
8 

Algorithms for B-patches 

Hans-Peter Seidel· 
Computer Graphics Laboratory 

University of Waterloo 
Waterloo, Ontario, Canada N2L 3Gl 

Abstract 

B-patches are the analogue to B-spline segments for 
triangular surfaces and are the main building block 
in the new multivariate B-spline surfaces recently 
developed in [8). This paper discusses algorithms 
for B-patches and presents algorithms for computing 
the polar form, for evaluation, for differentiation, for 
computing continuous joints, and for knot insertion . 
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Introduction 

Tensor product B-spline surfaces provide an excellent 
tool for modeling free form surfaces over rectangu­
lar domains. However, as is well known, the design 
of more complicated real world objects often also re­
quires the additional capability of modeling with sur­
faces over triangular grids. Standard examples for 
this situation are the so called polygonal hole prob­
lem and the construction of smooth blends. Unfortu­
nately, most of these surfaces cannot be modeled by 
tensor product patches without singularities. 

One way to deal with this situation is the introduc­
tion of triangular Bezier patches. These surfaces have 
been widely studied in the past [12, 30,16,17,14,11)' 
and are well understood by now. However , although 
triangular Bezier patches allow for the modeling of 
surfaces over arbitrary triangular regions, they in 
turn lack certain other features that make interac­
tive surface design with tensor product B-splines so 
attractive and easy. Therefore , not surprisingly, there 

' This work has been partly supported b y the Natural Sci­
ences and Engineering Research Council of Canada through 
Strategic Operating Grant STR0040527 

has been ongoing research on the construction of 
more flexible surface representations for many years 
[22, 23). 

Recently, a new B-spline like surface representa­
tion has been developed in [8). This representation 
is based on a redevelopment of multivariate B-splines 
using B-patches. A test implementation of these sur­
faces is currently under way at the University of Wa­
terloo. The central building blocks in the new surface 
representation are B-patches as developed in [33, 34) . 
B-patches share many properties with B-spline seg­
ments: They are characterized by their control points 
and by a 3-parameter family of knots . If the knots in 
each family coincide, we obtain the Bezier representa­
tion of a bivariate polynomial over a triangle. There­
fore B-patches subsume Bezier patches in much the 
same way B-spline segments subsume Bezier curves. 
B-patches have a de Boor-like evaluation algorithm, 
and, as in the case of B-spline curves, the control 
points of a B-patch can be expressed by simply in­
serting a sequence of knots into the corresponding 
polar form. B-patches can be joined smoothly, and 
they have an algorithm for knot insertion that is com­
pletely similar to the insertion algorithm for curves. 
Therefore, B-patches may be considered as the ana­
logue to B-spline segments for surfaces. 

This paper focuses on computational aspects of B­
patches and presents algorithms for computing the 
polar form, for evaluation , for differentiation, for 
computing continuous joints between two adjacent 
patches, and for knot insertion. The paper is or­
ganized as follows: Section 2 gives a brief introduc­
tion to the theory of polar forms for surfaces that is 
necessary for the construction of B-patches. Section 
3 defines B-patches by means of their de Boor-like 
evaluation algorithm and discusses some of their ba­
sic features. Section 4 focuses on algorithmic aspects 
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and presents algorithms for evaluation, differentia­
tion, computation of continuous joints, and knot in­
sertion. Section 5 contains concluding remarks and 
points out directions for future research. 

Polynomials and polar forms 

This section gives a brief introduction to the theory 
of polar forms for surfaces. In particular we establish 
the principle that for every polynomial F of degree n 
there exists a unique symmetric n-affine map f, the 
polar form of F, satisfying f(u, ... , u) = F(u), and 
we show how the derivatives of F can be expressed in 
terms of f . Additional material on polar forms can 
be found in [12, 13, 26, 27, 28, 32, 33) . 

