
60 

Goal-Directed Human Animation of Multiple Movements 

Claudia L. Morawetz 
Thomas W. Calvert 

School of Computing Science 
Simon Fraser University 

Burnaby, British Columbia, Canada V5A 1S6 

Abstract 

The complexity of animating articulated bodies often results 
in unrealistic animations produced using cumbersome 
methods of movement specification. This paper presents a 
method of obtaining detailed and life-like human movement 
from a high-level specification. In the GESTURE system, the 
movement language script uses a powerful language to 
describe an actor's actions. Movements are carried out 
realistically using gesture specification functions which make 
use of various specialized algorithms for different movements . 
Movement continuity, and the ability for movements to 
interrupt one another, is obtained by the use of a movement 
control graph. We also show how this system can be based in 
a framework providing a straight-forward interface for the 
animator to produce realistic human animation. 

Resume 

La complexite dans l' animation des corps articules souvent a 
pour resultat des animations pas realistiques, produites par 
I'utilisation des methodes encombrantes pour specifier le 
mouvement. Cet article presente une methode pour obtenir du 
mouvement detaille et semblable au mouvement humain, a 
partir d'une specification de haut niveau. Dans le systeme 
GESTURE, la specification du langage de mouvement 
emploie un puissant langage pour decrire les actions d'un 
acteur. Par le moyen des fonctions de specification des gestes, 
le mouvement se realise realistiquement, a l' aide de plusieurs 
algorithmes specialises pour les mouvements divers. On 
obtient continuite de mouvement, ainsi bien que la capacite 
d'un mouvement donne d'interrompre un autre mouvement, 
par l'utilisation d'un graphe de control du mouvement. On 
demontre aussi comment ce systeme peut etre base dans un 
cadre qui fournit une interface directe pour la production 
d'animation humaine realistique par I'animateur. 

Keywords: Human animation, movement language script, 
gesture specification functions, graph, movement specification 
algorithms, secondary movement. 

1. Introduction 
The animal world is often considered the most difficult 

domain to animate realistically. This is due to the large 
number of joints which must be controlled in articulated 
bodies [5]. Depending on the level of detail, a model of the 
human body can have from 40 to 200 degrees of freedom [12]. 
Specifying values for each of these parameters over time is an 
unwieldy and unreasonable task for animators. In order to 
reduce the amount of work, goal-directed systems have been 
proposed. In these systems, the animator assigns animated 
figures high-level goals such as "grasp object" or "walk" and 
the system computes the joint angles over time that will 
produce a realistic execution of the specified goal. 

These systems have tended to deal with only a few types of 
movements at a time [7, 8]. Although they may produce 
realistic animation of one particular movement, the animator is 
limited by the type of movement implemented. Conversely, 
conventional animation systems that give animators complete 
freedom over the actors' movements provide little support in 
the realistic execution of these movements. 

GESTURE combines both of these advantages by requiring 
only a high-level description of the movements to be executed 
as input, and using algorithms from various systems to 
produce realistic movement. The algorithms or data for 
different movements are integrated into the system through 
gesture specification functions. A graph representation 
enables movements to follow and interrupt one another. This 
feature implies that the animator can specify any order and 
timing of desired movements for an actor. The animator can 
now play the role of a stage director, who gives directions 
indicating the desired movements, and the actors execute them 
convincingly [14] . The resulting system is goal-directed, 
providing many high-level commands to the animator, and can 
apply the most suitable movement specification algorithms to 
each goal to attain as realistic an execution of each movement 
as possible. 

Graphics Interface '90 



61 

2. The GESTURE System 
The objective of the GESTURE system is to read a high­

level movement language script for each actor and to produce 
an animation script containing a complete description of all 
joint angles for each actor for every frame of the animation. 
Figure 1 shows the various components of GESTURE. 

high 
level 

movement 
script 

GESTURE 
animation 

script 

Flgure 1: Components of the GESTURE system 

GESTURE produces realistic animation of the specified 
movements in the high-level movement script by consulting 
gesture specification functions. Each of these functions is 
responsible for executing only one particular movement, and 
can therefore make use of any specific knowledge about how 
that gesture is performed by humans. As each of these 
functions is independent of the others, existing algorithms 
and/or data or new specialized algorithms for particular 
movements can be incorporated into the animation system as 
appropriate. 

