
135 

An Efficient Scan line Visibility Implementation 

Andrew Woo 
Steve Chall 

Style! Division, Alias Research Inc. 
110 Richmond Street East 

Toronto, Ontario 
M5C lPl 

1. Abstract (Resume) 

In this paper, we present an efficient scanline visibility 
implementation, one which requires minimal memory and lit
tle precomputation, yet provides high quality anti.aliasing for 
both si lhouelles and shading. We also sugges t several 
improvements on conventional scanline strategies . 

Voici, une version efficace de I'algorithme de visibilite 
par balayage. EIIe utilise un minimum de memo ire, peu de 
calculs preliminaires, et produit pounanl des resultaLS de 
grande qualite pour I'anti -aliasage des bords de silhouelle 
ainsi que pour I' ombrage. Nous presentons plusieurs 
ameliorations des strategies conventionelles des algorithmes 
de balayage. 

Keywords: anti-aliasing, norm alization. parameterization, 
point sampling, scanline, shading, span, tessellation, texture 
mapping, visibility. 

2. Introduction 

We sought a versatile renderer. one that could be used 
as a fast previewer and sti ll provide high quality resu lts when 
called upon to do so. The personal computers for which our 
implementation w as intended imposed additiona l constraints: 
relatively modest processing power and a small amount of 
available memory. Having read papers descr ibing several 
prior implementations [Watk70j [Fium831 [Croc8411 Fole84], 
we decided that a scanline visibility algorithm offered what 
wc needed: an efficient means of generating complex images. 
The following is a discussion of our own scanline-ba~ed 

renderer, its background and implementation. 

The fundamental scanline visibility algorithm comes in 
two basic f1avors: a spanning approach I Watk701 and a point 
sarnpling approach (simi lar to ray tracing IWhit80j). The 
spanning approach gives more accurate horizontal edge anti
aliasing since it provides an exact analytic soluti on . It is very 
costly, however: span-scanline intersection calculations can 
be as expensive as O(m 2) when dealing with highly tessel
lated surfaces, where m is the maximum number of polygon 

spans that can exist in anyone scanline. Another question 
that arises, concerning finely tessellated surfaces, is whether 
the exact intersected span size calculations are worth it. In 
other words, why bother with intersected span sizes for edge 
anti-aliasing when they rarely contribute to the silhouette any
way? Besides, the intersected spans are usually very small 
and numerous for closed surfaces. 

Additionally, spanning approaches only take care of 
horizontal edge anti-aliasing. In most implementations, verti
cal filtering is done to complete the edge anti-aliasing, with 
results that are usually unacceptable in terms of image quality. 
More sampling is needed, which leads us to sample more sub
scanlines within each row of pixels. 

Our scanline uses a point sampling approach. Samples 
are processed in horizontal scanline order, top to bottom, left 
to right. This approach provides effective edge anti-aliasing 
with super-sampling, and linear transparency can trivially be 
included in the illumination model. Not only does super
sampling permit edge anti-aliasing, it also lends itself to the 
effective shading anti -aliasing of highlights, spotligh ts, tex
ture noise, shadows, and so forth. These are shading 
phenomena which are usually very poorly handled in span
ning scan line implementations (which generally offer only 
one shading call per span within a pixel). 

Furthermore, we feel that past implementors have 
dwelt excessively on the virtues of coherence, but have given 
inadequate allention to issues involving tessellated surfaces 
and large numbers of tiny polygons in general. Our approach 
does take some advantage of coherence, but it also deals 
effectively with circumstances involving tessellated surfaces, 
in which coherence considerations are of lillle use. 

We have concentrated heavily on memory conserva
tion and contiguity. This is another issue that has been 
ignored in the past, but is of crucial importance in dealing 
with tessellated surfaces. The processing of large numbers of 
small polygons may run up the primitive count very quickly, 
and as a consequence put severe strains on the memory capa
bilities of even the largest machines. 

