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Abstract 

Dynamic simulation has the advantage that the motion 
is produced from a model of the real world. However, 
including such physical descriptions in an animation sys­
tem in a general way is difficult due to the problem of 
describing the simulation in high level terms. The low­
est level primitives are forces, torques and masses and 
a set of differential equations that relate these primi­
tives to the motion. We describe here an approach to 
integrating a high level set of primitives into a general 
purpose animation system via an intermediate language 
called CHARLI. Interactive user interfaces can be built 
on top of CHARLI to allow a user to specify motion 
dynamics for a fairly complex set of interacting bodies. 

Key words: Computer Graphics, animation, motion 
control, dynamics. 

Introduction 

The use of dynamics for motion control in animation has 
attained some popularity in research systems. However, 
before such techniques can become standard a number 
of outstanding problems must be overcome. Barzel and 
Ban [Barze! & Barr 1988] recently stated these prob­
lems as follows: 

• Simulations are hard to implement Many dy­
namical simulation problems are solved by special 
purpose software. A program which defines an ar­
ticulated figure may not be easily generalisable to 
solve for a deformable object under various exter­
nal forces. 

• Simulations are hard to control With a purely 
dynamic approach it is often difficult for an anima­
tor to produce a desired motion. 

• Simulations are slow Computationally intensive 
simulations may compete with rendering in the 
overal cost of an animation production. 

In this work we have two main goals: 

1. Generality As with earlier work in this area we 
wish to achieve a generalised way of simulating the 
dynamics of a broad class of mechanical systems. 
This includes the geometry, forces and constraints 
on the system. 

2. Integration with an animation system In ad­
dition we are concerned with the integration of 
such simulation techniques with our existing ob­
ject oriented animation system in a natural and 
usable way. We wish to provide simultaneous ac­
cess to dynamic and traditional kinematic anima­
tion techiques. 

Previous Work 

A considerable volume of literature exists on techniques 
for performing dynamic simulations to solve various 
problems. Many of these techniques are discussed in 
the mechanical engineering literature, particularly for 
the design of mechanisms. However, they are also ap­
plicable for use in computer animation systems. 

Haug Of interest to computer animation system de­
signers is a survey paper by Haug in [Haug 1984], who 
discusses the derivation of differential equations using 
a minimum set of independent generalised coordinates 
vs. a much larger set of dependent coordinates and con­
straint equations relating them. The use of such a mini­
mum set results in a small number of complex equations. 
The use of a large set of coordinates produces a large 
number of very simple equations. The latter approach 
amounts to constructing parts of the model separately 
and assembling the parts using constraints. 

Nikravesh Also from the mechanical engineer­
ing literature is a survey paper by Nikravesh in 
[Nikravesh 1984]. In particular he discusses the control 
of numerical error in the integration of the differential 
equations. Violations in the constraint equations are 
used as feedback terms to correct the violations in the 
next time step. 
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Wilhelms A good example of dynamics for human 
body animation was by Wilhelms in her PhD work. 
She used the Gibbs-Appel formulation for the dynamical 
analysis [Wilhelms 1985]. 

Al'lllstrong A recursive method for fast solution of 
the dynamics equa tions for tree structured (i.e. open 
loop) models is in [Armstrong & Green 1985]. 

Isaacs Two papers by Isaacs and Co­
hen, [Isaacs & Cohen 1987] and [Isaacs & Cohen 1988] 
discuss the problems of generalising dynamic simulation 
by allowing users to construct models by selecting joints 
from a joint library and specifying their connectivity. 
The complex kinematic constraints they provide facili­
tate kinematic driving and the construction of models 
with closed loops. The dynamics are formulated using 
Lagrange's equations. 

Barzel At the same time related work was developed 
by Barzel and Barr [Barzel & Barr 1988] who are also 
concerned with generality and usability. A wide variety 
of models can be constructed by choosing and combin­
ing approriate elements from body, applied force, and 
constraint libraries. 

Haurnann 
Haumann and Parent in [Ha umann & Parent 1988) fo­
cus on the simula tion of fl exible objects such as bounc­
ing blobs and waving flags using masses connected by 
springs and calculations of aerodynamic drag. 

