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Abstract

B-patches are the analogue to B-spline segments for
triangular surfaces and are the main building block
in the new multivariate B-spline surfaces recently
developed in [8]. This paper discusses algorithms
for B-patches and presents algorithms for computing
the polar form, for evaluation, for differentiation, for
computing continuous joints, and for knot insertion.

Keywords: Bézier patch, blossom, de Boor Al-
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Introduction

Tensor product B-spline surfaces provide an excellent
tool for modeling free form surfaces over rectangu-
lar domains. However, as is well known, the design
of more complicated real world objects often also re-
quires the additional capability of modeling with sur-
faces over triangular grids. Standard examples for
this situation are the so called polygonal hole prob-
lem and the construction of smooth blends. Unfortu-
nately, most of these surfaces cannot be modeled by
tensor product patches without singularities.

One way to deal with this situation is the introduc-
tion of triangular Bézier patches. These surfaces have
been widely studied in the past [12, 30, 16, 17, 14, 11],
and are well understood by now. However, although
triangular Bézier patches allow for the modeling of
surfaces over arbitrary triangular regions, they in
turn lack certain other features that make interac-
tive surface design with tensor product B-splines so
attractive and easy. Therefore, not surprisingly, there
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has been ongoing research on the construction of
more flexible surface representations for many years
(22, 23].

Recently, a new B-spline like surface representa-
tion has been developed in [8]. This representation
is based on a redevelopment of multivariate B-splines
using B-patches. A test implementation of these sur-
faces is currently under way at the University of Wa-
terloo. The central building blocks in the new surface
representation are B-patches as developed in [33, 34].
B-patches share many properties with B-spline seg-
ments: They are characterized by their control points
and by a 3-parameter family of knots. If the knots in
each family coincide, we obtain the Bézier representa-
tion of a bivariate polynomial over a triangle. There-
fore B-patches subsume Bézier patches in much the
same way B-spline segments subsume Bézier curves.
B-patches have a de Boor-like evaluation algorithm,
and, as in the case of B-spline curves, the control
points of a B-patch can be expressed by simply in-
serting a sequence of knots into the corresponding
polar form. B-patches can be joined smoothly, and
they have an algorithm for knot insertion that is com-
pletely similar to the insertion algorithm for curves.
Therefore, B-patches may be considered as the ana-
logue to B-spline segments for surfaces.

This paper focuses on computational aspects of B-
patches and presents algorithms for computing the
polar form, for evaluation, for differentiation, for
computing continuous joints between two adjacent
patches, and for knot insertion. The paper is or-
ganized as follows: Section 2 gives a brief introduc-
tion to the theory of polar forms for surfaces that is
necessary for the construction of B-patches. Section
3 defines B-patches by means of their de Boor-like
evaluation algorithm and discusses some of their ba-
sic features. Section 4 focuses on algorithmic aspects
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and presents algorithms for evaluation, differentia-
tion, computation of continuous joints, and knot in-
sertion. Section 5 contains concluding remarks and
points out directions for future research.

Polynomials and polar forms

This section gives a brief introduction to the theory
of polar forms for surfaces. In particular we establish
the principle that for every polynomial F of degree n
there exists a unique symmetric n-affine map f, the
polar form of F, satisfying f(u,...,u) = F(u), and
we show how the derivatives of F can be expressed in
terms of f. Additional material on polar forms can
be found in [12, 13, 26, 27, 28, 32, 33].

Recall that a map f : R? — R? is called affine if
it preserves affine combinations, that is, if f satisfies

f(Z_j auut) = Z_jauf(u“)

for all points u!,...,u™ € R? and real numbers
a1, ...,am € R with 27::1 a, = 1. A map f is affine
iff f can be written as composition of a linear map
A € L(R? R?) and a translation b € R?, i.e.

f(u) = Au+b. (2)

Therefore the directional derivative of an affine map
f w.r.t. a vector £ =t — s can be written as

D¢ f(u) = f(t) — f(s)- (3)

In particular, the derivative of f is independent of u.
A map f : (R?)™ — R® is called n-affine (or just
multiaffine) if it is affine in each argument. There-
fore f is n-affine iff for any v = 1,...,n and arbitrary

(1)

oints a!,...,a™ € R? each ma
y ooy 1Y
2 3,
far,..,avpan 0 RE—R7:
1 v—-1 v+1 n
u—s f(al,...,a" Y u,a" ", ... a")

is affine. Finally, a map f : (IRz)" — 3 is called
symmetric if f keeps its value under any permutation
of its arguments.