Graphics Interface '91 



3. Our Scan line Approach 

Our scan line method deals with triangles only, usually 
resulting fTom the tessell ation of curved surfaces. The follow
ing is pseudocode which demonstrates its general flow. The 
variables (in bold face) will be explained in upcoming sec
ti ons. 

Bui ld ySortList; 
Sort ySortList in dec rea sing Y (sec 3 . 3); 

Fo r each scan line in decreasing Y order 
{ 

Get active triangle s from ySortList; 
Compute x spans o f active triangles an d 

store in yActivcList (sec 4.3) ; 
Sort yActivcList i n de crea sing X (sec 3 . 3 ); 

For each sample that contains geometry 
in increasing X order 
{ 

Get ac tive triangles of current 
sample from yActivcList 
and place into xActivcList; 

136 

current pixel. The following offers a quick view of some of 
the relationships between the above arrays. 

struct ySo r tListType 
{ 

WorldCoord *tri ; 
unsigned short minY ; 
unsigned short maxY; 
} ySortList[n]; 

struct yActiveListType 
{ 

st ruct ySortL i s tType *tri ; 
unsigned short minX ; 
unsigned short maxX ; 
Sc reenGeom info; 
} yActivcList[m]; 

struct xActiveListType 
{ 

struct yActiveL i stType * t r i; 
} xActivcList[m]; 

Compute Z dep t hs in xActivcList (scc 4 . 2) ; 
ySorlLisl is sorted according to the maxY field in 

decreasing order. maxY determines the topmost scanline in 
which the triangle is ac tive, and minY determines the final 
scanline past which the triangle is no longer active, that is to 
say, is no longer used in the scene. Many implementations 
use an array of linked lists for ySortList . However, this 
requires much more memory, and the memory used is non
contiguous, whereas our array data structure is small, compact 
and (possibly) contiguous. In addition, with this data struc
ture, we can easily skip empty scanlines to get to the next 
non-empty scanline. 

/ * To deal with transparency "/ 
Do until visible surface is opaque 

or if backgrou nd 
{ 

Find closest Z depth ; 
I nt erpol at e Normal and Shade 

Point on cl osest surface 
(sec 4 . 4) ; 

Mark surface impl icitly deleted ; 
) 

Combine shading information into rgb ; 

3.1. Memory usage 

Scanline data structures usually consume massive 
amounts of memory. However, by rendering triangles, we 
can reduee memory signifi cantly, since we know that a trian
gle can contribute at most one span to a given scanline (a fact 
which, of course, holds true for any convex polygon). There 
are three arrays for which we need to allocate memory. The 
first is an O(n)-sized array called ySorlLisl, where n is the 
number of triangles in the scene. An element of this array 
contains only three fields : a pointer to minimal world-space 
coordin ate information (in our case, shared vertex information 
including vertices, norma Is and texture indices) and the y 
bounds of the tri ang le in screen space. 

The other two arrays, xAcliveLisl and yAcliveLisl, are 
of size O(m), where m is the max imum number of triangles 
that can possibly intersect any one scanline. Bounding box 
evaluations of the triangles give us the value of m. We know 
that m :s; n, and that usu ally m is significantly smal ler, espe
cially when the triangles are evenly distributed throughout the 
scene (see section 6.1). 

yAcliveLisl contains the screen-space geometry of the 
current scanline's active triangles. x/l.cliveLisl contains 
pointers to the currently ac tive triangles with respect to the 

yActiveList is sorted according to the minX field in 
increasing order, and may also be stored in contiguous 
memory. minX indicates the leftmost pixel of the current 
scanline in which the triangle is active, and maxX indicates 
the final intersected pixel in the current scanline, beyond 
which the triangle is no longer used . info represents the 
triangle' s parametric and geometric information in screen 
space, and will be discussed in detail in section 4 (it may also 
contain colour interpolation information [Gour7l)). This 
array can be O(m) since the information it contains is dynami
cally generated and compacted. This compaction causes 
implici t deletion of triangles no longer used, without having 
to explicitly free the memory. 