Wilhelms In later work by Wilhelms, Moore and 
Skinner [Wilhelms et al 1988], further low-level control 
issues are discussed such as collision detection and re­
sponse, friction, and joint limits. Their system uses the 
fast recursive dynamics formulation of Armstrong and 
Creen. 

Miller A more specialised but interesting use of dy­
namics was in work by Miller [Miller 1988] to drive the 
animation of a snake model. 

T erzopoulous Terzopoulous, Platt, and Fleischer in 
[Terzopoulo et al 1989] have also worked on deformable 
solids called goop and fluids called glop. These are an­
imat.ed using a variety of techniques. The deformable 
solids are modeled with partial differential equations de­
rived using elasticity theory. The fluids are modeled as 
discrete particles with attractive and repulsive forces be­
tween them. 

van Overveld In this work, [O verveld 1989] a very 
fast approximate but in teractive solution of differential 
equations is offered for an arbitrary mesh of masses con­
nected by springs. 
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Pentland A very fast solution of dynamics equations 
is given in [Pentland & Williams 1989]. Dynamic mod­
els are constructed using finite element analysis. Di­
agonalization of the mass matrix for their systems of 
differential equations and elimination of high frequency 
vibrations permit the extremely fast solution. 

The CHARLI Modelling and Animation 
Language 

In many areas where the computer has been used to 
aid an exisiting task such as draughting, systems have 
been designed to keep the spirit of earlier methods so 
that the designer does not have to cope with an entirely 
new way of thinking. Computer animation of three di­
mensional models does not lend itself to the same ap­
proach. The animator is working within the 3D world 
and not with sequences of 2D drawings. Although in­
teractive graphical tools can often be used to specify 
animation sequences, sometimes essen tially algorithmic 
animation is required and a language description is more 
suitable. 

In our system we ha ve ta ken the view that all anima­
tion and model descriptions should be language based . 
Interactive interfaces may also be used to build or mod­
ify the da ta structures but each session is saved in the 
form of a language script which may be further edited 
later using a text editor. While the current trend in 
the design of computer graphics systems is to break 
down the process of specifying and generating images 
into a number of separate parts, we are exploring a 
system which closely couples these separate parts, al­
lowing intense interaction between them (for details see 
[Chmilar & Wyvill 1989]). The system integrates the 
specification of model geomet ry, model and scene s truc­
ture, and animation. The system is based on a kernel 
which controls a modelling and animation data-structure. 
Although interactive programs may communicate di­
rectly with the kernel, the universal form of data com­
munication in the system is by means of a powerful mod­
elling and animation language called CHARL!. Such a 
scripting language can be used to describe models or 
motions which are algorithmic in nature and awkward 
to describe interactively. We have extended this lan­
guage to allow the description of dynamical models. The 
language also allows a kinematic description of motion 
and thus an animator can achieve a spectrum of control 
from pure kinematic to pure dynamic control with an 
inbetween stage where certain quantities are kinemati­
cally controlled and others are driven dynamically. The 
language has variables, scoping, operations, casting and 
animation control; a full description is to be found in 
[Chmilar & Wyvilll 989] . 

Adding Dynamics to CHARLI 

The following are the key elements of the CHARL! 
la ngu age: 
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# Comment~ begin with '#' and continue to end 0/ line 
var r, theta-initial, theta...dot..initial; 
dynamic theta; 

#assign animation track to r 
r = {D at D IleC alowmout 1.8 at 2 sec}; 

# set initial position and velocity of theta 
theta.initial = pi; 
theta_dot.initial = -1; 
theta = inltia1(theta-initial, theta...dot..initial); 

Figure 1: Valid declarations and assignments 

Variables There are two data types; variables which 
can take constant, kinematic animation track, or 
path values; and dynamic variables which take dy­
namic initialisations. 

Primitives Geometric primitives; line, polygon (others 
may be added). Dynamic Primitives; masses and 
labels. Masses affect the simulation whereas labels 
are merely convenient attachment points. 

Transformations Geometric transformations can be 
used to change the location and orientation of the 
primitives. 

Constraints Geometric transformations provide the ba­
sic model construction mechanism. Constraints 
can be added to facilitate the building of closed 
loop models and also to provide alternative and of­
ten more convenient ways of constructing models. 
Dynamic primitives can be constrained to a path 
or to maintain a constant or time varying distance 
from another dynamic primitive. 