With this notation we are now able to state the fol-
lowing one-to-one correspondence between polynomi-
als of degree n and symmetric n-affine maps [13, 26]:

Theorem 2.1 For every polynomial F : R’ > R®
of degree n there ezists a unique symmetric n-affine
map f: (R*)™ — R® satisfying

f(u,...,u) = F(u).

n

(4)

In this situation f is called the polar form or blossom
of F and F is the diagonal of f. &

In order to join a network of surface patches in a
smooth fashion it is necessary to derive precise con-
ditions on the continuity between adjacent patches.
Using the equivalence between polynomials and polar
forms given by the previous theorem, these conditions
can be stated as follows [26]:

Proposition 2.2 Two polynomials F,G : R?* > R®
of degree n match C?-continuously at s € R? iff

f(8y .oy 8,61, oy 07) = g(s, ...y 8, ul, ...

n-—gq q n-—q q9

(5)

1uq

holds for every sequence u',...,u? € R?, i.e. if the
polar forms f and g agree on all arguments that con-
tain s at least (n — g)-times. &

B-patches

This section gives the definition of B-patches and dis-
cusses some of their features that make them attrac-
tive for interactive surface design. We use standard
multiindex notation 7= (3, j, k) throughout.

First, we have to establish the analogue to the knot
vector:

Definition 3.3 A sequence
K=(@°..,m1s.., s 0, ..,

of parameters in the plane IR? is called a knot net iff
(%, 87, %) are affinely independent for 0 < [7] < n—1.
In this situation, the parameters are also called knots.

&

With this notation we are now able to define a B-
patch over a knot net K by means of the following
algorithm:

Definition 3.4 Let the knot net

n-1 _0 n—-1 4,0 n—1
;8% ey 8 T ey BT

K=(r%..,r
in R? be given, and let py(u),ox(u), and 7o(u) be the
barycentric coordinates of u € R* w.r.t. A(rt, 87, t*),
i.e.

u = pe(u)rt + op(u)s’ + r(u)tk.
and
pr(u) + ox(u) + me(u) = 1.
The algorithm

-o(u) = P;

1

(6)
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and

Pi(u) = p(w)PL
+0’;(u)P;_;;,

+T;(u) ;;;3

(u)

(u)
(u)
for 1 < 1 < n, is called de Boor algorithm for poly-

nomials over triangles. The resulting surface F(u) =
FG,... 0)(u) 1 @ B-paich over K with control points

P-c R®. &

(7)

f(tO, tl, tZ)

Knot Net K

Figure 1: The de Boor algorithm for the evaluation
of a cubic B-patch over the given knot net K.

10

It is shown in [33] that every polynomial
surface F of degree n can be represented as
a B-patch over an arbitrary knot net K
(7% s oy L 80 8™ P e 37T B Hhe P
rameter domain IR?. More specifically, the control
points P; in this representation are obtained by eval-
uating the corresponding polar form f on sequences
of consecutive knots in K, i.e.

Pr= f(r%...,r"" 1, 4% ..., 891 ¢0,.. . ! (8)
A special situation in Definition 5.2 arises if the
control points in the de Boor algorithm are given by

1 f7=7
e { 0 otherwise. (9)
The resulting real-valued functions N (u) are called
normalized B-weights. Using the normalized B-
weights, every polynomial surface of degree n can
then be represented in the form

F(u)= Y NP(u)P;
|

ﬂ:n

(10)

as a weighted average of its B-patch control points.
The following example may be helpful to clarify
these concepts:

Example 3.5 Consider three affinely independent
points r,s,t € R?. Setting r* = r, s s, th = ¢
we obtain the familiar de Casteljau algorithm for the
evaluation of a triangular Bézier surface

