
160

Fast Display of Octree Representations of 3D Objects!

Jiangong Zhao2 and Wayne A. Davis

Department of Computing Science
University of Alberta

Edmonton, Alberta T6G 2Hl

ABSTRACT
A novel algorithm is proposed for displaying 3D

voxel-based binary objects encoded as octrees. It
traverses an octree recursively in a front-to-back (FfB)
order determined by a given viewing direction and
produces a depth image by scan-converting the visible
portion of faces of black octants encountered during the
traversal. The algorithm is efficient because many
obscured nodes are never visited and many obscured
faces of partially visible black octants are not processed
during the scan-conversion phase. The key to the algo­
rithm is a new technique termed blocking quadtrees, that
enables the node visibility test to be performed effi­
ciently and thus minimizes the overhead cost. Complex­
ity analysis and experimental results show that the new
algorithm is much faster than the traditional back-to­
front (BTF) approach [3] . A 55-79% time reduction is
achieved for a 3D 2563 medical image that requires a
reasonable amount of extra memory space for storing
the blocking quad trees (64 KB for a 2563 image).

1. Introduction
Octrees have been used successfully to represent 3D

voxel-based binary objects. One active research area
has been to develop efficient algorithms to display
octree encoded objects on a two-dimensional screen.
Basically speaking, two approaches have been studied,
the BTF and FIB approaches. Both methods are based
on pre-sorting of the octree representation and a recur­
sive octree traversal in a pre-determined order.

In the BTF approach proposed by Meagher [3], an
octree to be rendered is recursively traversed according
to a BTF order determined by a given viewing direction.
If a black octant is encountered during the traversal, it is
projected onto the display screen. If a gray octant is
encountered, it is traversed further according to the same
BTF order. White octants need not be processed. Obvi­
ously, when octree traversal is complete, the final screen
image has the correct hidden surface relationship. Gar-

1 This research was supported in part by NSERC Grant
OOP7634.
2 Mr. Zhao is currently with Bell-Northern Research in
Ottawa.

gantini et al. [2] also used the same approach to display
linear octrees.

Conversely, in a Fm approach, an octree is
recursively traversed in a FrB order. A valid FrB
order can be determined similarly to a BTF order. If a
black octant is encountered during traversal, a check
must be made to see whether the octant obscured by
other black octants has been processed earlier. If it has
been completely obscured, it is not rendered and
discarded; otherwise, the non-obscured part of the octant
is projected onto the screen. If a gray octant is encoun­
tered and has been completely obscured, the node and
all its descendants are discarded and not processed any
more; otherwise, it is further traversed in the same FIB
order. Clearly, the final image obtained, when the
traversal of the octree is complete, also has the correct
hidden surface relation.

A FIB approach could be faster than its counterpart
because many obscured octants are not visited nor
projected. However, the overhead to determine the
visibility of octants during octree traversal could well
exceed the speed gain if the visibility test can't be done
efficiently. Meagher [4] proposed to use a quad tree to
represent the display screen and then perform polygon
intersection tests to determine octant visibility by
intersecting the projection of octants with quadrants of
the quad tree. That algorithm can handle arbitrary
viewing directions, but the speed gain over the simple
BTF approach [3] cannot be justified because the
polygon intersection tests are expensive and need to be
performed extensively (no time complexity analysis and
experimental statistics of computation time are given in
[4]). Heal [5] adopted a similar approach, but restricted
the viewing directions to be orthogonal to the octree
space, thus making the projection of octants coincide
with the quadrants of the quad tree and eliminating the
need for expensive polygon intersection tests. However,
the scope of Heal's algorithm is limited because of the
limitations on the viewing directions.