The movements produced by the gesture specification 
functions are coordinated using a representation similar to 
Zeltzer's frame-based approach [18]. Movements are encoded 
in a graph by storing joint angles in the nodes, which can be 
looked upon as key positions. Executing a sequence of 
movements is equivalent to traversing the graph. Arcs are 
labelled with names of different movements, and a number 
indicating the number of frames between key positions, i.e. the 
surround~g nodes. This graph representation is a natural way 
of encodmg keyframed movement, or any movement that is 
represented by data at key times, such as film or rotoscoping 

\Uua. It will also be shown that the gesture specification 
functions can make use of the graph to generate any kind of 
movement that uses an algorithm producing joint angle data, 
such as kinematic [10, 11] or dynamic [I, 4, 16] simulations. 

To demonstrate the flexibility in combining and interrupting 
movements using the graph representation, most of the 
movements available to the animator in GESTURE have been 
chosen from a set of gestures called secondary movement. 
Unlike primary movement which consists of actions that are 
carried out to accomplish a specific goal such as grasping an 
object, these gestures are carried out largely sub-consciously, 
and are closely correlated to personality traits [3, 15]. 
Examples of secondary movement include lowering or 
scratching the head, or brushing hair out of the eyes. These 
types of movements can be useful for animating a crowd scene 
in which all actors are given roughly the same primary goals, 
but individual actors' personalities dictate differing secondary 
movemenL These gestures may occur in many combinations 
and may have to be interrupted if the actor's environment 
changes. Thus, these movements are suitable to exploit the 
capabilities of using the graph representation in GESTURE. 
The next four sections present details of the GESTURE 
system. 

3. The Movement Language Script 
The movement language script is the high-level description 

of actor movements which is used as input to GESTURE. The 
movement script contains a chronological list of movements. 
There are two types of movements which can be found in a 
movement language script: action and destination movements. 
A destination movement involves placing a part of the body in 
a certain end position. Action movements involve positioning 
a part of the body, and then continuing to cycle through 
several body part positions for a duration of time. Examples 
of destination movements in GESTURE are a confmning nod, 
making a fist, or putting the hands on the waist. Examples of 
action' movements are scratching, waving or walking. 

The distinction between action and destination movements 
is important, as they must be treated differently in the 
animation system. When the movement script requests the 
execution of a destination movement, the animation frames are 
generated until that movement has been completed. However, 
if the movement script requests the execution of an action 
movement, an object containing critical information about the 
movement is created. As the system proceeds through time in 
the movement script, joint angles are computed for all body 
parts involved in the action movement, first to take them to the 
starting position for the movement and then to cycle through 
the series of positions which characterize the movement. The 
end of an action movement is indicated by the beginning of 
another movement that conflicts with the execution of the 
action movement. When an action movement is ended, the 
object corresponding to that movement is removed. 

The termination of an action movement occurs only when it 
has been interrupted by another conflicting movement. This 
ability to interrupt gestures provides greater flexibility in 
specifying the timing of movements. It is also critical to 
implementing secondary movement which consists of random, 

Graphics Interface '90 



sub-conscious movement. In Zeltzer's system [18], actors can 
switch between several completed movements: walking, 
sitting, and lying. However, his system is not able to have the 
actor begin to sit up and then lie down again, for example. In 
GESTURE, interruptions are not limited to action movements 
which must be interrupted in order to terminate. In fact, the 
graph allows interruptions to occur between any two 
movements. 

As with commands in goal-directed systems, the movement 
language script consists of English movement commands, 
such as "scratch" or "nod". The format of the movement 
language script is a series of movement command lines. Each 
line specifies a time (frame number) at which a movement 
should begin, the movement, and an optional collection of 
words which qualify the movement. Command lines must be 
sorted in chronological order by the specified starting time of 
the movement. Movements are specified by words uniquely 
defming the movement. Each movement can be qualified by 
words which alter the style of the movement produced. In the 
absence of qualifying words, defaults are chosen. The 
qualifying words which may be used vary for different 
movements. The command line 

15 look up 

causes the head to begin looking upward at frame 15. Because 
the movement "look" can be qualified by a direction (left, 
right, straight) and speed (fast, average, slow) as well as height 
(up, down, ahead), the defaults "straight" and "average" are 
chosen for the direction and speed of the movement 
respectively. 

