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ABSTRACT 
A novel algorithm is proposed for displaying 3D 

voxel-based binary objects encoded as octrees. It 
traverses an octree recursively in a front-to-back (FfB) 
order determined by a given viewing direction and 
produces a depth image by scan-converting the visible 
portion of faces of black octants encountered during the 
traversal. The algorithm is efficient because many 
obscured nodes are never visited and many obscured 
faces of partially visible black octants are not processed 
during the scan-conversion phase. The key to the algo­
rithm is a new technique termed blocking quadtrees, that 
enables the node visibility test to be performed effi­
ciently and thus minimizes the overhead cost. Complex­
ity analysis and experimental results show that the new 
algorithm is much faster than the traditional back-to­
front (BTF) approach [3] . A 55-79% time reduction is 
achieved for a 3D 2563 medical image that requires a 
reasonable amount of extra memory space for storing 
the blocking quad trees (64 KB for a 2563 image). 

1. Introduction 
Octrees have been used successfully to represent 3D 

voxel-based binary objects. One active research area 
has been to develop efficient algorithms to display 
octree encoded objects on a two-dimensional screen. 
Basically speaking, two approaches have been studied, 
the BTF and FIB approaches. Both methods are based 
on pre-sorting of the octree representation and a recur­
sive octree traversal in a pre-determined order. 

In the BTF approach proposed by Meagher [3], an 
octree to be rendered is recursively traversed according 
to a BTF order determined by a given viewing direction. 
If a black octant is encountered during the traversal, it is 
projected onto the display screen. If a gray octant is 
encountered, it is traversed further according to the same 
BTF order. White octants need not be processed. Obvi­
ously, when octree traversal is complete, the final screen 
image has the correct hidden surface relationship. Gar-
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gantini et al. [2] also used the same approach to display 
linear octrees. 

Conversely, in a Fm approach, an octree is 
recursively traversed in a FrB order. A valid FrB 
order can be determined similarly to a BTF order. If a 
black octant is encountered during traversal, a check 
must be made to see whether the octant obscured by 
other black octants has been processed earlier. If it has 
been completely obscured, it is not rendered and 
discarded; otherwise, the non-obscured part of the octant 
is projected onto the screen. If a gray octant is encoun­
tered and has been completely obscured, the node and 
all its descendants are discarded and not processed any 
more; otherwise, it is further traversed in the same FIB 
order. Clearly, the final image obtained, when the 
traversal of the octree is complete, also has the correct 
hidden surface relation. 

A FIB approach could be faster than its counterpart 
because many obscured octants are not visited nor 
projected. However, the overhead to determine the 
visibility of octants during octree traversal could well 
exceed the speed gain if the visibility test can't be done 
efficiently. Meagher [4] proposed to use a quad tree to 
represent the display screen and then perform polygon 
intersection tests to determine octant visibility by 
intersecting the projection of octants with quadrants of 
the quad tree. That algorithm can handle arbitrary 
viewing directions, but the speed gain over the simple 
BTF approach [3] cannot be justified because the 
polygon intersection tests are expensive and need to be 
performed extensively (no time complexity analysis and 
experimental statistics of computation time are given in 
[4]). Heal [5] adopted a similar approach, but restricted 
the viewing directions to be orthogonal to the octree 
space, thus making the projection of octants coincide 
with the quadrants of the quad tree and eliminating the 
need for expensive polygon intersection tests. However, 
the scope of Heal's algorithm is limited because of the 
limitations on the viewing directions. 

In this paper, a new FrB algorithm is proposed to 
display octrees without any restrictions on the viewing 
direction. It traverses an octree recursively in a FIB 
order determined by a given viewing direction and 
produces a depth image by scan-converting the visible 
portion of faces of black octants encountered during the 
traversal. The algorithm is efficient because many 
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obscured nodes are never visited and many obscured 
faces of partially visible black octants are not processed 
during the scan-conversion phase at all. The key to the 
algorithm is a new concept called blocking quad trees, 
that makes the octant visibility test very efficient and 
thus minimizes the overhead cost 

2. Background 
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An octree space is modeled as a cubic region con­
sisting of unit cubes or voxels. Each voxel has a value 0 
(white) or 1 (black), depending upon whether it is 
outside or inside the object that resides in the octree 
space. Octree representations have been extensively 
reviewed elsewhere [6] and will not be included. 