3.2. Integerizing Parts of the Scan line 

Since we are computing the scene one scanline at a 
time, we can integerize each scanline, and thus the maxY and 
minYvalues can also be integerized. For a triangle with float
ing point bounds of floatYMax andfloatYMin, we simply per
form the following assignments: maxY = floor (ftoatYMax) 
and minY = ceil(ftoatYMin). We can also restrict maxY and 
minY to 16 bits, which means a maximum y resolution of 216 

(65536), which, for the immediate future, will not inconveni
ence us excessively . 

In the x direction, we can repeat the same trick since 
we are point sampling. Thus, all span computations with 

Graphics Interface '91 



floating point bounds (see section 4.3) will be ceiled and 
floored into minX and rruu:X values. respectively. This means 
that we sample at the corners. This is no different than sam
pling at the middle of the pixel (a more popular approach) 
other than a half pixel shift. 

Why do we bother with integerizing these four fields? 
First. we need to sort on maxY and minX (see next subsec
tion). and floating point sorting tends to be much slower than 
2-byte integer sorting. In addition. we need to traverse the 
arrays that contain the fields in order to locate the active trian
gles (maxY. minX). as well as release the inactive triangles 
(minY. maxX). So a lot of processing is done using these 
fields. 

3.3. The Sorting Schemes 

We have two integer lists to sort: ySorlList and yAc
tiveList. Some implementations need to sort the z values for 
each pixel too. but we feel this is unnecessary since only the 
smallest z value is desired for opaque surfaces. or only a small 
set of candidates in the case of transparency (see pseudo-code 
al the beginning of section 3). We would have liked to use 
bin sort [or both ySortList and yActiveList. but an effective bin 
sort requires a linked list data structure [Aho83]. and compae
tion to our array structure would not be worth the expense. 
Thus. we have had to resort to other sorting schemes. 

For ySorlList. we cannot assume any partial ordering. 
Furthermore. we want a sorting scheme which does not 
require too much additional memory. A fast O(nlogn) 
method should be implemented. A non-recursive quicksort 
[Knut73] [Sedg84] appears to be a good choice. with insertion 
sort to deal with small subsets. In terms of additional memory 
used. only a couple of hundred bytes are needed for a large n 
around I million. Tt should be mentioned that we are not too 
upset at our inability 10 use O(n) bin sort for ySorlList. since 
this sort is only done once per scene and on a 2-byte key. 

For yActiveList. most implementations use bubble or 
insertion sort because it is felt th at a partial ordering can be 
sustained from the previous scanline. We do keep informa
tion [ram the previous scanline. then add newly active trian
gles [or the current scanline. With finely tessellated surfaces. 
however. this partial ordering does not help speed up the sort
ing in the majority of cases. and both these sorting schemes 
are a slow O(m 2). Thus. wc want a fast sort whose perfor
mance suffers neither from partially ordered (e.g .. not quiek
sort) nor unordered input. Wc chose heap sort (O(mlogm)) 
for yA cliveLisl. but on closer examination. it proved 10 be 
slow for small lists. We then decided to use insertion sort 
O(m 2) if there are fewer than 200 triangles to be sorted . 

3.4. Anti-Aliasing 

We use a super-sampling scheme for anti-aliasing. 
where a uniform grid of points Ixl is set up within each pixel. 
and 1 can be a user input for controlling the rendering quality. 
A sampling grid of 3x3 or 4x4 is usually sufficient for NTSC 
resolution displays. Accommodating the integer data struc
tures is just a matter of scaling the data structure values by I. 

137 

We sample I subscanlines per row of pixeIs. 

We can also sample at the edges of pixels both verti
cally and horizontally. so that visibility and rgb results can be 
shared between neighbouring pixels in all directions. This 
resembles adaptive anti-aliasing as it is used in most ray trac
ing implementations [Whit80] . Thus an Ixl grid only requires 
(1-1)(1-1) samples. with /-1 subscanlines. 