F(u)= Y B}u)P:
lf=n

(11)

over the reference triangle A(r,s,t). The control

points

(12)

Py = f(ry...,7, s, , s,t, ..., 1)

1 J k

are the Bézier points, and the polynomials BZ(u) are
the Bernstein polynomials w.r.t. A(r,s,t). In par-
ticular, B-patches subsume triangular Bézier patches
in much the same way as B-splines subsume Bézier
curves. &

We conclude this section with a brief discussion on
how the shape of a B-patch is related to the shape of
its control net [33]:
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Proposition 3.6 Consider a B-paich

F(u)= Y Nf(uw)P:, Pic R
|

ﬂ:‘n
of degree n over
cstTLE0 ),

The shape of F is related to the shape of its control
net (Pr)ji=n in the following way:

1. Suppose that for |3] < n — 1 each trian-
gle A(r,87,t¥) contains the domain triangle
A(r%s°,t%). Then for u € A(r°s°,t%) the
function value F(u) is contained in the convez
hull of the control points P;.

2. If n knots r° = ... = ™~ ! =: r coincide, then
F(r) = Pp 0,0 is a control point and the surface F
18 tangent to the conirol net at this point, i.e. the
tangent plane at F(r) is spanned by the points
Py, 0,0, Pn_1,1,0 and P,_10,1. The analogous as-
sertion holds for the knots s°,...,s"~! and for

the knots t°,...,t"~1, respectively.

3. The relationship between F and its control net is
affinely invariant: If ¢ : R®> — R® is an affine
map, the control points of the image surface goF
are given as images ¢(P;) of the control points
P;, i.e. the diagram

(Pj=n >

! !
¢
F - ¢poF
commutes.
Proof: (1) Under the given assumptions the

barycentric coordinates pz(u), o(u), and 7+(u) of a
point u € A(r?, s%,t°) w.r.t. A(r?, s7,t¥) are all pos-
itive, and the point P} (u) lies in the closed convex
hull of Pt.';}l(u), Prl-;zl, (u), and Pt.l;.l:(u). Induction
over | shows that P}(u) is contained in the convex
hull of the control points Py, and the assertion fol-
lows from F(u) = P(%,o,o)(“’)'

(2) It follows from Algorithm 4.9 below that the
directional derivative of F at r w.r.t. £ = s° —r is
given as

D¢F(r) = nf(r,...,n€)
n(f(ry...,r, 8% = f(r,...

= n(Pn-1,1,0) = Pn,0,0))s

7))

so that the tangent plane at F(r) is spanned by
P(n,0,0)1 P(n—l,l,O)) and P(n——l,O,l)-

(3) Let f be the polar form of F, and let ¢ : R® —
IR? be an affine map. Then ¢ o f is the polar form of
the image surface ¢ o F', and the control points P? of
¢ o F are given as

0 L — 0
B = $oflr® w2 Y%

= ¢(F).

This completes the proof of Proposition 3.6. &

i—1 40 k-1
T A )

Algorithms for B-patches

In this section we present some of the basic algo-
rithms for modeling with B-patches. In particular,
we present algorithms for evaluation, differentiation,
computation of continuous joints, and knot insertion.
These algorithms form the basis of the B-patch mod-
ule within the interactive surface modeler TRIMO
[36], and are also partly used in the implementation
of the new multivariate B-spline surfaces developed
in [8] that is currently under way at the University of
Waterloo.

We start with an algorithm for computing the polar
form f of a B-patch F out of the given control points.
This algorithm is central for all other algorithms that
follow.

Algorithm 4.7 (Polar Form) Let a B-patch F

over a knot net
_ (0] n-1 _0 n—-1 4,0 n—1
Ky B sl Syl guangls )

with control points P; € IR® be given. Let
pr(u”),ox(u”), and T(u") be the barycentric coordi-
nates of u¥ € R? w.r.t. A(r, 87, tk), d.e.

u’ = p,-(u")ri + a’,—(u")sj + T (u” )t"’.

and
pr(u”) + ox(u”) + m(u”) = 1.
Define
() := P;, (13)
and

pr(uly. . ul) =
p;(u,l)p:.;i_l (uly..., ul_l)
oWk (uly o ulY)(19)
+'r;-(ul)péq_i.3 (uly..., ul_l)
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for 1 <1< n. Then the polar form f of F is given
by
fl,...,u") = P?o,o,o)(ulx sy B

.,u!) do not depend
.,u'. &

In particular, the maps p(u?, ..
on the ordering of the arguments u!,..