3D Coordinate Transformation 
Suppose that the octree space is described by a 3D 

right-handed XYZ coordinate system and that the 
direction from the origin to the viewer is given by the 
vector (xl, yl, zl) called the view plane normal (VPN). 
(x I, yl, zl) is viewer's position. To project a point onto 
the view plane, perpendicular to the VPN, or the screen, 
the following transformations are needed [2]: First, the 
X- and Z-axes are rotated about the Y-axis so that the 
positive Z-axis coincides with the projection (xl, 0, zl) 
of the VPN on the X -Z plane, thus making the Y-axis, 
the Z-axis, and the VPN coplanar. Then the Y - and Z­
axes are rotated around the X-axis so that the positive Z­
axis coincides with the VPN, now in the Y-Z plane. 

So far the rotations are around the origin. However, 
the origin is conventionally located in one corner of the 
octree space, and it is desirable to rotate the object 
around the center of the octree space so that it stays in 
the octree space. The necessary transformations are 
easily obtained and will not be presented. Note that the 
projection used is parallel orthographic [1]. 

Determination of FIB orders 
A FIB order can be easily determined by determin­

ing the octant nearest to the viewer, which in turn can be 
determined by simply looking at the coordinates of the 
VPN. The nearest octant should be visited first, 
followed by the three octants, in any order, whose labels 
differ from that of the nearest octant by 1 binary digit, 
and then the three octants, in any order, whose labels 
differ from that of the nearest octant by 2 binary digits, 
and finally the octant whose labels differ from that of 
the nearest octant by 3 binary digits. For example, if a 
VPN is (I, I, I), then a valid Fm order is 7 (1112), 6 
(1102),5 (1012), 3 (0112),4 (1002), 1 (0012),2 (0102), 
0(0002). Note that a VPN cannot be given as (0,0,0). 

3. Blocking Quadtrees 
An octant has six faces, where the outward face 

normals of faces F+x, F-x, F+y, F-y, F+z and F-z are 
along the + X, -X, + Y, -Y, +Z and -Z axes, respectively. 
For an arbitrary viewing direction, at most, three of the 
six faces of an octant are visible. These faces of an 
octant visible from a given viewing direction are called 
potentially visible faces of the octant, and the rest 
potentially invisible faces of the octant. Obviously, a 
potentially invisible face of an octant in an octree is 
always invisible from the viewing direction, while a 
potentially visible face could be completely visible (if 

no other B octants obscure the face), partially visible 
(other B octants obscure the face partially), or com­
pletely invisible (if other B octants obscure the face 
completely) from the viewing direction. 

For convenience, it is assumed hereafter that a 
given viewing direction makes three faces of an octant 
potentially visible. This assumption is general since, as 
will be seen later, the derived algorithm can be easily 
extended to handle arbitrary viewing directions. 

An octant has at most six neighboring octants of the 
same size that share a face with it. These neighboring 
octants sharing potentially visible faces of an octant are 
called front neighboring octants of the octant, and the 
rest back neighboring octants of the octant. 

A blocked face of an octant is a potentially visible 
face of the octant whose corresponding neighboring 
octant is a blocking octant. A blocking octant is defined 
as: 1) a B octant, or 2) a W or G octant. A blocked 
octant is an octant with three blocked faces. On the 
other hand, those potentially visible faces of an octant 
that are not blocked faces are called un-blocked faces of 
the octant. It should be noted that a face without a 
neighboring octant is always an un-blocked face. 

Several simple observations can be made from the 
above definitions. First, a blocked face of an octant is 
invisible from the given viewing direction. Second, a 
blocked octant is invisible from the given viewing 
direction. Third, the front and back neighboring octants 
of an octant are visited before and after the octant itself, 
respectively, if the corresponding octree is traversed in 
the FTB order determined by the viewing direction 
(refer to Sec. 2). 