We illustrate the use of the dynamical elements in 
CHARLI with a series of script excerpts. 

Example - Declarations and assignments 
Figure 1 shows some valid CHARLI declarations and 

assignments. 

Example - Transformations 
Figure 2 shows a triple pendulum. The CHARLI script 
in figure 3 illustrates how it might be constructed and 
animated using geometric transformations. 

Example - Constraints 
The use of constraints often results in shorter and 

clearer model specifications. The script in figure 4 pro­
duces the same animation as the script in figure 3. 

Kinematic Control 

For dynamics to be useful to the animator, it is im­
portant to be able to vary the degree of control that 
the simulation has over the models. In CHARLI this 
is done by allowing parts of the model to be animated 
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Figure 2: Triple Pendulum 

kinematically, whilst other parts are animated dynam­
ically. The dynamic parts react to the motions of the 
kinematic parts. 

Animator control through geometric 
transformations 

Arguments to transformations can be tracks, or im­
port or dynamic variables. Tracks, see [Gomez 1985], 
are explicit functions of time built into the CHARLI sys­
tem. Import variables are external functions written 
in a programming language. They allow the specifica­
tion of custom time and force functions not available 
within the system. If the argument to a transforma­
tion is an import variable or track, the part of the 
model specified by the transformation changes as an ex­
plicit function of time. We say the degree of freedom 
is driven. If the argument is a dynamic variable, the 
part of the model changes according to the influences of 
applied forces and the motions of other objects in the 
system. 

Animator control through constraints 

A disadvantage of using geometric transformations is 
that only tree structured models can be constructed. 
The distance and path constraints allow the construc­
tion of models with closed loops. A disLconstraint 
forces a mass or label to be a certain distance away 
from another mass or label. A path constraint forces 
the motion of a mass or label to lie on a point, line 
or spline path, much like a bead sliding along a wire. 
The arguments to the point, line and spline generation 
functions are import variables or tracks. 

An example: The balloon pendulum 

We want to produce an animation of the mechanical 
system in figure 5. The top end of the pendulum arm 
moves on a smoothly curved wire. The pendulum arm 
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var length; 
dynamic thetaO, thetal , theta2; 

#The pendulum bobs are to be drawn as boxes 
def square 

end; 

# square contains a polygon primitive. The 
# parameters are vertex triplets in x, y,z order. 
polygon( 0,0,0, 1,0,0, 1,1,0,0,1,0) scale(O.l); 

#definc the pendulum bobs as mass objects 
def mO mass(l.O) ; square; end; 
def m1 mass(2.0) ; square; end; 
def m2 mass(S.O); square; end; 

length = 1; 
thetaO = initial(O, 0); 
theta1 = initial(O, 0); 
theta2 = initiat(O, 0); 

def p2 

end; 
def pi 

end; 
def pO 

end ; 

m2 translatex(length) rotatez(theta2); 
m1; 
#..x, ..y and ..z give position of a defined object 
line(ml..x, m1_y, 0, m2..x, m2..y, 0); 

p2 translatex(length) rotatez(thetal) ; 
mO; 
line(mO..x, mO_y, 0, ml..x, mLy, 0); 

pl t,· .. nslatex(1ength) rotatez(thetaO); 
Ii".,( 0, 0 , 0 , m1..x , ml..y, 0) ; 

#lnstantialc the pendulum at the origin 
pO; 

Figure 3: Triple pendulum using transformations 

is a piston whose length we can change at will. The 
buttom end is attached to an odd springy bob. 

mO is constrained to always lie on the smoothly curved 
wire. To construct the pendulum arm, we must spec­
ify how it changes length over time. The bob is built 
by forcing the distances dist(ml, m2), dist(m2, m3), 
dist(m3, m4), dist(m4, m5) and dist(m.5, ml) to re­
main constant, forming a pentagon. Spring forces are 
added between all pentagon masses that are not im­
mediate neighbours. Attaching Illl to lab ell completes 
the mechanism. Figure 6 shows the balloon pendulum 
CIIARL! script. Figure 7 shows the motion of a many 
sided pendulum bob. 