0 walk walkforward 
0 in back place arms behind body 
20 scratch left scratch head with left hand 
50 look right fast turn head quickly to the righl 
50 on waist left put left hand on waist 
60 halt stop walking 
100 nod nod head 
120 walk walkforward 

Figure 2: A sample movement language script 

Figure 2 shows an example of a movement script that can be 
used by GESTURE to produce an animation. Explanations of 
the movements are in italics. Note that the head scratch which 
was begun at frame 20 will stop when interrupted by the head 
turn at frame 50. If the command to place the left hand on the 
waist had been omitted, the arm would remain in mid-air. 
This script was intended for an actor who will stop and nod at 
another actor before continuing on. Although the halting 
process begins at frame 60, the actor will not stop moving for 
a while, and so the nod is scheduled to begin at frame lOO, 
after the actor has come to a stop. 

GESTURE also ensures that the transitions between 
movements occur in a natural way. Beginning at frame 20, the 
left arm will move from behind the back to behind the head in 
preparation for a head scratch. The most direct way to make 
this transition would be for the arm to move up along the back 

62 

Wltil the hand was behind the head. This movement would not 
only appear very unnatural, but it is physically impossible. It 
is up to the gesture specification function dealing with head 
scratches in conjunction with the graph to specify a realistic 
path such as moving the hand in front of the body and then up 
to the head. Thus, the movement script in figure 2 can be 
produced without concern for how natural transitions between 
the movements will occur. 

4. Producing the Animation Script 
The animation script produced by GESTURE contains the 

joint angles and body location for each actor for every frame 
of the animation. The control structure for reading the 
movement script and producing the animation script is 
relatively straightforward and is based on channel tables. In 
our case, each channel stores angle values for one joint in the 
body model at key times. This control structure is event 
driven, i.e. the joint angles for the animation script are 
computed in sequential order, and time does not advance in 
equal units, but rather is controlled by the times specified in 
the movement script. These times are used to update a global 
clock, which represents the current clock time. 

The gesture specification functions provide the basis for 
calculating the joint angles at the key frames specified in the 
channel tables. Values for every frame can then be obtained 
by interpolating between these keyframes. When a movement 
event is processed, channels may only be altered for the 
current clock time and future times. This means that an event 
cannot change movements that occurred previously, although 
on-going gestures can be interrupted. 

If the designated movement is a destination movement, 
control can proceed to the next movement in the script after 
key frames have been generated. However, recall that for 
action movements, key frames are only generated until the 
beginning of the cyclic part of the movement. After this, an 
action object corresponding to the cyclic part of the movement 
is created before control proceeds to the next movement. The 
action object specifies how keyframes will be generated at a 
later time to produce the cyclic movement. These keyframes 
are generated as control proceeds through the movement 
script. At each new event, the clock time is advanced to the 
starting time of that event, and keyframes for all active action 
objects are generated extending at least to the current clock 
time. An action movement ends when a movement is 
encountered in the script which uses the same joints as the 
active action movement. The creation and deletion of action 
objects will be elaborated upon in the discussion about gesture 
specification functions. 

The overall control structure of GESTURE can be 
summarized with the pseudo-code shown in figure 3. 
GESTURE first initializes the channel tables. This essentially 
empties them of any key frames in preparation for processing a 
new movement script. A key frame is then placed in each 
channel at frame 0 with the body assuming a resting stance 
and an initial stage position (line 2). The global clock is reset 
to 0 in preparation for advancing forward by event (line 3). 
The processing of each command line in the movement script 
initiates a new event. The clock is pushed forward to the time 

Graphics Interface '90 



63 

initialize cha1lllel tables 

2 set first frafl'U! to rest position 

3 c l ock time +- 0 

4 while (there is still another line 
in the movefl'U!nt language script) 

5 

6 clock time +- time specified by new 
movement command 

7 produce frafl'U!s for active action movefl'U!nts 
to current clock tifN! 