With a point sampling approach, we know that the 
geometry visibility determination is still fast (see section 4). 
However. to compute the shading information at each such 
point within a pixel is very expensive. and can be overkill. 
Usually. the shading information is already anti-aliased; we 
would like to avoid unnecessary shading calls. So we only 
super-sample the geometry on the Ix l grid (for guaranteed 
high quality edge anti-aliasing). and conserve on the shading 
computations (i.e .• avoid super-sampling for shading anti
aliasing). Conservation of shading computations is discussed 
in the following subsections. 

3.4.1. One Shading Call per Pixel 

To avoid an excessive number of shading calls. we 
require another O(x)-sized array (call it keepObJ). where x is 
the horizontal resolution. In this array. we record the rgb 
illumination value most recently generated while sampling the 
current pixel. as well as the surface (not triangle) most 
recently hit. If the next sample in the same pixel belongs to 
the same visible surface as before. then we avoid shading by 
simply reusing the saved rgb value. If the next sample 
belongs to a different surface. then we need to shade and save 
the new rgb as well as the visible surface in the data structure. 
This usually results in only one shading call per pixeI. 

Note that the array information is nulled for each new 
row of pixels to be processed. so that at least one shading call 
will be made per pixel. In addition. note that we need an O(x) 
array because we are sampling in a strictly horizontal direc
tion per subscanline - recall that I subscanlines constitute a 
row of pixeIs. 

3.4.2. Adaptive and Stochastic Shading Calls 

With only one shading call per pixel. there is a danger 
of aliased highlights. spotlights. and shadows. plus noisy tex
tures (in particular. procedural textures). and so forth. Adap
tive sampling [Whit80] provides a simple technique for decid
ing whether additional shading calls are necessary. Unfor
tunately. we cannot use it directly since we are sampling in a 
strictly horizontal direction. 

We can. however. use a quasi-adaptive [Whit80] and 
stratified [Lce85] sampling approach for shading. For each 
sample on the Ixl grid. it is stochastically determined with 
some probability P whether or not to perform shading calcula
tions. We used the probability 

1-1 
P=-2-- · 

1-1 

If. for a given sample. the probability P dictates that shading 
is not to be performed. then the strategy described in section 

Graphics Interface '91 



3.4.1 is followed. With each shading call, we also compare 
the current rgb values with those of the previous sample in the 
current pixel as well as in the left and right neighbouring pix
e1s: we use the rgb values stored in keepObj. If it is the first 
sample taken in the current pixel, then we can also compare 
with the previous row of information to check rgb discrepan
cies. If some large discrepancy in rgb values results, then we 
will be forced to super-sample the shading for the current 
pixel and its neighbour. 

In short, we super-sample the geometry for edge anti
aliasing, and adaptively-stochastically sample on the lxl grid 
for shading anti-aliasing. The following pseudo-code illus
trates our per-sample anti-aliasing scheme: 

Sampl e Geome try to Dete rm i ne Visib i lit y ; 

i f (geome try be longs to di f ferent surface 11 
s trat ified probabilit y " P " to sample 11 
force d to super - sample shading in 

current pixel) 

RGB = ShadePoinl ; 
Compa re RGB with previous sample and 

neighb our pi xels in kccpOhj; 

if (RGBs differ> some tolerance ) 
f orce super - sample shading for 

current & neighbour pixels ; 

else 
RGB = use kccpOhj' s RGB information for 

currenl pixel ; 

4, Parametric Representation of Triangles 

Parameterization of triangles is nothing new. How
ever, to the authors' knowledge, it has never been used in a 
scanline implementation. We will show, in the following sub
sections, the advantages of using parameterization informa
tion for calculating visibility information, depth computation 
and normal interpolation. 

For tessellated surfaces, coherence does not help much. 
Since it usually requires a great deal of precomputing time per 
scanline and per triangle, it may not be worth it. We have 
attempted to achieve a good balance between precomputation 
and lazily evaluated components. In addi tion, all our precom
putation is done only once per triangle. Nothing extra needs to 

be computed per scan linc. 