Implementation of CHARLI dynamics 

Lagrange's Equations 
CIIARL! derives a system of differential equations 

(DE 's) from the geometric information in a CHARLI 
script. It generates data that is passed to a standard 
numerical DE solver. Lagrange's equations are at the 
heart of CHARL! dynamics. They allow automatic gen­
eration of the DE's from the kinetic and potential energy 
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var length; 
dynamic xroot, yroot, xO, yO, xl, yl, x2, y2; 

#squa re, mO, ml and m2 definitions are 
# as in the previous script 

def mroot mass(l.O); end; 

length = 1; 
xO = initial(length, 0); 
yO = initial(O, 0); 
xl = initial(2 * length, 0); 
yl = initial(O, 0); 
x2 = initial(3 * length, 0); 
y2 = initial(O , 0); 

#instantiating the mass at the origin 
# with no transformation list 
#fixes it there 
mroot; 
mO t"au~l"tex(xO) translatey(yO); 
m1 trau"l .. tex(xl) translatey(yl); 
m2 translatex(x2) translatey(y2); 

dist...constraint(mroot, mO, length) 
dist...constraint(mO, ml, length) ; 
dist...constraint(ml, m2, length) ; 
line(mroot..x, mroot_y, 0, mO..x, mO_y, () I. 
line(mO..x, mO_y, 0, m1..x, ml..y, 0); 
line(m1..x, mLy, 0, m2..x, m2_y, 0) ; 

Figure 4: Triple pend defined using constraints 

Spline path 

slength remains constant 
r changes according to a 
user specified function of 
time. mO follows the 
spline 
path. 

Springs 

Figure 5: A balloon pendulum 
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var r, sideJength, mass_const, pi; 
var equiJJength, spring..constant, damping..constant; 
dynamic theta, xO, yO, xl, yl, x2 , y2; 
dynamic x3, y3, x4, y4, x5, y5; 

length = I; 
mass..const = 1.0; 
.ideJength = 5.0; 
equilJength = 8.090170; 
spring-constant = 1.0; 
damping_constant = 3.0; 

theta = Initial( -pi / 2, 0); 
xO = Inltlal(-IO .OOOOOO, 0); 
yO = Inltla1(IO .OOOOOO, 0); 
xl = Inltla1(-IO .OOOOOO, 0); 
yl = Inltia1(O.OOOOOO, 0) ; 
x2 = Inltlal(-14.045085, 0); 
y2 = Inltial(-2.938926, 0); 
x3 = Inltlal(-12 .500000, 0); 
y3 = Inltlal( -7.694209, 0) ; 
x4 = Inltlal(-7.500000, 0) ; 
y4 = Inltlal( -7.694209, 0); 
x5 = inltial(-5.954915 , 0); 
y5 = Inltla1( -2.938926, 0); 

# pl i6 a 6pline path 
pi = IIpline(-IO , 10, 0, -5 , 0, 0, 

5, 0, 0, 10, 10, 0); 
r = {IO at 0 lIec linear 0 at 10 sec}; 

def labell label(); end; 

# mO to m5 are defined a$ maue$ 
def mO m8.ll1l(mass_const) ; end; 
def ml m8.ll1l(mass_const); end; 
def m2 m8.lls(mass_const) ; end; 
def m3 m8.lls(mass_const) ; end; 
def m4 masll(mass_const); end; 
def m5 mass(mass-const); end; 

53 

def pend..arm 
mO ° 
lab~ll tranlllatey(r) rotatez(theta); 

end; 

pend..arm tranlllatex(xO) translatey(yO); 
dlst...coWltralnt(labell, ml, 0); 
path_constralnt(mO, pi); 

ml translatex(xl) translatey(yl); 
m2 translatex(x2) translatey(y2); 
m3 tranBlatex(x3) translatey(y3) ; 
m4 tranlllatex(x4) translatey(y4); 
m5 translatex(x5) translatey(y5); 

dlst...coWltralnt(ml, m2, sideJength); 
dlst...coWltralnt(m2, m3, sideJength); 
dlst...coWltralnt(m3, m4, sideJength); 
dlst...coWltralnt(m4, m5, sideJength); 
dist...coWltraint(m5, ml, sideJength); 