8 activate gesture specification function corres-
ponding to gesture in movefl'U!nt command 

9 

10 interpolate channels in channel table 

11 place interpolated values for stage position and 
all joints in animation script 

Figure 3: Control Structure for GESTURE 

of this new event (line 6) and then key frames are generated for 
the active action movements up to the new current clock time 
(line 7). Control then proceeds to the step where frames for 
the current movement are generated (line 8). This is done by 
activating the gesture specification function corresponding to 
the movement. After the channel table contains keyframes for 
all movements in the script, the interpolation is applied to each 
channel, producing joint angles and stage position for all 
frames. These values are then stored in an animation script 
which can be used to play back the animation. 

The high-level control for GESTURE is general and quite 
straightforward. It is an event-driven system, and requires no 
knowledge about how particular movements are executed. 
The following two sections will discuss what happens at line 8 
of the algorithm: the achievement of realistic movement from 
a descriptive movement command line. 

5. A Graphical Representation for Movement 
Specification 

The notion of a graph, in which the nodes represent key 
body positions and the arcs represent movements between 
these key positions has been developed. This builds on ideas 
presented by Zeltzer [18]. In implementing this approach a 
number of problems had to be addressed, particularly the 
situation where one movement interrupts another. 

When a gesture specification function is activated, the 
current position of the body must be known before keyframes 
for the movement can be generated. The problem can be 
made tractable if sets of joint angle values are grouped 
together and associated with a small number of states 

representing body positions. These states can be represented 
by the nodes of a graph. States can either be named states 
which correspond to actual poses, for example, "hands-on­
waist", or intermediary states between the poses. 
Intermediary states are needed to make a movement more 
realistic. For example, if no intermediary state existed 
between the position of the arms behind the back and the 
position of the arms in front of the body, the movement would 
be executed by pushing the hands through the body. If an 
intermediary state is introduced between these two states 
where the hand is slightly distanced from the side of the body, 
then the movement of the arms from behind the back to the 
front of the body appears more realistic. 

In figure 4, the named nodes are those labelled rest, 
on_waist and wave, and the intermediary node is unlabelled. 
The labels on the arcs in the graph are the names of the 
gestures. A gesture in this context is a movement that will 
achieve a certain body pose. Gestures, and thus arc labels, use 
the same names as named states. This means that to attain the 
body position "on-waist" from any node in the graph, the arcs 
with the gesture label "on-waist" should be traversed. Thus, 
every node should have an arc for all gestures that do not have 
the same name as itself. 

Figure 4: Graph with the action movement: "wave" 

Each arc must also carry some measure of the temporal 
distance between nodes so that interpolation can be generated 
appropriately. Since nodes represent arbitrarily dermed body 
positions, the time to travel between any two nodes will 
depend on the physical distance and the nature of the gesture. 
Thus, arcs are labelled with the number of inbetween frames 
that should be placed between adjacent nodes in a path. 

Graphics Interface '90 



The idea of singling out some nodes as named states 
corresponding to the final body positions of gestures works 
well for destination movements . But recall that there are also 
action movements which instead of reaching one body 
position, cycle through several positions; for example, a head 
scratch or a wave. In the case of an action movement, the 
same name is assigned to several nodes, and an ordering is 
defined for cycling between them. In figure 4, the wave 
gesture is an example of an action movement. 

64 

Since the nodes in the graph correspond to body positions, 
the graph would become unmanageably large if all possible 
body positions were included in one graph. One way in which 
the number of nodes can be reduced is to take advantage of the 
fact that most gestures do not involve the whole body; usually 
a gesture is performed by one arm, the head or the torso or 
some simple combination. For example, a wave is done by an 
arm, a nod by the head, and a slouch by the torso, while a head 
scratch uses an arm and the head. To reduce the number of 
nodes and to avoid repeating information, nodes are grouped 
into separate graphs, each graph pertaining to a unique set of 
joints which form one body part. For example, the three arm 
gestures presented in figure 4 - rest, on-waist, wave - are in a 
graph that records only joint angles for the arm. Execution of 
some body movements requires the traversal of several graphs 
concurrently, with each of the graphs controlling the 
movement of one set of joints . 