A full proof of Algorithm 4.7 is given in [33]. The
proof is based on the fact that the de Boor algorithm
of the previous section has been carefully constructed
in such a way that the maps pi(u',...,u') that ap-
pear in Algorithm 4.7 are symmetric throughout.

Note that the de Boor algorithm of the previous
section is actually a special case of Algorithm 4.7:

Algorithm 4.8 (Evaluation)

If the parameters u! = ... = u™ = u in Algorithm
4.7 all coincide, then Algorithm 4.7 reduces to the de
Boor algorithm of Definition 3.4. Therefore in this
situation

Plooo)(t 1) = Bly0,0)(¥) = F(u)

i a point on the surface. &

Algorithm 4.7 may also be used for differentiation:

Algorithm 4.9 (Differentiation) Let the direc-
tion vectors £y,...,&; in IR? be given. Then the q-th
directional derivative

D(q)

fll---quF(u)

of F at u can be computed as

n!
Dg?'"quF(u) = (n — q)!P?o,o,o)(u, P T S T fq)
with pg o.0(U, - - -, U, &1, -,y €;) given by Algorithm 4.7.
Note, however, that the coordinates py(€,), o:(€.),
7:(€,) in the ezpression

&y = Pi‘(&/)ri =+ Uz‘(fv)sj =+ T,;(f,,)tk

add up to 0 instead of 1, since £, is a vector, and not
a point in R &

A proof of Algorithm 4.9 follows e.g from [26, 8.4]
or from [33, 2.4]. A direct proof is given in [35].

Algorithm 4.9 can be used to convert from B-patch
to monomial form:

12

Algorithm 4.10 (Monomial Form) Consider a

B-patch
F(u)= ) NF(u)P:
|il=n
over the knot net
Y LA LW R ] VT

The coefficients aj r of the monomial representation
Fu)= Y ajk vjuf (15)
j+k<n

can be computed as

n 7
oin = (g Plolers be bty 19
1 J k

with o = (0,0), & = (1,0), & = (0,1) € R?, and
p?O,O,O)(O’ ceyOy by iy 80,6y, ..., 6y) given by Algo-
rithm 4.9. Again, the coefficients p(€2(y)), o(€z(y)),
Ti(€z(y)) in the ezpression

ba(y) = Pilla(y))r + 02(bay))s + Telbo))t?

add up to 0 instead of 1, since €y(y) 15 a vector, and

not a point in R,

Proof: We briefly sketch a proof that Algorithm 4.10
is correct: Taylor expansion of F at o = (0,0) € R?
gives

itk P(o) uwluk
F(u): Z 6+F() 1%2

iz, A8 W

and Algorithm 4.9 yields

n! o uk
F(u) = |-IE F p?o'o,o)(o, ey 6y) Jllk!z
Jk
Z Uy
= aj:k S
s jlk!

From this the assertion follows. &

Algorithm 4.9 also allows us to join two B-patches
F and G along a line L with arbitrary continuity. The
theorem is a generalization of the analogous construc-
tion for Bézier patches, due to Farin [16].

Algorithm 4.11 (Continuous Joint) Consider
the B-patch

F(u)= ) NP(u)P:

[f]=n
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Figure 2: Continuous joint of two B-patches F' and
G along a line L according to Algorithm 4.11

over
— 0 n—-1 _0 n—-1 4,0 n—1
K=(%...,/» 4,8 .., "1, . ,t")

and the B-patch
G(u)= Y NP(u)F:
I

il=n
over
c (0 sn—1 20 sn—1 j0 n—1
K=(#,...,m@1,5,...,54&,...,"),
where the knots s°,...,s" 1,10, ..., t" ! all lie on @

line L (cf. Fig. 2). Then F and G are C?-continuous
along L iff for 0 < i < g the B-patch control points
P! of G satisfy

B; = plo j 1) .., 771, 0<i<y,

i

~0 ~i—1

where the points pé,’j'k(r RN are generated

from the control points P; of F by means of Algo-
rithm 4.7.