# Specify 6pring and damping force6 between maooeo 
sprlngJUld_damper(ml, m3, equilJength , 

spring-constant , damping_constant) ; 
spring...and_damper(m2, m4, equilJength, 

spring_constant, damping_constant); 
springJUld_damper(m3, m5, equilJength, 

spring_constant , damping_constant); 
spring...and_damper(m4, ml, equilJength, 

spring_constant, damping...constant); 
sprlng...and_damper(m5, m2, equilJength, 

spring..constant, damping_constant); 

lIne(mO.x, mO-y, 0, ml.x, ml-y, 0); 
polygon(ml.x, ml-y, 0, m2.x, m2-y, 0, 

m3.x, m3-y, 0 , m4.x, m4-y, 0, m5.x, m5-y, 0); 
# Draw the opline path 

path(pl); 

Figure 6: Balloon pendulum script 

expressions for a mechanical system. They also allow 
for the easy introduction of additional coordinates and 
constraint equations. 

8L _ ~ 8L + ~ ~k 81k = _Q. 
8qi dt 8gi L.J 8q. 

k=1 

i = 1, ... , n where 

L = T - U is the Lagrangian (the difference between 
the kinetic and potential energies of the system). 

ql ... qn are called generalized coordinates. They com­
pletely specify the position of the mechanical sys­
tem. 

gl . .. gn are called generalized velocities. They com­
pletely specify the velocity of the mechanical sys­
tem. 

Q. is the force applied to the i'th coordinate. This can 
be any sort of force, e.g. a linear force if q. is a 
translation, or a torque if q. is a rotation. 

/1 ... Im are constraint equations involving the coordi-
nates. 

~k is the force required to maintain the k'th constraint. 

We can introduce new coordinates as long as this rela­
tionship is maintained: 
number degrees of freedom = number coordi­

nates - number constraint equations. 
The number of degrees of freedom in a mechanical sys­
tem is the minimum number of coordinates required to 
completely describe the state of the system. 

Generating the Differential Equations 
By introducing additional coordinates and constraints, 

we can simplify the derivation of the equations so that 
we don't require the use of complex symbolic mathe­
matics software. For example, consider the mechanical 
system shown in figure 8. 

We have a mass m attached to one end of a spring. 
The other end of the spring is pulled in the direction 
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~ 
Frame 0 

~ 
Frame 35 

7: 
Frame 70 

r 
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~ 6 ;y d "et '1; 
Frame 5 Frame 10 Frame 15 Frame 20 Frame 25 Frame 30 

~ ~ ~ ~ "-b 'c; 
Frame 40 Frame 45 Frame 50 Frame 55 Frame 60 Frame 65 

'c( ~ C;J QJ QJ 
Frame 75 Frame 80 Frame 85 Frame 90 Frame 95 

Figure 7: Frames from the balloon pendulum sequence 

Path of top end of spring 

indicated in figu rt; 8. The CHARLI script m figure 9 
describes the action. 

dynamic r , theta ; 
var x, y, equiIJength, spring..con stant , 

damping_constant ; 

equiIJength = 5; 
spring_constant = 3; 
dam ping_constant = 1.5; 

de! square 

end; 

polygon(-O. l , -0.1, 0, 0.1, -0. 1, 0, 
0 .1, 0.1, 0, -0 .1, 0.1, 0); 

de! bob 
masa(10) ; 
square; 

end; 

x = {O at 0 sec slowin 7.2 at 10 sec}; 
y = {O at 0 sec slowin 7.2 at 10 sec} ; 
r = initial( equil.Jength , 0); 
theta = initial( -pi / 2 , 0); 

sprlngJlJld_damper( r , equiIJength, 
spring_constant, damping_constant) ; 

mO translatex(r) 
rotatez( theta) 
tran8Iatex(x) 
translatey(y); 

line( bob..x , bob.,}', 0, x , y, 0); 

Figure 8: Pulling a spring 

Figure 9: Script for the pulled spring 

The kinetic and potential energies of the mechanical sys­
tem are 

1 (. 2 . 2 . 2) T = -m mx + m y + m. 
2 
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and 
U = mgh = mgm", 

where 

m is the mass of particle. 

m", m", and mz specify its position. 