4,1. Parameterization 

Let A, Band C be the screen coordinate vertices of a 
triangle. Instead of storing the above vertices (or edge infor
mation), we will store a parameterized version: D, E, F vec
tors, plus a few other pieces of information. 

Let 
These equations set up the needed parameterization. 

d = (Bx - Ax) (Cy - Ay) - (By - Ay) (Cx - Ax), 

D =A, 

138 

Ex = (Bx - Ax) / d, EJ = (BJ - Ay) / d, E, = (B, - A,), 

Fx = (Cx -Ax) / d, Fy = (Cy -AJ) / d, F, = (C,-A,). 

We need to perform this precomputation for each triangle 
when it becomes active with respect to a scanline. 

The parameters s, t can be defined from the above 
equations for any (x,y) location to be rendered as 
S = (x - Dx) FJ - (y - Dy) Fx, t = (y - DJ) Ex - (x - Dx) EJ, 
where S is the unit distance on the normalized E -D axis and t 
is the unit distance on the normalized F -D axis. Note that 
o ~ S,I ~ 1 and 0 ~ s+1 ~ 1 must be valid for a visibility hit. 

4.2. Fast Z Depth Computations 

Since we already compute the spans in the scanline 
approach, we do not need to check the range of the s,t values 
for a visibility hit. Thus we can compute the Z depth values 
directly without the S,I values. Three additional values are 
precomputed: dx = FJE, - EJF, , dy = ExF, - FxE, , d, = 1) dx, 
where 1) represents the change in x from one sample to the 
next. 

A simple z depth computation costing 5 floating point 
calculations is z = D, + (x - Dx) dx + (y - DJ) dJ. Applying 
horizontal scanline coherence, we get Zj +1 = Zj + d,. 

4.3. Calculating Spans 

We can also compute triangle spans for the current 
scanline very quickly using our parameterization. It takes 
7-11 floating point evaluations per triangle to compute span 
information, without assuming any coherence. The bounds of 
the span will then be scaled and integerized, and inserted into 
the scanline data structure. 

By definition, the boundaries of the triangle are deter
mined by the cases: S = 0, I = 0 and S + t = 1. On each scan
line, two of the above three cases must be valid for any active 
triangle . We test for conditions S = 0 and t = 0, and if one of 
these two conditions fails, we can use the S + t = 1 case. 

For the S = 0 case, we know that 0 ~ I ~ 1 in order to 
qualify, where t = (y - DJ) [Ex - (FxIFJ) EJ]. If this condi
tion holds, then one of the x boundaries of the span is 
(y - DJ) (FxlFy) + Dx· 

For the I = 0 case, we know that 0 ~ S ~ 1 in order to 
qualify, where s = (y - DJ) [-Fx - (Ex/EJ) FJ]. If this condi
lion holds, then one of the x boundaries of the span is 
(y - DJ) (Ex/Ey) + Dx· 

For the S + I = 1 case, the x boundary IS 

(y - Dy) [(Ex - Fx) / (Fy - Ey») + [1 / (FJ - EJ) + Dx]. 

Note that most of the above expressions are precom
puted, so that the actual span computation is very fast. We 
could have also kept vertical coherence information as to 
which two edges are likely to intersect the next scanline, but 
this feature was omitted due to our memory constraints. 

Graphics Interface '91 



4.4. Normal Interpolation for Shading 

After the visibility winner is declared, we need to inter
polate vertex normals during shading to achieve the appear
ance of smooth surfaces [Bui75]. Some papers [Plet89] have 
described this to be the most expensive phase of the rendering 
process. However, we can quickly disprove this claim. Actu
ally, for our scanline renderer, the process which tends most 
to hog the CPU is sorting the yAcliveLisl for very complex 
scenes. 

Recall that S,I can be computed as follows: 
S = (x - D.) FJ - (y - DJ) F., 1= (y - DJ) E. - (x - D.) Er 
Then the interpolated vcrtex normal N is simply 
N = (l-s-l) No + S NE + I NF . The wei ghts can thus be com
puted in 8 flo ating point evaluations, and do not depend on 
any coherence. This is helpful for the adaptive-stochastic 
anti-aliasing scheme we have designed. 