Recall that a map f : IR 2 
-+ IR3 is called affine if 

it preserves affine combinations, that is, if f satisfies 
m m 

(1) 

for all points u 1 , •• . , urn E IR2 and real numbers 
Ob . • . , Om E IR with 2::;:'=1 OIJ. = 1. A map f is affine 
iff f can be written as composition of a linear map 
A E L(IR 2, IR3) and a translation b E IR3, i.e. 

f(u) = Au+b. (2) 

Therefore the directional derivative of an affine map 
f w.r.t . a vector ~ = t - s can be written as 

Dd(u) = f(t) - f(s) . (3) 

In particular, the derivative of f is independent of u . 
A map f : (IR2)n -+ IR3 is called n-affine (or just 

multi affine) if it is affine in each argument. There­
fore f is n-affine iff for any v = 1, ... , n and arbitrary 
points a 1 , .•. ,an E IR2 each map 

fa.l, ... ,av, ... ,a.~ : IR2 -+ IR3 : 

f( 1 11- 1 11 +1 n) 
Ufo-> a , ... ,a ,u,a , ... ,a 

is affine. Finally, a map f : (IR2)n -+ IR3 is called 
symmetric if f keeps its value under any permutation 
of its arguments. 

With this notation we are now able to state the fol­
lowing one-to-one correspondence between polynomi­
als of degree n and symmetric n-affine maps [13, 26) : 

Theorem 2.1 For every polynomial F : IR2 -+ IR3 
of degree n there ezists a unique symmetric n -affine 
map f : (IR2)n -+ IR3 satisfying 
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In order to join a network of surface patches in a 
smooth fashion it is necessary to derive precise con­
ditions on the continuity between adjacent patches. 
Using the equivalence between polynomials and polar 
forms given by the previous theorem, these conditions 
can be stated as follows (26): 

Proposition 2.2 Two polynomials F , G : IR2 -+ IR3 
of degree n match CL continuously at s E IR2 ifJ 

f(~,~I, .~., u9) = g(~,~I, .~., u9) (5) 
n-9 9 n-9 9 

holds for every sequence u 1 , ... , u 9 E IR2, i. e. if the 
polar forms f and 9 agree on all arguments that con­
tain s at least (n - q) -times . .-. 

B-patches 

This section gives the definition of B-patches and dis­
cusses some of their features that make them attrac­
tive for interactive surface design. We use standard 
multiindex notation i' = (i, j, le) throughout. 

First, we have to establish the analogue to the knot 
vector: 

Definition 3.3 A sequence 

J( ( 0 n-l 0 n-l to tn - 1) = r , . .. , r ,s, ... , s , , ... , 

of parameters in the plane IR2 is called a knot net ifJ 
(ri, si, t k ) are affinely independent for 0 ~ I~ ~ n -1. 
In this situation, the parameters are also called knots. 
.-. 

With this notation we are now able to define a B­
patch over a knot net J( by means of the following 
algorithm: 

Definition 3.4 Let the knot net 

J( ( 0 n-l 0 n-l to tn-1) = r , ... , r ,s , . .. ,s , "." 

in IR2 be given, and let pr( u), CTr( u), and rr( u) be the 
barycentric coordinates of u E IR2 w. r. t. 6( ri, si, tk), 
i .e. 

i . k 
U = pr(u)r + CTr(U)s-' + rr(u)t . 

f(8= F(u) . (4) and 

n pr(u) + CTr(U) + rr(u) = 1. 

In this situation f is called the polar form or blossom The algorithm 
of F and F is the diagonal of f . .-. 

(6) 
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and 

pr( u )pt;i. (u) 

+ur( u)Pi;J. (u) 

+rr( u )Pi;i3 (u) 

(7) 

for 1 :S 1 :S n, is called de Boor algorithm for poly­
nomials over triangles. The resulting surface F( u) = 
P{~, .. . ,O) (u) is a B-patch over K with control points 

Pr E JR.3 •• 
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It is shown in [33) that every polynomial 
surface F of degree n can be represented as 
a B-patch over an arbitrary knot net K 
( 0 n-l 0 n-l to tn - l )' th r , . .. , r , s , ... , s , , ... , In e pa-
rameter domain 1R? More specifically, the control 
points Pr in this representation are obtained by eval­
uating the corresponding polar form f on sequences 
of consecutive knots in K, i.e. 