3.1 FTB Traversal with Blocking Quadtrees 
The fundamental schema of the proposed algorithm 

for displaying an octree is as follows: For a given 
viewing direction, an octree to be rendered is traversed 
in the FTB order determined by the viewing direction. 
During the traversal an octant visited is processed as 
follows: If it is a blocked octant, set the faces shared by 
the octant and its back neigh boring octants as blocked 
faces, and discard the octant and all descendants (if it is 
a G octant). Otherwise, the octant is not a blocked 
octant and: If it is a B octant, paint the visible part of all 
un-blocked faces of the octant and set the faces shared 
by the octant and its back neighboring octants as 
blocked faces. If it is a W octant, set the faces shared by 
the octant and its back neighboring octants as un­
blocked faces. If it is a G octant, traverse its eight sub­
octants according to the FTB order and process them 
similarly. 

The above schema is efficient because of three 
reasons. First, many blocked octants are simply 
discarded with their descendants, if any. Second, only 
un-blocked faces of B octants join the painting phase. 
Third, the overhead to keep track of the necessary infor­
mation about blocked and un-blocked faces during the 
octree traversal can be minimized by a technique called 
blocking quadtrees. 

Blocking quadtrees consist of three quadtrees with 
the same resolution as that of the octree to be rendered. 
They are called quadtree-X, quadtree-Y and quadtree-Z, 
representing faces orthogonal to the X-, Y-, and Z-axes 
respectively. The following modified schema makes use 
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of the technique of the blocking quadtrees. 
Initially, each of the three quadtrees has only one 

node, a W root node, representing the corresponding un­
blocked face of the root octant. During octree traversal, 
the potentially visible faces of an octant encountered are 
mapped onto their corresponding nodes of the quadtrees. 
That is, the face perpendicular to the X -axis is mapped 
onto the corresponding node of quadtree-X, and so on. 
If these quadtree nodes are all B, the octant is blocked 
and is discarded with all its descendants, if any. Other­
wise: if it is a B octant, paint the visible part of its 
potentially visible faces whose corresponding quadtree 
nodes are not B and then change these quadtree nodes to 
B. If it is a W octant, change all corresponding quadtree 
nodes to W. Lastly, if it is a G octant, perfonn the 
following three steps in sequence: 1) for each corre­
sponding B (or W) quadtree node, change it to G and 
generate four B (or W) son nodes for it, 2) process its 
eight sub-octants of the octant recursively according to 
the FfB order, and 3) change each corresponding 
quadtree node to B if the quad tree has four B son nodes. 

3.2 Blocking Bitmaps 
Three fonnats could be used to represent a quadtree 

of the blocking quadtrees. They are: a regular quadtree 
with pointers, a linear quadtree, and the proposed fonnat 
called blocking bitmaps. As discussed later, the pro­
posed fonnat is best suited for fast display with a 
reasonable memory requirement 

A blocking bitmap is a one dimensional array of all 
nodes of the corresponding complete quadtree. A 
complete quad tree is a specialized quadtree which 
represents the recursive subdivision of the quadtree 
space down to the pixellevel. In other words, a com­
plete quadtree represents all bitmaps with different 
resolutions of the quadtree space. The nodes of a 
complete quadtree are stored in a top-to-bottom and left­
to-right fashion in its corresponding blocking bitmap, 
and each node of the blocking bitmap takes 2 bits of 
memory space to store one of the three possible colors 
(W, B, G) of the corresponding complete quadtree node. 

The major advantage of representing blocking 
quadtrees as blocking bitmaps is that mapping a poten­
tially visible face of an octant to its corresponding 
blocking quadtree node becomes basically a simple 
array indexing operation. This ensures that the most 
extensive part of the overhead computation incurred by 
the FfB approach will be perfonned in an extremely 
efficient manner. The mapping mechanism will be 
described in detail in Sec. 4, where the display algorithm 
is presented. 

