of the avalanche.

The skier The skier's lower body is constructed from
three masses. 7nhip is constrained to lie on the hip
slope. mfoot is constrained to lie on the jump slope.
mhip and mfoot are placed such that their relative ori­
entation (angle tP) remains constant. There are fixed
disLconstraints between mknee and 7nhip and be­
tween mknee and mfoot . As the jump slope and hip

x

Figure 13: Pendulum System with Singularities

Suppose there is no mass at point o. If we anal­
yse the acceleration matrix produced by CHARLI for
this pendulum, we find that it is singular for 81 = 0, 7r.
Upon further consideration this seems quite reasonable.
There are external forces (gravity) and internal forces
(the tensions in the connecting rods) acting on point o.
According to Newton's second law F = ma, if a force
is applied to a massless object, a singularity occurs (a
is undefined) . If m #- 0, a is always defined . If we put

Graphics Interface '90

58

12 Frame 16

Frame 44 Frame 48

Figure 12: Frames from the ski chase sequence

var length;
dynamic thetaO, the tal;

def square

end;
defmO

polygon(0,0 ,0,1 ,0,0 ,1, 1,0 , 0,1 ,0)
scale(O. l);

#Include next line for mass at point 0
mass(l.O);
square;

end '
def' ml mass(2.0) ; square; end;

length = 1;

thetaO = initiat(O, 0);
thetal = Initial(O, 0);

d ef p i

end;
d ef pO

end;

ml translatex(length) rotates(thetal) ;
mO °
Iin~(mo->< , mO_y, 0, ml-><, ml..y, 0);

pi translatex(length) rotatez(thetaO) ;
line(O, 0, 0, ml-><, ml..y, 0);

#Instantiate the pendulum at the origin
pO;

Figure 14: Script that generates pendulum system with singularities

a mass at point 0, the system should no longer have
singularities. An analysis of the acceleration matrix for
such a pendulum shows that this is indeed the case.

Future Work

Singularities The user is currently not informed if
he has specified a dynamical system that has singulari­
ties. To make CHARLI dynamic animation available to
the masses, this clearly needs to be done. We have some
intuitive understanding of this problem, but we need to
work from a more solid mathematical foundation.

Speed Solving the large, sparse acceleration matrix is
expensive, and the system currently runs quite slowly.
We are exploring two methods to speed this up:

Iterative methods The difference between the ac­
celerations from the previous time step and the current
time step is quite small. As such, the accelerations from
the previous time step would provide a good initial guess
for an iterative method. We are currently experimenting
with NSPCG [Oppe et al 1988]' NSPCG is a package
designed to help find the best iterative solution method
for the problem at hand.

Preprocessing matrix diagonalization phase

Many of the acceleration matrix coefficients are con­
stants. Of these, many are 1 or -1. Of the matrix
coefficients that are not constant, we often know the
bounds on their values. These properties might allow
us to almost entirely diagonalize the coefficient matrix

Graphics Interface '90

in a preprocessing stage, resulting in very fast run time
solution.

Conclusion

\"'e have presented here a method of describing a dy­
namic simulation using a modelling and animation de­
scription language called CHARLI. We have used the
language to generate a number of animated sequences
tha t would ha ve been very difficul t to make wi thou t such
a description language. The language, combined with
some interactive tools, forms a very powerful method of
describing complex animation sequences which include
kinematic and dynamic descriptions.

Acknowledgements

We would like to acknowledge the help of the University
of Calgary Graphics Lab. and graduate students past
and present who have worked on the Graphicsland An­
imation system. This research is partially supported by
grants from the Natural Sciences and Engineering Re­
search Council of Canada. Chuck thanks Mike Chmilar,
who developed kinematic CHARLI. He also thanks his
wife Maggie, without whose encouragement this work
would never have been completed.

References

[Armstrong & Green 1985] William Armstrong and
Mark Green. The dynamics of articulated rigid bodies for
purposes of animation . The Visual Compute r, 1:231-240 ,
1985.

[Barzel & Barr 1988] Ronen Barzel and Alan H. Barr. A Mod­
eling System Based On Dynamic Constraints. Computer
Graphics (Proc . SIGGRAPH 88),22(4) :179-188, August
1988.

[Chmilar & Wyvill 1989] Michael Chmilar and Brian Wyvill . A
software architecture for integrated modelling and anima­
tion. Proc . C G Int ernational 89, pages 257-276, 1989.

[Gomez 1985] Julian E . Gomez. Twix t : A 3D Animation Sy
tern . Computers and Graphics, 9(3):291-298, 1985.

59

[Haug 1984] Edward J . Haug. Elements and methods of compu­
tational dynamics. Computer Aided Analysis and Opti­
mization of M echanica l System Dynamics, f9 :3-38, 1984.

[Haumann & Parent 1988] D. R. Haumann and R.E. Parent.
Mixed methods for complex kinematic constraints in dy­
namic figure animation. The Visual Computer, 4(6) :332-
347, 1988.

[Isaacs & Cohen 1987] Paul M . Isaacs and Michael F . Cohen.
Controlling Dynamic Simulation with Kinematic Con­
straints, Behavior Functions and Inverse Dynamics. Com­
puter Graphics (Proc. SIGGRAPH 87),2 1(4), July 1987.

[Isaacs & Cohen 1988] Paul M. Isaacs and Michael F. Cohen.
Mixed methods for complex kinematic constraints in dy­
namic figure animation. The V isual Computer, 4(6):296-
305, 1988.

[Marion 1970] J erry B. Marion. C lassical Dynamics of Parti­
cles and S ystems. Academic Press , 111 Fifth Ave. New
York , 1970.

[Miller 1988] GavinS .P . Miller. The Motion Dynamics of Snakes
and Worms. Computer Graphics (Proc . SIGGRAPH 88),
22(4):169- 178, August 1988.

[Newman & Sproull 1979] William M . Newman and Robert F.
Sproull. Principles of Interactive Computer Graphics.
McGraw-Hill, New York, Reading, Mass, 1979.

[Nikravesh 1984] Parviz E . Nikravesh. Some methods for dy­
namical analysis of constrained mechanical systems. Com­
puter Aided Analysis and Optimization of Mechanical
System Dynamics , f9 :351-368, 1984.

[Oppe et al 1988] Thomas C . Oppe, Wayne D . Joubert, and
David R. Kincaid . Nspcg user's guide. Technical report,
Center for Numerical Analysis, The University of Texas at
Austin, April 1988.

[Overveld 1989] C. W .A.M van Overveld. A technique for mo­
tion specification in computer animation. Proc. CG Inter­
national 89, 1989.

[Pentland & Williams 1989] Alex P entland and John Williams.
Good Vibrations: Modal Dynamics for Graphics and Ani­
mation. volume 23, pages 215-222, August 1989.

[Terzopoulo et al 1989] Demetri Terzopoulos, J ohn Platt , and
Kurt Fleischer. Heating and melting deformable models
(from goop to glop) . Proc. Graphics Interface 1989, pages
219-226 , 1989.

[Wilhelms 1985] Jane Wilhelms. Graphical Simu lati on of the
motion of articulated bodies such as humans as humans
and r obots, with a particular emphasis on the use of
dynamic analysis . PhD thesis, University of California,
Berkeley, Dept. of Computer Science, 1985.

[Wilhelms et al 1988] Jane Wilhelms, Matthew Moore, and
Robert Skinner. Dynamic animation : interaction and con­
trol. The Visual Computer, 4(6):283-295, 1988.

Graphics Interface '90