If one movement interrupts another when the body is "at" a 
node, it suffices to follow the arc emanating from the node 
labelled by the new movement. However, some time is 
required to travel between nodes, and thus it is likely that 
movements will be interrupted while an arc is being traversed. 
In order to capture the complex timing of secondary 
movement, GESTURE has been designed to allow movements 
to be interrupted and followed by other movements at any 
time. To achieve this, a procedure is needed to go from an 
arbitrary body position between two states to a known state, 
without the need to numerically analyze the body position. 
If a movement is in the process of traversing an arc when it 

is interrupted, a temporary node is created. This node is a 
special node which can act as a key frame for the fmal 
interpolation. but is not accessible in the graph after that 
temporary node has been passed. The reason for this is that 
although the joint angles for that node can be computed easily 
(by interpolating between the joint values of the two nodes 
connected by the arc being traversed when the interruption 
occurred), it would be a non-trivial problem to determine 
where all the arcs emanating from this new node should lead, 
and additionally, the distance measures which should be 
associated with each of these new arcs. However, this 
temporary node must at least have an arc to the most 
appropriate node in the graph for beginning the execution of 
the new movement. Therefore, the temporary node adopts the 
arcs and arc lengths of either the most recent node or the 
destination node for the original gesture before the 
interruption, depending on which node is closer (by the 
distance measure). 

Figure 5 shows an example of a movement of the arm from 
rest position to the hand on the waist position. (The 

Figure 5: Graph with a temporary node 
caused by an interrupting gesture 

intermediary nodes have been labelled A and B in this figure 
to distinguish them.) After 3 time units, this movement is 
interrupted to put the arm behind the back. A temporary node 
(labelled T in the figure) is created to represent the body 
position at the time of the interruption. Since the body 
position was closer to the intermediary node A than to the 
"rest" node when the interruption occurred, the temporary 
node adopts the arcs of the intermediary node. This means 
that the temporary node adopts an arc with the label "back" 
and distance measure 2. Once this arc has been traversed, the 
movement can continue by following the appropriate arc 
leading from the intermediary node B. From this point, the 
temporary node is inaccessible until it is required in the final 
interpolation. The thicker solid lines in the figure indicate the 
final path traversal. 

6. The Gesture Specification Functions 
One difficulty in devising algorithms for human animation is 

that the human body is not a very general structure. An 
algorithm that generates movement for one arm could be used 
to control the motion of the other arm by applying a reflection 
operation. However the same algorithm would not be suitable 
for controlling the motion of the legs, and even less 
appropriate for the head. Although all these limbs are links 
connected at joints, the links are different sizes, there are a 
different number of joints in each limb, and constraints on the 
physically possible rotations of the joints vary. Human 
animation must therefore appeal to specialized algorithms 
which reflect the particular characteristics of each body part. 
In GESTURE these are the gesture specification functions. 
Each function generates keyframes to perform a particular 
movement using the graph and two special-purpose tools, 

Graphics Interface '90 



anchor and traverse Jraph. 
Recall that a request for the execution of a movement 

initiates a new event at a certain clock time. The gesture 
specification functions can alter the channel table from the 
current clock time onwards to interrupt previous movements 
and generate key frames for the new movement. Anchoring is 
a mechanism for placing an appropriate keyframe at the 
current clock time. and then removing all previously specified 
keyframes after that time. The new keyframe that is created 
corresponds to a temporary node in the graph. The joint 
values at this time are computed by interpolating the segment 
dermed by the keyframes surrounding the current clock time. 
The effect of anchoring a channel at a particular time is to 
ensure that movements that were executing up to that time 
continue to do so in the same way. but that the new 
(interrupting) movement can begin immediately at the current 
clock time. 

65 

The other tool available to the gesture specification 
functions. traverse Jraph. generates the key frames for the 
specified movement. The type of gesture desired is specified. 
and one key frame is placed in the channel table for every node 
encountered in the graph traversal. The traverse Jraph tool 
also handles the creation and deletion of action movement 
objects. Before the graph traversal begins. all active action 
objects are examined to see if the joints used in executing their 
movement coincide with the current movement being 
processed. If so. the action movement will no longer be able 
to continue its cycle and so the object is removed. At the end 
of a graph traversal. the last node reached is examined to see if 
it represents the last posture in a destination movement, or if it 
is one node in a cycle for an action movement. If the latter is 
true. an action object is created for this new movement. 