The other advantage of using blocking bitmaps is 
that updating the blocking quadtrees can be perfonned 
very efficiently because no memory allocation is needed 
and only different values are written into already 
existing nodes. As for the memory space requirement, 
since each node takes only two bits and no pointers are 
stored, the overhead is acceptable (refer to Sec. 5 for the 
space complexity analysis). 

Alternatively, regular quadtrees with pointers or 
linear quadtrees [6] could be used to represent blocking 
quadtrees. However, the following disadvantages make 
these approaches inappropriate. For regular quad trees 
with pointers, space must be allocated and deallocated 

dynamically when the blocking quadtrees are updated, 
which adds extra computation burden. More seriously, 
if the quadtrees become sufficiently complex, the 
memory space needed to store them will be greater than 
that of blocking bitmaps because of the space taken by 
the pointers. The memory space for the worst case of a 
regular quadtree with pointers is far greater than that of 
the proposed fonnat and has yet to be guaranteed since 
in general it can't be detennined in advance how 
complex the quadtree will become during the course of 
the program execution. 

For linear quadtrees, the space requirement might 
be smaller than the proposed fonnat since they only 
store the B nodes of the corresponding regular 
quadtrees. However, there is no guarantee since each 
node in a linear quadtree is represented by its linear 
code, that takes 3n bits (where n is the resolution of the 
octree space), and the linked list structure must be used 
to maintain the linear quadtree (since it is to be Updated 
dynamically), that needs extra space for storing pointers. 
More seriously, the computation for checking against 
and updating blocking quadtrees is in general much 
more expensive than that of the proposed fonnat. This 
is because: 1) A binary search must be perfonned to find 
a desired quadrant in a linear quadtree for mapping of 
an octant face, whose speed depends on the number of 
nodes in the linear quadtree and is slower than that of a 
simple constant-time array indexing operation as for the 
proposed fonnat in most situations. 2) Updating a linear 
quadtree involves allocating and deal locating memory 
space and linked list pointer re-arrangement, consumimg 
more computation time than simply writing integer 
values to array elements. 

4. Algorithm 
The proposed FTB octree display algorithm 

traverses an octree in a FfB order detennined by a given 
viewing direction and produces a depth image of visible 
surfaces of the object represented by the octree. The 
depth image is stored in a two-dimensional z-buffer 
array that can be used to generate a shaded image with 
any of the existing gradient shading methods [7] in a 
post-processing step. In the following. the algorithm is 
flrst presented, then some of the details are explained 
further. To avoid confusion, octree nodes will be called 
octants and blocking quadtrees nodes will be called 
nodes. 
Algorithm: FTB Display of an Octree. 

1. If the root octant of the octree is W, then tenninate. 
2. Initialize the z-buffer to "un-painted". 
3. If the root octant of the octree is B, then scan­

convert its visible faces to the z-buffer and 
tenninate. 

4. Initialize the root nodes of the blocking quad trees to 
W. 

5. Invoke procedure "Process a G Octant" to process 
the root octant and then tenninate. 

Procedure: Process a G Octant. 
I. Locate nodes of the blocking quad trees that corre­

spond to the potentially visible faces of the 
octant. 

2. If at least one node is not B, do steps 3-5. 
3. Refine the blocking quadtrees. 
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4. Invoke procedure "Process a G Octant" or "Process 
a W or B Octant" to process each of the eight 
suboctants of the octant according to the FrB order. 

5. Compact the blocking quadtrees. 

Procedure: Process a W or B octant. 
1. Locate nodes of the blocking quadtrees that corre­

spond to the potentially visible faces of the 
octant. 

2. If at least one node is not B, do steps 3-4. 
3. If the octant is aB octant, then invoke procedure 

"Scan-Convert a Face" for each un-blocked face of 
the octant 

4. Update the blocking quadtrees. 

Procedure: Scan-Convert a Face 
1. Find the plane equation of the face in image space. 

163 

2. For each scanline that intersects the face, do steps 3-
4. 

3. Find intersections of the scanline with the left and 
right edges of the face. 

4. Fill in all "un-painted" pixels of the z-buffer 
between the pair of intersections with the correspond­
ing z values of the face obtained through the plane 
equation of the face. 