Proof: Again we briefly sketch the proof. Suppose
that F' and G are in fact C'?-continuous along L. Ac-
cording to Proposition 2.2 this implies

flo..,u,7,...,# ) =g(u...,u,7,...,71)

13

for 0 < i < q and arbitrary u € L, and the polynomi-
als )
Fr(u) = f(u...,u,7,..., 771

and '
Gr(u) =g(u...,u, 7, ..., 771

of degree n — i defined on L agree. Hence their polar
forms f;, and g; agree, too, and we get

FUE%, g8 B i B L % ) =
AT N N TSN

for |z] = n. Therefore

P = g(so,...,sj_l,to,...,tk_l,FO,...,F"_l)
= f(s0,..., 8" Lt0, TR0, LY
= Hoailifyiea® )

and the assertion follows.

Conversely, suppose that Py = pg’j,,c(f'o, ooy 1)

for 0 < i < q. Then the (n — 7)-polar forms

Feltt et ™) o= Pl s v w0, L, 7Y

and

gr(uty sy %) 2= g0 yo LutTh R0 LAY

defined on L have the same poles P/, =
pﬁ,,j,k(f'o, ...,#71), |i] = n, and are therefore iden-
tical. A similar argument as above then completes

the proof. &

Note that in the case of n-fold knots 7 = ... =
rrl = p, 80 =...=s"! =3 andt’=...=
t"~1 = ¢, the above algorithm specializes to Farin’s
construction for joining two Bézier patches using the
de Casteljau algorithm.

We conclude this section with an algorithm for ex-
changing the knots in the knot net K of a B-patch.
The algorithm is similar to the insertion algorithm

for B-splines (3, 32]:
Algorithm 4.12 (Knot Insertion) Consider a B-
patch
F(u)= ) NP(u)P: (17)
[i1=n
of degree n over

K= (ro,...,r"”l,so,...,s"_l,to,...,t”_l) (18)

and suppose that the knot net

* . 0 1 +1 n—2
K* = (0% Pyl T Gy s

s, . .., s" 0 Y (19)

o
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is obtained from K by inserting a new knot r between
' and P! for some -1 <1< n -2, and dropping

"1, Then F has a unique representation
F(u)= ) NF(u)P; (20)
[Z1=n

as B-patch of degree n over K*, and the new control
points P! are given as

P} = P, (21)
f0<i<Il+1, and
Fr = pica(r)Pr+ 0j(r) Pz ye,
+7(7) Py es (22)

ifl+2 <1< n. Here pi_1(r),0j(r) and (1) denote
the barycentric coordinates of

r=pic1(r)r'™! + oj(r)s’ + 1 (r)tk

wrt. A(ril sl k). &

Multiple application of Algorithm 4.12 allows to
subdivide a B-patch into several pieces. The refined
control net converges to the surface and can be used
as a piecewise linear approximation to the surface.
The subdivision process can be carried out adap-
tively, and the level of subdivision that is necessary
to approximate the surface within a given tolerance
can be precomputed from estimates on the second
derivatives, based on Algorithm 4.9. By precom-
puting the necessary level of subdivision, the time-
consuming flatness testing at every level of the algo-
rithm can be completely avoided.

Conclusion

We have presented a new representation for bivari-
ate polynomials, the B-patch, and discussed some of
its main properties of interest in the construction of
smooth surfaces in CAGD. It has been shown that B-
patches subsume triangular Bézier patches and that
many important properties of B-splines carry over to
B-patches almost word by word. B-patches are the
main building block in the new multivariate B-spline
surfaces recently developed in [8]. These new spline
surfaces allow to construct automatically smooth sur-
faces over arbitrary triangulations of the parameter
plane. A test-implementation for these new B-spline
surfaces that partly uses some of the algorithms given
in this paper is currently under way at the University
of Waterloo.
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