Furthermore, the weights I-S-I, s, 1 are normalized. 
Then N is guaranteed to be almos t normalized j· . Thus. instead 
of normali zing N using the standard sqrl method, we can 
compute the express ion below (Newton's iterative method) 
with an initial guess Xo = I , where x will converge to \ I I N I 
in \ -2 iterations: 

Xi +l = 1.5xi-0.5NN x,J 

Thus Xl = 1.5 - 0.5 NN. 

While othcrs, such as lDuff79 1 [Bish86], have 
employed faster normali zations without the need for sqrl , they 
assumed limitations about the environment such as a fixed 
illumination model, an orthographic view and directional 
lights. With our approach, there is no need to assume any
thing about the environment. 

S. Scanline Information Assisting Texture Mapping 

In most compli cated scenes, there is not only a large 
polygon count , but plenty of tex ture mapping to contend wi th 
as well. This compounds the memory problem. 

We can do a little beller. with the help of scanline 
information. Instead of reading the tex ture information into 
memory before rendering ,my scanlines, this processing is 
done only when a surface that needs the information is first 
encountered during a scan line. Therefore no memory is used 
until necessary. If we are lucky, the surface is totally hidden 
and no texture loading is required at all. 

For each different texture, we also calculate the top
most scan line beyond which the texture will no longer be 
applied. This can be done in conjunction with the bounding 
box evaluation to compute minY (mentioned in sections 3.1, 
3.2). When the last scanline to use the texture is completed, 
the texture information in memory is freed. Thus, any new 
texture that is introduced beyond the current scanjine can 
reuse the previous texture's memory. We can sort these tex 
ture references in decreasing minY order, so that OUT searches 
for opportunities to fTee texture storage should be very fast. 

t Note that nonnalizc<l N' = N I I N I, where IN 1 = .IN·N . 

139 

The rationale for dynamically loading and freeing tex
tures is as follows. Most scenes that have lots of different tex
tures usually have them mapped onto surfaces in small and 
discrete regions of the scene. Thus there is no need to keep 
the information around all the time, and we can reuse the 
memory as new textures are introduced. And even in the 
worst case when this scenario is not valid, there is no penalty 
for this optimization: texture processing is just delayed a little 
until an unloaded texture is encountered. 

This approach is analogous to dynamic loading as dis
cussed in [Cook87]. However, they applied it to a Z-buffer 
approach (actually, to an A-buffer) . This means that they 
render in surface order, while our implementation renders in 
horizontal scanline order. They can take advantage of 
sequentially dealing with surfaces that contain the same tex
ture, then free memory for the next set of textures. This is 
very powerful, but it is unclear how similar sets of multiple 
textures per surface are handled. It may be quite complicated 
or inefficient. 

6. Testing and Analysis 

Our scanline renderer is built on top of the Alias ray 
easIer, version 3.0. The original implementation was done on 
a Silicon Graphics Personal Iris .' It has since been ported 
onto the Mac 11, on which memo.ry conservatio.n is of partieu
lar interest to us. Testing was done on a Mac IIfx in the MPW 
environment, system 6, with 6 megabytes of memory allo
cated to the renderer. 

A hidden-line removal option has been added to. the 
scanline implementation with minor mo.difications to. the 
co.de. This feature is used to. reveal the fineness o.f the tessel
latio.ns and the speed of the visibility determination (free of 
shading computations). 

6.1. Memory Usage 

The value of m is usually much smaller than n, where 
m is the maximum number of triangles intersecting any scan
line and n is the total number of triangles. Thus the memory 
necessary to store the geometric information tends to be quite 
small. Table I shows some comparisons of n with m from our 
test images. 