Consider the following example of a gesture specification 
function which controls the movement of a head scratch. 
During a head scratch. the movements of the arm and hand 
must be coordinated with the movement of the head. 
Specifically. when the head and arm graphs are traversed. 
depending on where these limbs were positioned before the 
interruption occurred. one limb might arrive at its destination 
before the other. If the arm reaches the position to scratch 
before the head. it is important that the scratching cycle does 
not begin until the head has been properly positioned. Thus 
the channel table for the arm is anchored in the destination 
position for scratching at the time when the head has reached 
its destination position. The head scratch gesture has the 
added complication of being an action movement. which 
means that an action movement object is created in the graph 
traversal for the arm. Since a head scratch involves the joints 
controlled by three graphs. the action object created stores this 
information so that if a movement involving any of these 
joints occurs at a later time. this object will be removed. and 
the head scratching will cease. 

Most movements can be generated by the gesture 
specification functions using just the two tools anchor and 
traverse Jraph. However. the flexibility of the graph is 
demonstrated by the fact that not only can it represent 
movement that has been specified by keyframing. but it can 
also handle movement generated other ways. The primary 

movement walk serves as an example of movement produced 
from a dynamic simulation and incorporated into the 
graph [4]. Joint angles produced from the simulation are 
assigned to one node in .the legs graph for each frame of the 
walking sequence. Since the simulation produces every frame 
in the walk. an interpolation is not required. To enforce this. 
the arcs that are created between the nodes all have arc length 
O. In general. this is a way to incorporate the data from any 
movement generation algorithm that supplies values for every 
frame. Thus the graph could also represent movement from 
film data or rotoscoping. for example. 

Human walking also involves swinging each arm in 
synchrony with the opposite leg. An arm swing is initiated by 
the walk gesture specification function using a kinematic 
description of the movement of the arm as a function of the 
movement of the leg. The gesture specification function must 
ensure that the frame generating the left heel strike occurs at 
exactly the same time as when the right arm is in its furthest 
forward position. In order to meet this requirement. the 
gesture specification function modifies the arm graphs by 
introducing two keyframes representing the forward and back 
positions of the arm in the swing. The joint angles for the 
arms at these keyframes are determined as a percentage of the 
joint angles in the legs at heel strike and toe off. The arc 
lengths to and from these nodes are calculated based on the 
number of frames in the walk cycle that would synchronize 
the arm swing with the legs. Thus the graph representation 
can also incorporate kinematically computed movements. 

Assigning responsibility for the execution of single gestures 
to individual functions has proved to be an appropriate method 
for controlling movement. Since each gesture requires special 
knowledge about how it is to be executed. gesture 
specification functions are a good way to organize the 
knowledge about each of these movements. Furthermore. 
with the use of the graph. the gesture specification functions 
can apply the most suitable movement generating algorithm 
for each gesture. This approach to human animation provides 
a flexible and general way to produce and coordinate different 
types of movements. 

7. Framework for a Comprehensive Human 
Animation System 

A major difficulty in designing human animation systems is 
to strike a balance between obtaining realistic movement from 
a complex articulated body and providing a relatively straight­
forward but non-tedious interface to the animator. GESTURE 
contributes much towards this goal. as its input is a high-level 
language. and it provides a mechanism to incorporate 
algorithms or data from other systems. increasing the number 
of realistic movements that can be executed in combination. 
Ongoing research in computer graphics is examining ways to 
animate human figures realistically [2.4. 16] . In this section. 
a front-end to GESTURE is proposed in which the animator 
would need to provide minimal specification. 

In GESTURE. except for the movement of walking and 
swinging the arms. all other gestures are examples of 
secondary movement. This class of movements was chosen as 
they best demonstrated the capabilities of the graph to 

Graphics Interface '90 



ality 

goals 

person 
and moo 
definiu 

d~ 

ons 

EXPERT SYSTEM 

I PSYChOlO~ / \~botiCS 
I sociology I I kinesiology I 

I environment I 

66 

high 
level 

f-+ GESTURE ~ 
animation 

movement script 
script 

Flgure 6: Frarneworlc for a human animation system 

combine and interrupt movements. They were also chosen 
because they represent a very different type of human 
movement that has not been addressed so far in the graphics 
animation literature. Without secondary movement, a 
person's movements look stiff and robot-like. An ideal human 
animation system would automatically provide the secondary 
movement consistent with the high-level goals assigned by the 
animator to each of the actors. 