P f( 0 i-I 0 _;-1 to tk-l) r= r , ... ,r ,s , ... ,S" , , ... , • (8) 

A special situation in Definition 5.2 arises if the 
control points in the de Boor algorithm are given by 

if 1/ = i 
otherwise. 

(9) 

The resulting real-valued functions NF(u) are called 
normalized B-weights. Using the normalized B­
weights, every polynomial surface of degree n can 
then be represented in the form 

F(u) = L NF(u)Pr , (10) 
1i1=n 

as a weighted average of its B-patch control points. 
f( so, SI, S2) The following example may be helpful to clarify 

Knot Net K 

Figure 1: The de Boor algorithm for the evaluation 
of a cubic B-patch over the given knot net 1( . 

these concepts: 

Example 3.5 Consider three affinely independent 
points r, s, t E JR.

2
• Setting ri = r, si = s, t k = t 

we obtain the familiar de Casteljau algorithm for the 
evaluation of a triangular Bizier surface 

F(u) = L Br(u)Pr ( 11) 
1i1=n 

over the reference triangle 6(r, s, t) . The control 
points 

Pr = f(r, ... , r, s, ... , s, t, ... , t) 
'-v-' '-v-' ~ 

i k 

(12) 

are the B izier points, and the polynomials Br (u) are 
the Bernstein polynomials w.r.t. 6(r, s, t). In par­
ticular, B-patches subsume triangular Bizier patches 
in much the same way as B-splines subsume Bizier 
curves .• 

We conclude this section with a brief discussion on 
how the shape of a B-patch is related to the shape of 
its control net [33): 
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Proposition 3.6 Con~ider aB-patch 

F(u) = L NF(u)Pr, Pr E JR3 
1i1=n 

of degree n over 

y (0 n-1 ° n-1 to tn-1) 
~= r , .. otr ,8, . .. ,S , "." . 

The ~hape of F i~ related to the ~hape of it~ control 
net (Pdli1=n in the following way: 

1. Suppo~e that for I~ < n - 1 each trian­
gle 6( ri, si, tie) contain~ the domain triangle 
6(rO, so, to). Then for u E 6(rO, so, to) the 
function value F( u) i~ contained in the convez 
hull of the control point~ Pr. 

2 . If n knot~ r O = ... = r n - 1 =: r coincide, then 
F( r) = Pn,o,o is a control point and the ~urface F 
i~ tangent to the control net at thi~ point, i. e. the 
tangent plane at F (r) i~ ~panned by the point~ 
Pn,o,o, Pn - 1,I,O and Pn- 1,O,1 ' The analogou~ a~­
~ertion hold~ for the knot~ so, . . . , sn-l and for 
the knots to, .. . , tn - 1, respectively. 

3. The relationship between F and its control net i~ 
affinely invariant: If if> : JR3 --+ JR3 is an affine 
map, the control points of the image surface if>oF 
are given as images if> ( Pr) of the control point~ 
Pr, i . e. the diagram 

commute~ . 

Proof: (1) Under the given assumptions the 
barycentric coordinates pr(u), O'r(u) , and Tr(U) of a 
point u E 6(rO, so, to) w.r.t. 6(ri, si, tie) are all pos­
itive, and the point Pr (u) lies in the closed convex 

hull of P;;;,(u), p;;i,(u), and p;;i,(u). Induction 
over I shows that pi( u) is contained in the convex 
hull of the control points Pr, and the assertion fol­
lows from F(u) = P{~,O,O)(u). 