Image Resolution #Lights n m 

Rockets 640x480 9 18020 624 
Spirals 640x480 3 4320 277 
Room 640x480 1 5178 233 
Lamp 640x480 3 29057 835 

Table 1: maximum number of spans in a scanline vs. number 
of triangles 

6.2. Performance of Aliased vs. Anti-aliased Images 

Our tests indicate that the adaptive and stochastic shad
ing calls were fairly effcctive. In most images, the ratio of 
shad ing to geometric super-sampling is small but the results 

Graphics Interface '91 



are still very high quality. The ratio is particularly small for 
the Room image (Figures 5 & 6), where the highlighting is 
already anti-aliased. This is also true for the Lamp image 
(Figures 8 & 9), but a little more shading is needed on the 
highlights. 

For the Spirals image (Figures 3 & 4), this ratio is 
close to I. This additional expense is understandable since a 
lot of light intensity changes occur. For the Rockets image 
(Figures I & 2) a lot more shading calls were necessary 
because of the large number of highlights. Nonetheless, many 
calls were avoided. These examples indicate to us that our 
shading call scheme does properly sample as needed. And 
this shading quality cannot possibly be achieved using only a 
single shading call per pixel, or by vertically filtering in a 
scanline implementation. 

Also note that the visibility part of the scanline is very 
fast in all cases. All timings shown in tablc 2 arc recorded in 
CPU seconds for the scanline process . The sampling field 
indicates the level of anti-aliasing, with hidden meaning hid
den line removal at Ix l sampling rate. #Shading represents 
the total number of shading calls, and #Geomelry represents 
the number of times the geometry is sampled. 

Image 

Rockets 
Rockets 
Rockets 

Spirals 
Spirals 
Spirals 

Room 
Room 
Room 

Lamp 
Lamp 
Lamp 

Sampling Time 

3x3 524 
I x I 232 
hidden 84 

4x4 162 
Ixl 24 
hidden 19 

3x3 542 
Ixl 300 
hidden 88 

3x3 294 
Ixl 160 
hidden 67 

#Shading 

191473 
97550 
o 

85290 
5363 
0 

309023 
298587 
0 

120410 
109481 
0 

#Geometry 

390342 
97550 
97550 

86008 
5363 
5363 

1193977 
298587 
298587 

438724 
109481 
109481 

Table 2: Execution times of various modes of rendering 

6.3. Dynamically Loading and Freeing Textures 

In the Texture image (Figure 10), note that four 
separate textures are applied. However, due to our dynamic 
loading and freeing scheme (section 5), the renderer only 
needed to allocate memory for three tex tures. The potential 
exists for even greater memory reuse with more complex 
scenes. 

7. Conclusions and Future Work 

This paper described the implementation of a 
scan line-based renderer. We have stressed issues such as 
memory conservation (sections 3.1, 5) so that tessellated sur
faces are effectively dealt with, the benefits of increased 
efficiency provided by separating geometric visibility from 

140 

shading computations for anti-aliasing (section 3.4), and the 
advantages of using triangle parameterization for a scanline 
approach (section 4). Such considerations lead to an efficient 
implementation which also provides very high quality images. 

Since our scanline implementation is a point sampling 
approach, it lends itself quite straightforwardly to ray tracing 
[Whit80). As in [Wegh84), the scanline can be used to com
pute the visibility of a cast ray, and then to spawn off 
reflection and refraction rays for producing ray tracing effects. 
This is done to avoid expensive ray-surface intersection calcu
lations for cast rays. 

However, this has not been implemented on top of our 
renderer. Anyone who wishes to employ such an approach 
still needs to address several important problems. The first 
problem is memory usage: we would need to store the scan
line structures, geometric information for world-space trian
gles, and ray tracing intersection culler structures. No 
present-day machine can function effectively under such 
demands . For complex scenes, excessive swapping and pag
ing would easily cripple any system. The second problem is 
anti-aliasing: we would be forced to spawn off reflection and 
refraction rays at the same location as the scanline. This 
would restrict our anti-aliasing mainly to super-sampling, 
which can be very expensive. In addition, there is no simple 
way to apply powerful anti-aliasing techniques such as sto
chastic sampling [Cook86). 