The field of artificial intelligence investigates ways in which 
a computer can aid humans in tasks requiring human 
intelligence. An expert system which would select appropriate 
secondary movement for actors would be valuable to a human 
animation system. Figure 6 suggests a complete framework 
for a goal-directed human animation system that produces 
life-like human movement. Initially, the animator supplies 
information pertaining to each actor's personality and moods. 
This could include how nervous or impatient, or how assertive 
or domineering an actor is supposed to be. Then, high-level 
goals will be assigned to the actors, and the expert system will 
assign secondary movement to be executed in conjunction 
with the desired movements. This expert system produces a 
high-level script which can be used as input to GESTURE to 
produce life-like animations. 

A human animation system based on this framework, and 
incorporating a wide variety of realistic human movements 
would be a very powerful tool for an animator. In our 
implementation, the complete framework has been 
implemented except for the expert system. This demonstrates 
that this is a feasible approach to a comprehensive human 
animation system. 

8. System Evaluation 
A new approach to character animation has been presented 

in which secondary movement is added to animated actors 
performing primary movement. The GESTURE system is 
fully implemented and provides straight-forward ways in 
which new movements can be added to the system. The 

remainder of the framework has been simulated so that the full 
effect of the animation system can be experienced. The way 
in which this environment is simulated will now be described. 

Our system has only two actors, Simon and Sally. Walking 
is the sole primary goal they may be assigned. A mock expert 
system has been implemented to replace the expert system in 
the framework. This mock expert system applies very simple 
rules about how personality and moods govern human 
behaviour to choose secondary movement for an actor. In 
GESTURE, a set of sliders allows the user to select values for 
different personality traits (how extroverted or introverted, 
cheerful or gloomy, assertive or passive, and domineering or 
submissive a person is) and moods (the degree of boredom, 
nervousness, tiredness, impatience and fear). 

Our scripting language consists of a maximum of twenty 
movements, with up to three qualifying adjectives per 
movement The language is expressive, using a natural 
description of the movements and their style, and is succinct, 
so that translating the many styles of movements into an 
animation is not too complex. Adding a new gesture to our 
system is not difficult, and one could quickly develop a large 
selection of movements from which an expert system could 
choose. To add a new gesture, a corresponding gesture 
specification function must be created as well as new nodes 
and arcs. It would be quite feasible to implement a simple 
program which would allow the user to interactively build new 
gestures. 

The incorporation of secondary movement gives each of the 
actors their own identity, and it is interesting to see how their 
movements evoke the personality and moods they were 
assigned. GESTURE has been used to generate numerous 
animations, and its use has proved how easy it is to alter the 
actors' personality and moods, and quickly obtain new, 
appropriate secondary movement [13]. 

A major contribution of this work has been the development 
of the graphical representation for movement This 
representation has proven to be an effective way to coordinate 
sequences of movements. The graph also allows interruptions 

Graphics Interface '90 



of gestures and the continuation of movement to other 
gestures. One great strength of this representation is that the 
graph can incorporate motor programs or data generated 
independently. GESTURE uses keyframe data collected from 
a key framing system, COMPOSE [6], and data produced from 
a dynamic simulation of a walk [4] . Other types of movement 
generating algorithms could easily be used. 

In the GESTURE system, we have explored only a small set 
of the gestures people perform. The existing program can 
serve as an experimental tool for animators in trying out new 
types and combinations of gestures. This program could also 
be beneficial to researchers in sociology who study body 
language. Sociologists and psychologists could work with a 
knowledge engineer to develop the expert system suggested in 
the framework. The GESTURE system can be readily used to 
evaluate the resulting scripts produced by such an expert 
system. Many such ideas have emerged during the 
implementation of GESTURE, which could lead to interesting 
new topics of research. 

9. Conclusion 

67 

In the last few years, many ways have been proposed for 
controlling purposeful movement of specific skills such as 
walking, sitting or grasping objects [8, 11, 17). Algorithms 
that generate these movements in very realistic ways have also 
been developed [4, 9, 16]. In order for much of the human 
animation research to be beneficial to animators, these 
algorithms need to be combined in a cohesive system in which 
different combinations of movements can defme an animation. 
GESTURE's graph representation of movement suggests a 
method for controlling human movement via gesture 
specification functions, which can be tailored for each 
incorporated movement algorithm or collection of data. A 
large enough set of test movements has been included into our 
system to demonstrate the success achieved in combining and 
interrupting different gestures. 