(2) It follows from Algorithm 4.9 below that the 
directional derivative of F at r w.r.t. ~ = sO - r is 
given as 

nf( r, ... , r,~) 

n(J(r, ... , r, sO) - f(r, .. . , r» 

n(P(n-1,1,O) - p(n,O,o», 
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so that the tangent plane at F( r) is spanned by 
p(n,O,O), P(n-l,I,O), and P(n-l,O,I)' 

(3) Let f be the polar form of F, and let if> : lR? --+ 

lR.3 be an affine map. Then if> 0 f is the polar form of 
the image surface if> 0 F, and the control points Pi of 
if> 0 F are given as 

p.: 
t 

.J.. f( ° i-I ° i - I to tie - 1) ,+,0 r , . . o,r ,s , . .. ,s , to." 

if>(Pr). 

This completes the proof of Proposition 3.6 . ... 

Algorithms for B-patches 

In this section we present some of the basic algo­
rithms for modeling with B-patches. In particular, 
we present algorithms for evaluation, differentiation, 
computation of continuous joints, and knot insertion. 
These algorithms form the basis of the B-patch mod­
ule within the interactive surface modeler TRIMO 
[36], and are also partly used in the implementation 
of the new multivariate B-spline surfaces developed 
in [8] that is currently under way at the University of 
Waterloo . 

We start with an algorithm for computing the polar 
form f of aB-patch F out of the given control points. 
This algorithm is central for all other algorithms that 
follow . 

Algorithm 4.7 (Polar Form) Let aB-patch F 
over a knot net 

Y (0 n - IOn - 1 to tn - 1 ) IV= r , . . Otr ,8, 0 .. ,S , ,0", 

with control points Pr E JR3 be given. Let 
pr(u"),O'r(u"), and Tr(U") be the barycentric coordi­
nate~ of u" E JR2 w.r .t. 6(ri, si, tie), i.e. 

and 

Pr(u") + O'r(u") + Tr(U") = 1. 

Define 

(13) 

and 

p~(Ul, .. . ,U') = 
( ')'-1(1 1-1) Pr u Pr+i, u , ... , U 

( ')'-1(1 1-1) +O'r u Pr+i, u , . . . , U (14) 

( ')'-1(1 1-1) +Tr u Pr+i
3 

u , . .. , u 
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for 1 ::; I ::; n. Then the polar form f of F i$ given Algorithm 4.10 (Monomial Form) Con$ider a 
by B-patch 

f(u l
, ... , un) = p~,O,o)(ul, ... , un). 

In particular, the maps P~ u l , ... , ut) do not depend 
on the ordering of the arguments u 1 , . .. , u'. '" 

A full proof of Algorithm 4.7 is given in [33] . The 
proof is based on the fact that the de Boor algorithm 
of the previous section has been carefully constructed 
in such a way that the maps p~( u l, ... , u') that ap­
pear in Algorithm 4.7 are symmetric throughout. 

Note that the de Boor algorithm of the previous 
section is actually a special case of Algorithm 4.7: 

Algorithm 4.8 (Evaluation) 
If the parameters u l = '" = un = u in Algorithm 
4.7 all coincide, then Algorithm 4.7 reduce$ to the de 
Boor algorithm of Definition 3.4. Therefore in thi$ 
situation 

p(O,O,O)(u, ... , u) = P{~,O,O)(u) = F(u) 

is a point on the surface. '" 

Algorithm 4.7 may also be used for differentiation: 

Algorithm 4.9 (Differentiation) Let the direc­
tion vector$ ~l' . .. , ~g in JR2 be given. Th en the q-th 
directional derivative 

of F at u can be computed as 

(g) ( ) n! n ( ) De" .. . ,e. F u = (n_q)!p(O,O,O) u, ... ,U,~lo···,~g 

with Po 0 o( u, . . . , u, 6, ... , ~q) given by Algorithm 4·7. 
Note, h~wever, that the coordinate$ Pi( ~v ), O"i( ~v ), 

ri(~v) in the e2:pres$ion 

add up to 0 instead of 1, since ~v is a vector, and not 
a point in JR2. '" 

A proof of Algorithm 4.9 follows e.g from [26, 8 .4] 
or from [33, 2.4] . A direct proof is given in [35] . 