(m" 2 + mll 2 + mz 2) is its speed squared. 

g is the acceleration due to gravity. 

We can find m z , m ll and m z from the geometric trans­
formations in the CHARLI script. 

[mz my mz 1] = [0 0 0 1] Tx (r) 

Rz (9) 

Tx (x) 

Ty (y), 

where Tx(translatex), Ty(translatey) and Rz(rotatez) 
are standard four by four homogeneous transformation 
matrices. Multiplying the transformation matrices yields 
m z , m"" and m z • Applying Lagrange's equations yields 
the DE's. Deriving the equations in this direct manner 
often gives a set of very complicated DE's. [Haug 1984] 
gives an example. We introduce additional coordinates 
0'1, PI, 0'2 and P2 to break up the transformation ma­
trix list (For illustrative purposes, this example is in 
two dimensions) . For each transformation a new pair of 
coordinates is introduced: 

[ 0'1 1 ] = [r 0 1] [ ~'1 '1 
e 
o 

o 
1 
o 

~ 1 

~ 1 

Now instead of just theta and r being dynamical vari­
ables, we have m z , my, r, e, '1, 0'1, PI, 0'2 and P2 . A 
corresponding set of constraint equations are found by 
the system from the above matrix expressions: 

It 0'1 - re = 0 

h PI - r'1 = 0 

h 0'2 - 0'1 - X = 0 

h. P2 - PI = 0 

15 mz - 0'2 = 0 

16 m ll - P2 - Y = 0 

fr e + '1 
2 -1=0 
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We use e, '1, and constraint equation fr 
9 because 1/-re is a simpler expression than 
The Lagrangian Lis: 

L 1 (. 2 . 2) = 2'm m" + m", - mgm", 

instead of 
d 2 
dt'" cos( 9). 

Applying Lagrange's Equations to the above gives us 
nine DE's in the 16 variables m", my, r, e, '1, 0'1, PI, 0'2, 

P2, ~1' ~2, ~3, ~4' ~5, ~6 and ~1. To get the additional 
seven equations needed for a solvable system, we use 
the second time derivatives of 11 . .. fr [Marion 1970]. 
Figure 10 shows the DE's expressed in matrix form (zero 
elements are represented by"."): 

The coefficient matrix has the following desirable prop-
erties: 

• Very simple, often constant entries 

• Very sparse 

• Symmetric 

Solving the differential equations 
There are two phases to solving the differential equa­

tions: 

1. Solve the sparse linear system to find the accelera­
tions. 

2. Use the accelerations to compute the system state 
at the next time step. 

Currently our system solves the linear system of acceler­
ations using Gaussian elimination with partial pivoting. 
The integration of the DE's is done using fourth order 
Runge-Kutta. 

Implementation - disLconstraints 
A dist-constraint is specified in a CHARLI script 

by 
dist-constraint( mo, m1, I( t»; 

where 

mo, m1 are masses or labels. 

I (t) is a cons tan t or track. 

If I( t) is a non-zero constant, the following equation is 
used to implement the constraint: 

Differentiating twice with respect to time gives us the 
constraint equation. If I( t) is constant zero, ml% = 
mo", m1y = mOy, and m}z = moz • The constraint eval­
uates to 0 = O. To implement a zero distance constraint, 
three equations are used: 

ml", = mo", 

If I(t) is a track and therefore time-varying, CHARLI 
checks for zero distance while the simulation is running 
and uses the approriate equations. 
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-m 1 fflz -Qm., 
-m 1. ffll! -Qm~ +mg 

-€ -" ;: -Qr 
-r 2€ { -Qe 

-r 211 ii -Q,., 
1 -1 al 0 

1 -1 Pi 0 
1 -1 a2 0 

1 -1 P2 = 0 
-€ -r 1 ~l 2re 
-" -r 1 ~2 2ri! 

-1 1 ~3 x 
-1 1 ~4 0 

1 -1 1 ~5 0 
1 -1 ~6 y 

2€ 2" ~7 -2(e2 + i!2) 

Figure 10: DE's in matrix form 

Implementation - path_constraints 

A path_constraint is specified by one of: 

path_constraint(mo, point(xo, Yo, zo)) 
path_constraint( mo, line(xo, Yo, Zo, Xl, Yl, Zl)) 
path_constraint(mo, spline(xo, Yo, Zo, ... , Xn, Yn, Zn)) 

where 

mo is a mass or label. 