The decision to use secondary movement as our 
representative set of movements in GESTURE has proved to 
be very interesting. By incorporating secondary movement in 
GESTURE we have produced animations in which the figures 
evoke markedly different personalities while executing the 
same goal (walking) with very little guidance by the animator. 
These results show that life-like human figure animation is 
possible without dramatically increasing the complexity of the 
animator' s task. 

Evaluation of the output of the GESTURE system suggests 
that the approaches presented here are useful. However, 
additional work is still required to develop a powerful human 
animation system which will give a richer and more varied set 
of movements capable of responding to subtle changes in 
actors' moods and the environment. With the combined 
efforts of psychologists and sociologists encoding their 
observations of body language into an expert system, and 
researchers in kinesiology and robotics developing realistic 
movement motor programs, convincingly life-like anirnations 
could be produced in such an animation system. 

References 
1. W.W. Armstrong and M. Green. The Dynamics of 
Articulated Rigid Bodies for Purposes of Animation. 
Graphics Interface '85, 1985, pp. 407-415. 
2. Norman I. Badler, Kamran H. Manoochehri and Graham 
Walters. "Articulated Figure Positioning by Multiple 
Constraints" . IEEE Computer Graphics and Applications 7, 6 
(1987),28-38. 

3. Ray L. Birdwhistell. Kinesics and Context: ess~ys on body 
motion communication. University of Pennsylvarua Press, 
Philadelphia, 1970. 
4. Armin Bruderlin and Thomas W. Calvert. "Goal-Directed, 
Dynamic Animation of Human Walking". Computer 
Graphics (Proc. Siggraph '89) 23 (1989), 233-242. 
S. Thomas W. Calvert. The Challenge of Human Figure 
Animation. Graphics Interface '88, 1988, pp. 203-210. 
6. Thomas W. Calvert, Chris Welman, Severin Gaudet and 
Catherine Lee. Composition of multiple figure sequences for 
dance and animation. In New Advances in Computer 
Graphics, RA. Earnshow and B .wyvill (eds), Springer, 
Verlag, Tokyo, 1989, pp. 245-255. 
7. Charles Csuri. Goal-Directed Movement Simulation. 
CMCCS '81/ACCHO '81,1981, pp. 271-280. 

8. Karin Drewery and John Tsotsos. Goal-Directed 
Animation using English Motion Commands. Graphics 
Interface '86,1986, pp. 131-135. 
9. Michael Girard and A.A. Maciejewski. "Computational 
Modeling for the Computer Animation of Legged Figures". 
Computer Graphics (Proc. Siggraph '85) 19, 3 (1985), 
263-270. 
10. James U. Korein. Using Reach Descriptions to Position 
Kinematic Chains. Proceedings CSCSI/SCEIO, Saskatoon, 
1982, pp. 79-84. 
11. James U. Korein and Norman I. Badler. 'Techniques for 
Generating the Goal-Directed Motion of Articulated 
Structures". IEEE Computer Graphics and Applications 2, 9 
(Nov . .l982),71-81. 
12. R.B. McGhee. Robot Locomotion. In Neural Control of 
Locomotion, Plenum Press, New York, 1976, pp. 237-264. 
13. Claudia L. Morawetz. A High-Level Approach to the 
Animation of Human Secondary Movement. Master Th., 
School of Computing Science, Simon Fraser University, 1989. 
14. Gary Ridsdale. The Director's Apprentice: Animating 
Figures in a Constrained Environment. Ph.D. Th., School of 
Computing Science, Simon Fraser University, 1987. 
15. Albert E. Scheflen. Body Language and the Social Order. 
Prentice-Halllnc., Englewood Cliffs, NJ, 1972. 
16. Jane Wilhelms. "Using Dynamic Analysis for Realistic 
Animation of Articulated Bodies". IEEE Computer Graphics 
and Applications 7,6 (1987), 12-27. 
17. David Zeltzer. "Motor Control Techniques of Figure 
Animation". IEEE Computer Graphics and Applications 2, 9 
(1982),53-59. 
18. David Zeltzer. Knowledge-Based Animation. Workshop 
on Motion, ACM SIGGRAPH/SIGART, 1983, pp. 187-192. 

Graphics Interface '90 