Algorithm 4.9 can be used to convert from B-patch 
to monomial form: 

F(u) = L NF(u)Pi 

1i1=n 

over the knot net 

/( ( 0 n-l 0 n-l to tn-l) = r , ... ,r ,s , .. . ,s " ... , . 

The coefficient$ aj,k of the monomial representation 

F(u) = L (15) 

can be computed as 

aj k = ( ' ~k)pn(O 0 0)(0, .. ,0,0", .. ,0", oY' .. , Oy) (16) 
, tJ "~~~ 

j k 

with ° = (0, 0), ~" = (1, 0), ~y = (0,1) E JR2, and 
p(O,O,O)(o, ... , 0, 0", . .. ,0", Oy, ... , Oy) given by Algo­

rithm 4.9. Again, the coefficient$ Pi( ~,,(y)), 0";( ~,,(y)), 
ri(~"(y)) in the e2:pre$sion 

add up to 0 instead of 1, since (,,(y) is a vector, and 

not a point in JR2. 

Proof: We briefly sketch a proofthat Algorithm 4.10 
is correct: Taylor expansion of F at ° = (0,0) E ]R? 
gives 

~ ai+k F(o) uj uk 

F(u) = Lt . '~k~ , 
j +k ~n iY.,a; J . . 

and Algorithm 4.9 yields 

F(u) 
, j k 

~ n. n ( ) u l u 2 
Lt --:r p(O,O,O) 0, ... , Oy --:-;--k' 

t. J . . 
1i1 =n 

From this the assertion follows . '" 

Algorithm 4.9 also allows us to join two B-patches 
F and G along a line L with arbitrary continuity. The 
theorem is a generalization of the analogous construc­
tion for Bezier patches, due to Farin [16]. 

Algorithm 4.11 (Continuous Joint) Consider 
the B-patch 

F(u) = L NF(u)Pi 

1i1 =n 
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Figure 2: Continuous joint of two B-patches F and 
G along a line L according to Algorithm 4.11 

over 

J( ( 0 n-l 0 n-l to tn- 1) = r , . .. ,r ,S , ... ,s , , . . " 

and the B-patch 

G(u) = 2: NF(u)Pr 
1i1=n 

over 

J(- (-0 -n-l -0 -n - l t;o t-n- 1) = r , ... ,T ,8, . . . ,s "'. " , 

where the knob sO, . . . , sn-l, to, . .. ,tn- 1 all lie on a 
line L (c/. Fig . 2). Then F and G are CL continuous 
along L iff for 0 ::; i ::; q the B-patch control points 
P~ of G satisfy 

;, i (;;0 . . ... ;;i-l) rr = p(O,j,le) ~' O::;i::;q, 

where the points P~,j,le(t, . . .... ' ;;i-l) are generated 

i 
from the control points Pi of F by means of Algo-
rithm 4.7. 

Proof: Again we briefly sketch the proof. Suppose 
that F and G are in fact CL continuous along L. Ac­
cording to Proposition 2.2 this implies 

f( -0 -i-I) ( -0 -i-I) u . .. , u, r , . . . , r = 9 u . .. , u, r , .. . , r 
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for 0 ::; i ::; q and arbitrary u E L, and the polynomi­
als 