8. Acknowledgements 

Thanks to Andrew Pearce and Jim Craighead for their 
help and advice during our implementation of the scanline 
visibility algorithm. Thanks also to Andrew Pearce, Laurent 
Ruhlrnann, Rob Krieger and Paul Philp for their suggestions 
on this paper. Brian MacGowan is responsible for the design 
of the Lamp image. 

9. References 

[Ah083] A. Aho, J. Hopcroft, 1. Ullrnan, "Data Structures and 
Algorithms", Addison-Wesley, 1983. 

[Bish86] G. Bishop, D. Weimer, "Fast Phong Shading", Com
puter Graphics, 20(4), August 1986, pp. 103-106. 

[Bui75) P. Bui-Tuong, "l11umination for Computer Generated 
Pictures", Communications of the ACM, 18(6), June 
1975, pp. 311-317. 

[Cook86] R. Cook, "Stochastic Sampling in Computer Graph
ics", ACM Transactions on Graphics, 5(1), January 
1986, pp. 51-72. 

[Cook87] R. Cook, L. Carpenter, E. Catmull, 'The Reyes 
Image Rendering Architecture", Computer Graphics, 
21(4), July 1987, pp. 95-102. 

[Croc84) G. Crocker, "Invisibility Coherence for Faster Scan
line Hidden Surface Algorithms", Computer Graphics, 
18(3), July 1984, pp. 95-102. 

[Duff79] T. Duff, "Smoothly Shaded Renderings of 
Polyhedral Objects on Raster Displays", Computer 
Graphics, 19(2), August 1979, pp. 270-275. 

Graphics Interface '91 



[Fium83) E. Fiume, A. Foumier, L. Rudolph, "A Parallel 
Scan Conversion Algorithm with Anti-Aliasing for a 
General-Purpose Ultracomputer", Computer Graphics, 
17(3), JUly 1983, pp. 141-150. 

[Fole84) 1. FoJey, A. Van Dam, "Fundamentals of Interactive 
Computer Graphics", Addison-Wesley, 1984, 1st edi
tion . 

[Gour71) H. Gouraud, "Computer Display of Curved Sur
faces", IEEE Transactions on Computers, c-20(6), June 
1971, pp. 623-629. 

[Knut73) D. Knuth, "The Art of Computer Programming, 
VoJ. 3: Sorting and Searching", Addison-Wesley, 
1973. 

[Lee85) M. Lee, R. Redner, S. Uselton, "Statistically Optim
ized Sampling for Distributed Ray Tracing", Computer 
Graphics, 19(3), July 1985, pp. 61-67. 

[Plet89] D. Pletinckx, "Quaternion Calculus as a Basic Tool 
in Computer Graphics", The Visual Computer, voJ. 5, 
1989, pp. 2-13. 

[Sedg84] R. Sedgewick, "Algorithms", Addison-Wesley, 
1984. 

[Watk70] G. Watkins, "A Real-Time Visible Surface Algo
rithm", Computer Science Dept.. University of Utah, 
UTECH-CSC-70-101. June 1970. 

[Wegh84) H. Weghorst, G. Hooper. D. Greenbcrg, "Improved 
Computational Methods for Ray Tracing", ACM Tran
sactions on Graphics, 3(1), January 1984, pp. 52-69. 

lWhit80] T . Whilled, "An Improved l11umination Model for 
Shaded Display", Communications of the ACM, 23(6), 
June 1980, pp. 343-349. 

Figure 1. Ixl Rockets 

141 

Figure 2. 3x3 Rockets 

Figure 3. IxI Spirals 

Figure 4. 4x4 Spirals 

Graphics Interface '91 



142 

Figure S. IxI Room Figure 8. IxI Lamp 

Figure 6. 3x3 Room Figure 9. 3x3 Lamp 

Figure 7. Hidden·line Lamp Figure 10. Texture Mapping 

Graphics Interface '91 