Indexing of Blocking Bitmaps 
A more detailed explanation is needed for proce­

dures "Process a G Octant" and "Process a W or B 
Octant" to understand the operations on the blocking 
quadtrees. Remember that the blocking quadtrees are 
represented as blocking bitmaps. 

Two parameters, depth and card num, are needed 
to invoke procedure "Process a G OCtant". depth is the 
depth of the octant of the octree, where the root octant 
of the octree has depth 0, and its child octants have 
depth I, and so on. card num is a one-dimensional 
array of three elements. card num{i] (i = X, Y or Z) 
stores the cardinal number of The potentially visible i­
face of the octant. An i-face of an octant is perpendicu­
lar to the i-axis of the octree space and the cardinal 
number of a face is defined as the cardinal number of its 
corresponding node in a blocking quadtree. It should be 
noted that the cardinal numbers of three visible faces of 
the root octant are O. 

Three local variables, ind num, ind num son and 
card num son are needed in procedure "Process a G 
Octant". They are explained as follows: 

ind num is a one-dimensional array of three 
elements. ind num{i] ( i = X, Y or Z) stores the index 
number of the-potentially visible i-face of the octant and 
is determined by: 

ind num[i] = ind tab{depth] + card num{i], (1) 
where lnd tab is a pre-computed table with 
ind tab{ dipth] giving the index number of the left-most 
node at depth depth in a complete quadtree. Once 
ind num[ij is found, the actual location of the node in 
quadtree-i is determined by 

(ind num[i] div4. ind num{i]mod4), (2) 
where lnd _ num{ i] div 4 oetermines the array index of 
the byte that contains the node and ind num{i] mod 4 
the location of the node inside the byte~ Formula (2) 
completes step 1 of the procedure. 

ind _num_son is a two-dimensional array of 12 

elements. ind num son{i] [j] ( i is X, Y or Z, and j is 0, 
I, 2 or 3) stores the Index number of the j-th child node 
of the potentially visible i-face of the octant Where: 

ind_num_son{i][j] = ind_tab{depth+l] + 
4 x card num[ij + j. (3) 

ind num son{i]{j] is needed in step 3 of the procedure. 
If nOde iNJ num{i] is W (or B), then all its 4 child nodes 
are set to ViI (or B) and the node is set to G. Otherwise 
(ind num{i] is G), nothing needs to be done. 

card num son is a one-dimensional array of three 
elements:- cara num son{i] (i = X, Y or Z) stores the 
cardinal number of tlle potentially visible i-face of a 
child octant of the octant. card num son is used as a 
parameter (card num) to invoke procedure "Process a G 
Octant" or "Proc-ess a W or B Octant" for processing a 
sub-octant of the octant in step 4 of the procedure. The 
cardinal number of the potentially visible i-face of the 
sub-octant, oct (oct = 0, 1,2,3,4,5,6 or 7), of the 
octant is determined by: 

card num son[ij = 4 xcard num{i] + 
- -quad tab{octj[i].- (4) 

where quad tab is-defined in Table I. 
Step 5 of procedure "Process a G Octant" needs 

ind num and ind num son. If the four child nodes of 
node ind num{irare all B, then the node is set to B. This 
compactiOn is necessary because otherwise blocked 
faces of octants to be processed later may be mistakenly 
considered as un-blocked faces. Although this has no 
effect on the correctness of the [mal image (refer to step 
5 in procedure "Scan-Convert a Face", where a check is 
made before painting a pixel to ensure that only "un­
painted" pixels are painted), it may cause some redun­
dant computation. 

Similar to procedure "Process a G Octant", proce­
dure "Process a W or B Octant" also needs two parame­
ters, depth and card num. It needs one local variable 
ind num. Step 4 ofthe procedure sets node ind num[ij 
(i =- X, Y or Z) to the calor of the octant to update 
blocking-quadtree- i. Finally, it should be noted that 
formulas (1) - (4) involve only array indexing and 
integer addition, shift and modular operations. There­
fore, the operation on the blocking quadtrees can be 
performed efficiently. 