F () f( -0 -i - 1 ) 
L U = U •• • , u, r , . . . , r 

and 
G () ( -0 -i - 1) L u = 9 u .. . , u, r , ... , r 

of degree n - i defined on L agree. Hence their polar 
forms fL and gL agree, too, and we get 

f( ° -i-I to tie - 1 -0 -i -1) S , •• 0' S'" , , •• 0' ,r , .. . ,r = 

( 
0 _i - l to tle-1 -0 -i-I) 9 s , ... ,5' " ... , ,r , ... ,r 

for I~ = n. Therefore 

( ° _ i-I to tie - 1 -0 -i - 1) 9 s , .. . ,S" " ... , ,r , ... ,r 

f( 0 - i-I to tie -1 -0 -i - 1) S , •. • , S"'" , , • •• , ,r , . .. , r 
i (-0 -i-I) PO,j,1e r , ... , r 

and the assertion follows . 
Conversely, suppose that Pr = pL le (;;0, . .. , ;;i - I) 

for 0 ::; i ::; q. Then the (n - i)-pola; forms 

f ( In - i) f( 1 n - i -0 -i - 1) L U , .. . , U := u, ... , U ,r, ... , r 

and 

( In-i) (1 n-i -0 -i-I) gL U , ... , U := 9 U , ... , U ,r, ... , r 

defined on L have the same poles Pj~1e 
i (-0 -i-I) 1;1 - d th l' 'd Po j le r , . . . , r , tj - n, an are erelore 1 en-

ti~a:l. A similar argument as above then completes 

the proof. '" 

Note that in the case of n-fold knots r O 

rn- I = r, sO = ... = sn-I = s, and to = ... 
tn - I = t, the above algorithm specializes to Farin's 
construction for joining two Bezier patches using the 
de Casteljau algorithm. 

We conclude this section with an algorithm for ex­
changing the knots in the knot net J( of aB-patch. 
The algorithm is similar to the insertion algorithm 
for B-splines [3, 32]: 

Algorithm 4.12 (Knot Insertion) Consider a B ­
patch 

F(u) = 2: NF(u)Pr (17) 
li'I =n 

of degree n over 

J( ( 0 n-I 0 n-l to tn - 1 ) = r , . . . ,r ,s , ... ,s , "." (18) 

and suppose that the knot net 

J( 0 ( 0 1 1+1 n-2 r , .. . ,r,r,r , ... ,r , 
o n-I to tn - I ) s , . .. , s " . .. , (19) 
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iil obtained from J( by inilerting a new knot r between 
rl and rl+! for ilome -1 :::; I :::; n - 2, and dropping 
rn -1. Then F hail a unique repreilentation 

F(u) = L NF(u)P! (20) 
1i1=n 

ail B-patch of degree n over J(*, and the new control 
pointil Pr are glven as 

if 0 :::; i :::; I + 1, and 

Pi = Pi - 1(r)Pi + O"j(r)Pi-el+t, 

+Tk(r)Pi - ei +i , 

(21) 

(22) 

ifl+2:::; i:::; n. Here Pi _ 1(r),O"j(r) and Tk(r) denote 
the barycentric coordinateil of 

. 1 . k 
r = Pi_1(r)r t

- + O"j(r)sJ + Tdr)t 

Multiple application of Algorithm 4.12 allows to 
subdivide a B-patch into several pieces. The refined 
control net converges to the surface and can be used 
as a piecewise linear approximation to the surface. 
The subdivision process can be carried out adap­
tively, and the level of subdivision that is necessary 
to approximate the surface within a given tolerance f 

can be precomputed from estimates on the second 
derivatives, based on Algorithm 4.9. By precom­
puting the necessary level of subdivision, the time­
consuming flatness testing at every level of the algo­
rithm can be completely avoided. 

Conclusion 

We have presented a new representation for bivari­
ate polynomials, the B-patch , and discussed some of 
its main properties of interest in the construction of 
smooth surfaces in CAGD. It has been shown that B­
patches subsume triangular Bczier patches and that 
many important properties of B-splines carry over to 
B-patches almost word by word. B-patches are the 
main building block in the new multivariate B-spline 
surfaces recently developed in [8]. These new spline 
surfaces allow to construct automatically smooth sur­
faces over arbitrary triangulations of the parameter 
plane. A test-implementation for these new B-spline 
surfaces that partly uses some of the algorithms given 
in this paper is currently under way at the University 
of Waterloo . 
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