Xo, Yo, Zo, ... Xn, Yn, Zn are constants or tracks, n 2: 
3. 

A point path_constraint is essentially handled like a 
zero distance disLconstraint. 
A line path_constraint is implemented by introduc­
ing a new dynamical variable u and using the paramet­
ric equations of a line passing through the two points 
po = (XO,YO,zo) and Pi = (Xl,Yl,zd· 

moz = (Xl - xo)u + Xo 

mOll = (Yl - yo)u + Yo 

moz = (Zl - zo)u + Zo 

When mo is positioned in the CHARL! script, it should 
lie on the line (If is doesn't, CHARLI has a mechanism 
for pulling it onto the line). Since Po and Pi can be 
tracks and thus time varying, CHARL! checks through­
out the simulation that they are not coincident. If they 
are, CHARL! handles their degeneration into a point 
constraint. Differentiating twice with respect to time 
gives (for moz) : 

If Xo or Xl are not time dependent, i.e., not tracks, first 
and second derivative terms involving them will vanish. 

Spline path_constraints are implemented using cubic 
B-splines. As with lines, CHARLI introduces a new dy­
namical variable u and uses the parametric spline equa­
tions 

n 

P(u) = L PiNi.4(U) 
_=0 

where 

Pi = (Xi, Yi, Zi) is the i'th control point. 

Ni .4(U) is the i'th cubic B-spline basis function. 
[Newman & Sproull1979] 

Spline path_constraints are handled essentially the 
same as line constraints, with one difference. Since B­
splines are piecewise continuous, Ni .4(U) is not the same 
function for all values of u. The equations constraining 
mo change as mo moves. Thanks to the second order 
continuity provided by cubic B-splines, the transitions 
between spline segments are fairly smooth. The same 
mechanism that pulls a mass or label onto a line path 
also serves to keep a mass or label from deviating from 
a spline path. 

Ensuring constraint satisfaction 

It is well known in control systems and circuit the­
ory that circuits described by second order differential 
equations such as 

y=o 
are unstable. Outside noise (such as numerical integra­
tion error) can be amplified. Circuits such as 

are stable. Writing our distance and path constraints 
in this form will prevent constraint violations. Practical 
experience has shown that, for most problems, 'Y and 6 
values between 5 and 50 are adequate. [Nikravesh 1984]. 
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The case 'Y = 6 corresponds to critical damping and 
results in the fastest integration error correction. This 
technique was used by [Isaacs & Cohen 1988] in their 
dynamic animation system. It is this mechanism that 
we use to initially satisfy dist and path constraints and 
ensure that they remain satisfied. 

Pi+l 

~Elements 

mi+l 

Springs 

Avalanche Slope 

Jump Slope 

• DenoleS Mass 

Figure 11: Skier chased by avalanche 

A more complex e xample 

Figure 11 depicts a crude skier and shows the parts that 
will be animated. Here's how CHARLI is used to ani-
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slope converge and diverge, the distance between mfoot 
and mhip varies accordingly. This changing distance 
and the disLconstraints involving mknee cause the 
skier's legs to pump up and down as he skis down the 
hill. The upper part of the body is driven kinematically. 

The skis The skis are formed from a number of masses 
constrained to lie on the jump slope. DisLconstraints 
are specified between adjacent Si'S so that the skis re­
main the same length. Figure 12 shows the skier trying 
to outrun the avalanche. 

Limitations of CHARLI dynamics 

CHARLI allows the specification of dynamical systems 
that are singular in certain configurations (the linear 
system of accelerations has no solution) . A sophisticated 
CHARLI user can generally avoid this problem through 
careful script writing. An unsophisticated CHARLI user 
will have no idea why his simulation is blowing up. It 
would be much better to notify the user when he has 
specified a dynamical system that has singularities. We 
lack the mathematical sophistication to know ifit is pos­
sible to detect all such systems. We do, however, have 
some limited understanding of a certain class of singu­
lar dynamical systems. This class arises if not enough 
masses are in the system and they are not in the cor­
rect places. Consider the double pendulum illustrated 
in figure 13. It is specified by the script in figure 14 . 