Scan-Conversion of a Face. 
The following techniques are used to make proce­

dure "Scan-Convert a Face" as efficient as possible. 
First, since all octant faces perpendicular to a coordinate 
axis of the octree space have the same face normal 
vector in the image space, only three face normals (in 
the image space) are calculated at the beginning of the 
algorithm for faces perpendicular to the X-, Y- and Z­
axes, respectively. Therefore, the normal vector of a 
face to be scan-converted need not be recomputed and 
the plane equation of the face can be easily found by 
using the normal vector and the image space coordinates 
of a vertex of the face. Second, instead of using the 
standard edge-table technique [1], the simple method 
shown in the algorithm is used to scan-convert an octant 
face because it is a convex polygon in the image space. 
This is faster because keeping track of left and right 
edges is more efficient than updating the edge-table. 
Third, intersection of scanlines and face edges are 
calculated incrementally involving only additions by 
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employing edge coherence [1]. Lastly, z values of the 
face are also calculated incrementally involving only 
additions by employing scanline coherence [1]. 

Arbitrary Viewing Direction 
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So far the algorithm has been described based on 
the assumption that a given viewing direction makes 
three faces of an octant potentially visible. To handle an 
arbitrary viewing direction, two global variables, axis 
and axis nums, are needed. axis is a one-dimensional 
array of Three elements. axis nums is an integer. They 
are initialized at the beginning of the algorithm accord­
ing to the given viewing direction, where viewing 
direction is defined as follows: 
• XYZ: three faces of an octant are potentially visible. 
• XY: an X-face and aY-face of an octant are poten­

tially visible. 
• XZ: an X-face and a Z-face of an octant are poten­

tially visible. 
• YZ: aY-face and a Z-face of an octant are potentially 

visible. 
• X: an X-face of an octant is potentially visible. 
• Y: aY-face of an octant is potentially visible. 
• Z: a Z-face of an octant is potentially visible. 
Obviously, only the corresponding axis nums blocking 
bitmaps need to be used. The correct formulas can be 
obtained by substituting axis[ii] for all i's in formulas 
(1)-(4), where 0 ~ ii ~ axis_nums. 

5. Complexity Analysis 
Space Complexity 

The space taken by the blocking quadtrees is: 
(1 + 4 + 42 + ... + 4n) x 3 x 2/8 = 
(4n+ 1 - 1)/4 = 4n (bytes), 
where n is the resolution of the octree space. 

Time complexity 
For an octree to be rendered and a given viewing 
direction, assume that: 
NW: number of W octants of the octree. 
NB: number of B octants of the octree. 
NG: number of G octants of the octree. 
Nb-W: number of blocked W octants of the octree. 
Nnb-W: number of un-blocked W octants of the octree. 
Nb-B: number of blocked B octants of the octree. 
Nnb-B: number of un-blocked B octants of the octree. 
Nb-G: number of blocked G octants of the octree. 
Nnb-G: number of un-blocked G octants of the octree. 
Nvb-W: number of W octants of the octree that are 
visited and found blocked. 

Nvb-B: number of B octants of the octree that are 
visited and found blocked. 

Nvb-G: number of G octants of the octree that are 
visited and found blocked. 

Then the time spent to render the octree is proportional 
to (note that formulas (1)-(4) involve only constant-time 
calculations): 

Nnb-W + Nvb-W + Nnb-G + Nvb-G + Nnb-B + Nvb-
B + T(nb-B), 

where Nnb-W + Nvb-W is the time spent to process W 
octants, Nnb-G + Nvb-G is the time spent to process G 
octants, Nnb-B + Nvb-B is the time spent to process B 
octants before rendering them, and T(nb - B) is the time 

spent to render all non-blocked B octants. 
The non-blocked B octants are rendered by scan­

converting their un-blocked faces to the z-buffer. 
Assume that: 

Nnb-face: number of un-blocked faces of all un­
blocked B octants. 

Nscanline: number of accumulated intersecting scan 
lines. 

Npixel: number of accumulated pixels to be checked 
and painted in the z-buffer. 
Explanation of Nscanline and Npixel. Supposing 

there are two faces to be rendered, and that face a has 5 
intersecting scan lines and face b has 7, then Nscanline 
in this case is 12. Note that face a and face b may have 
some common scan lines. Similarly, if 30 pixels are to 
be checked and painted for face a and 40 for face b, then 
Npixel is 70. 
Then T(nb-B) is proportional to: 

Nnb-face + Nscanline + Npixel, 
where Nnb-face is the time spent for obtaining plane 
equations of faces, Nscanline is the time spent for 
calculating intersections, and Npixel is the time spent for 
calculating depth values. 

Therefore, the worst time complexity for the 
algorithm is: 

O(TWG + TB), 
where TWG (or Nnb-W + Nvb-W + Nnb-G + Nvb-G) is 
the time to process W and G octants, and TB (or Nnb-B 
+ Nvb-B + Nnb1ace + Nscanline + Npixel) is the time 
to process B octants. 

5.1 Time complexity of BTF algorithm 
For comparison purposes, the time complexity of 

the traditional BTF algorithm [3] is: 
O(NG + NB + Mface + Mscanline + Mpixel), 
where Mface is the number of all potentially visible 

faces of all B octants, Mscanline is number of accumu­
lated intersecting scan lines, and Mpixel is the number 
of accumulated pixels to be painted in z-buffer. Simi­
larly, it can also be written as: 

O(TG + TB), 
where TG (or NG) is the time to process all G 

octants, and TB (or NB = Mface + Mscanline + Mpixel) 
is the time to process all B octants. 

6. Experimental Results 
The proposed algorithm has been implemented 

using C on a Sun-3/6O and a Sun-SparC. For compari­
son purposes, the traditional BTF algorithm [3] was also 
implemented. Two example objects have been used to 
test two algorithms. The first object is artificially 
created (typed in) and represented as an octree with a 
resolution of n = 7. The octree consists of 32 W octants, 
32 B octants and 9 G octants. The second object is part 
of a human skull obtained from 24 (256 x 256) er slices 
after preprocessing (linear interpolation and threshold­
ing). It is represented as an octree with a resolution of 
n= 8 that consists of 348,996 W octants, 285,954 B 
octants and 90,707 G octants. Table lI(a) shows the sta­
tistics of running the two programs using the artificial 
object on a Sun-3/6O and Plate l(a) shows the corre­
sponding depth shaded image produced. Table 1I(b) 
shows the statistics of running the two programs using 
the human skull on a Sun-SparC and Plates l(b)-(e) 
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show the corresponding depth shaded images produced. 
Note that the statistics are obtained by the UNIX utility 
program gprof. 

From Table 11 it is clear that the major reason for 
the significant speed-up of the new FI'B algorithm over 
the conventional BTF one is the drastic reduction of the 
time to process B octants. This is achieved because 
many blocked B octants and B octant faces are simply 
discarded in the FTB algorithm. In other words, many 
floating point operations needed to process B octants are 
eliminated (3D coordinate transformation and polygon 
scan-conversion). This is effective since only simple 
integer operations are involved to process W and G 
octants in the FI'B algorithm. Therefore. the overall 
result is that the overhead of the FTB algorithm is much 
smaller than its speed gain. 

To verify the speed-up from the time complexity. 
Table III is produced for the object of human skull. For 
the face view. the result in Table III is very consistent 
with that in Table IT(b). For other cases. since more than 
one quadtree has to be processed. the constant factors 
are greater than 1. which explains the differences 
between Table IT(b) and Table Ill. 

7. Conclusion 
To improve rendering speed. a new algorithm is 

proposed, analyzed and implemented for displaying 3D 
voxel-based binary objects encoded via octrees. The 
performance of the algorithm is compared with a con­
ventional octree display algorithm [3] from both 
theoretical and experimental viewpoints. The new 
algorithm achieves a 55-79% time reduction over the 
conventional algorithm in rendering a 256 x 256 x 256 
medical image (human skull) acquired by a CT (Com­
puted Tomography) scanner. The timing result is also 
verified by theoretical analysis. 