Point O. If there is no mass here the 
system is singular. (for 8 1 =0. It) 

mate the sequence: m l 

The avalanche The avalanche is constructed from 
a chain of avalanche elements. Each mass mi is con­
strained to lie on the avalanche slope using a 
path_constraint. Spring forces act between adjacent 
7ni'S. A damping force proportional to the speed of 
the avalanche acts on mass m1 to stretch the avalanche 
out. In each avalanche element, the line from mi to Pi 
remains perpendicular to the spring connecting mi to 
7ni+1. Lines are drawn between adjacent Pi'S to form 
the outline of the avalanche. 

The skier The skier's lower body is constructed from 
three masses. 7nhip is constrained to lie on the hip 
slope. mfoot is constrained to lie on the jump slope. 
mhip and mfoot are placed such that their relative ori­
entation (angle tP) remains constant. There are fixed 
disLconstraints between mknee and 7nhip and be­
tween mknee and mfoot . As the jump slope and hip 

x 

Figure 13: Pendulum System with Singularities 

Suppose there is no mass at point o. If we anal­
yse the acceleration matrix produced by CHARLI for 
this pendulum, we find that it is singular for 81 = 0, 7r. 
Upon further consideration this seems quite reasonable. 
There are external forces (gravity) and internal forces 
(the tensions in the connecting rods) acting on point o. 
According to Newton's second law F = ma, if a force 
is applied to a massless object, a singularity occurs (a 
is undefined) . If m #- 0, a is always defined . If we put 
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12 Frame 16 

Frame 44 Frame 48 

Figure 12: Frames from the ski chase sequence 

var length; 
dynamic thetaO, the tal; 

def square 

end; 
defmO 

polygon( 0,0 ,0,1 ,0,0 ,1, 1,0 , 0,1 ,0 ) 
scale(O. l); 

#Include next line for mass at point 0 
mass(l.O); 
square; 

end ' 
def' ml mass(2.0) ; square; end; 

length = 1; 

thetaO = initiat(O, 0); 
thetal = Initial(O, 0); 

d ef p i 

end; 
d ef pO 

end; 

ml translatex(length) rotates(thetal) ; 
mO ° 
Iin~(mo->< , mO_y, 0, ml-><, ml..y, 0); 

pi translatex(length) rotatez(thetaO) ; 
line(O, 0, 0, ml-><, ml..y, 0); 

#Instantiate the pendulum at the origin 
pO; 

Figure 14: Script that generates pendulum system with singularities 

a mass at point 0, the system should no longer have 
singularities. An analysis of the acceleration matrix for 
such a pendulum shows that this is indeed the case. 

Future Work 

Singularities The user is currently not informed if 
he has specified a dynamical system that has singulari­
ties. To make CHARLI dynamic animation available to 
the masses, this clearly needs to be done. We have some 
intuitive understanding of this problem, but we need to 
work from a more solid mathematical foundation. 

Speed Solving the large, sparse acceleration matrix is 
expensive, and the system currently runs quite slowly. 
We are exploring two methods to speed this up: 

Iterative methods The difference between the ac­
celerations from the previous time step and the current 
time step is quite small. As such, the accelerations from 
the previous time step would provide a good initial guess 
for an iterative method. We are currently experimenting 
with NSPCG [Oppe et al 1988]' NSPCG is a package 
designed to help find the best iterative solution method 
for the problem at hand. 

Preprocessing matrix diagonalization phase 

Many of the acceleration matrix coefficients are con­
stants. Of these, many are 1 or -1. Of the matrix 
coefficients that are not constant, we often know the 
bounds on their values. These properties might allow 
us to almost entirely diagonalize the coefficient matrix 
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in a preprocessing stage, resulting in very fast run time 
solution. 

Conclusion 

\"'e have presented here a method of describing a dy­
namic simulation using a modelling and animation de­
scription language called CHARLI. We have used the 
language to generate a number of animated sequences 
tha t would ha ve been very difficul t to make wi thou t such 
a description language. The language, combined with 
some interactive tools, forms a very powerful method of 
describing complex animation sequences which include 
kinematic and dynamic descriptions. 
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