The proposed octree display algorithm requires 
extra memory space to store the blocking quadtrees in 
order to perform the octant visibility test. The space 
overhead is acceptable for two reasons. First. in general. 
the storage required by an octree is far greater than the 
corresponding blocking quadtrees. For example. the 
octree for the human skull requires about 24 MB. while 
the blocking quadtrees require only 64 KB or less than 
0.3% of the octree storage. Of course. when imple­
mented on a Sun-SparC, only a portion of the octree can 
reside in the main memory for processing. Swapping 
between memory and disk has to be performed. Second. 
for a Sun-SparC up to 8 MB of main memory can be 
used for the user's program, of which only 64 KB or 
0.8% stores the blocking quadtrees. 

Future research could proceed in the following 
directions. First, the algorithm for displaying linear 
octrees based on the concept of blocking quadtrees can 
be designed and implemented. It would be interesting to 
compare the timing results of that algorithm with the 
conventional linear octree display algorithm [2] and the 
results presented in this paper. Second. interactive 
display techniques for octree encoded objects have not 
been studied in the past It would be very interesting to 
investigate the impact of the concept of blocking 
quadtrees on the design of an efficient interactive 
display system via octree representations. Third. 
comparisons of the proposed algorithm with other 

volume rendering methods would be a very interesting 
task from both theoretical and experimental viewpoints. 
Finally. it is possible to investigate the design of a 
special architecture based on the concept of blocking 
quadtrees to achieve an even faster rendering speed. 
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Table I. Determination of quad_tab. 
X y Z 

0 1 2 0 
1 1 3 1 
2 3 2 2 
3 3 3 3 
4 0 0 0 
5 0 1 1 
6 2 0 2 
7 2 1 3 
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Table 11 a) Timing Results for H. 
VPN #ofB #ofB #ofW #ofG Time to Total (%) 

octant-faces octants octants octants process time (sec) reduction 
se an- visited visited visited B octants (excluding Fm 

converted (sec) I/O) overBTF 

Fm 1 -1 1 48 32 32 9 4.87 5.15 52.6 
BTF 1 -1 1 96 32 - 9 10.63 10.87 -

Table 11 b) Timing Results for Skull. 

VPN #ofB #ofB #ofW #ofG Time to Total (%) 
octant -faces octants octants octants process time (sec) reduction 

scan- visited visited visited B octants (excluding Fm 
converted (sec) I/O) overBTF 

Fm 1 -2 1 204728 248186 319197 84986 76.89 112.83 55.9 
BTF 1 -2 1 857862 285954 - 90707 247.86 255.60 -
Fm -1 -2 1 202692 244345 314453 83395 75.20 111.48 56.5 
BTF -1 -2 1 857967 285954 - 90707 248.44 256.16 -
Fm 1 -1 0 118269 153722 215954 60765 37.18 57.24 63.2 
BTF 1 -1 0 571908 285954 - 90707 147.94 155.57 -
Fm 0-10 32943 80222 121396 35639 10.72 19.42 79.2 
BTF 0-10 285954 285954 - 90707 85.83 93.30 -

Table III Theoretical Results for Skull 

VPN #of # ofpixels Total # of pixels % reduction 
scanlines accumulated scanlines, octant of Fm over 

accumulated faces & octants BTF 
processeed 

Fm 1 -2 1 547118 1188518 2592733 70.5 
BTF 1 -2 1 2352103 5213049 8799675 -
Fm -1 -2 1 540965 1174078 2559928 70.9 
BTF -1 -2 1 2352225 5213246 8799994 -
Fm 1 -1 0 241407 516725 1306842 73.2 
BTF 1 -1 0 1195784 2735609 4879962 -
Fm 0-10 36456 82038 388694 79.1 
BTF 0-10 344781 850416 1857812 -
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a) VPN = 1, -1, 1 

b) VPN - 1, -2 1 c) VPN = -1, -2, 1 

d) VPN = 1, -1, 0 e)VPN=O,-10 

Plate 1. Depth Shaded Images. 
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