In this paper, a new FrB algorithm is proposed to
display octrees without any restrictions on the viewing
direction. It traverses an octree recursively in a FIB
order determined by a given viewing direction and
produces a depth image by scan-converting the visible
portion of faces of black octants encountered during the
traversal. The algorithm is efficient because many

Graphics Interface '91

obscured nodes are never visited and many obscured
faces of partially visible black octants are not processed
during the scan-conversion phase at all. The key to the
algorithm is a new concept called blocking quad trees,
that makes the octant visibility test very efficient and
thus minimizes the overhead cost

2. Background

161

An octree space is modeled as a cubic region con­
sisting of unit cubes or voxels. Each voxel has a value 0
(white) or 1 (black), depending upon whether it is
outside or inside the object that resides in the octree
space. Octree representations have been extensively
reviewed elsewhere [6] and will not be included.

3D Coordinate Transformation
Suppose that the octree space is described by a 3D

right-handed XYZ coordinate system and that the
direction from the origin to the viewer is given by the
vector (xl, yl, zl) called the view plane normal (VPN).
(x I, yl, zl) is viewer's position. To project a point onto
the view plane, perpendicular to the VPN, or the screen,
the following transformations are needed [2]: First, the
X- and Z-axes are rotated about the Y-axis so that the
positive Z-axis coincides with the projection (xl, 0, zl)
of the VPN on the X -Z plane, thus making the Y-axis,
the Z-axis, and the VPN coplanar. Then the Y - and Z­
axes are rotated around the X-axis so that the positive Z­
axis coincides with the VPN, now in the Y-Z plane.

So far the rotations are around the origin. However,
the origin is conventionally located in one corner of the
octree space, and it is desirable to rotate the object
around the center of the octree space so that it stays in
the octree space. The necessary transformations are
easily obtained and will not be presented. Note that the
projection used is parallel orthographic [1].

Determination of FIB orders
A FIB order can be easily determined by determin­

ing the octant nearest to the viewer, which in turn can be
determined by simply looking at the coordinates of the
VPN. The nearest octant should be visited first,
followed by the three octants, in any order, whose labels
differ from that of the nearest octant by 1 binary digit,
and then the three octants, in any order, whose labels
differ from that of the nearest octant by 2 binary digits,
and finally the octant whose labels differ from that of
the nearest octant by 3 binary digits. For example, if a
VPN is (I, I, I), then a valid Fm order is 7 (1112), 6
(1102),5 (1012), 3 (0112),4 (1002), 1 (0012),2 (0102),
0(0002). Note that a VPN cannot be given as (0,0,0).

3. Blocking Quadtrees
An octant has six faces, where the outward face

normals of faces F+x, F-x, F+y, F-y, F+z and F-z are
along the + X, -X, + Y, -Y, +Z and -Z axes, respectively.
For an arbitrary viewing direction, at most, three of the
six faces of an octant are visible. These faces of an
octant visible from a given viewing direction are called
potentially visible faces of the octant, and the rest
potentially invisible faces of the octant. Obviously, a
potentially invisible face of an octant in an octree is
always invisible from the viewing direction, while a
potentially visible face could be completely visible (if

no other B octants obscure the face), partially visible
(other B octants obscure the face partially), or com­
pletely invisible (if other B octants obscure the face
completely) from the viewing direction.

For convenience, it is assumed hereafter that a
given viewing direction makes three faces of an octant
potentially visible. This assumption is general since, as
will be seen later, the derived algorithm can be easily
extended to handle arbitrary viewing directions.

An octant has at most six neighboring octants of the
same size that share a face with it. These neighboring
octants sharing potentially visible faces of an octant are
called front neighboring octants of the octant, and the
rest back neighboring octants of the octant.

A blocked face of an octant is a potentially visible
face of the octant whose corresponding neighboring
octant is a blocking octant. A blocking octant is defined
as: 1) a B octant, or 2) a W or G octant. A blocked
octant is an octant with three blocked faces. On the
other hand, those potentially visible faces of an octant
that are not blocked faces are called un-blocked faces of
the octant. It should be noted that a face without a
neighboring octant is always an un-blocked face.

Several simple observations can be made from the
above definitions. First, a blocked face of an octant is
invisible from the given viewing direction. Second, a
blocked octant is invisible from the given viewing
direction. Third, the front and back neighboring octants
of an octant are visited before and after the octant itself,
respectively, if the corresponding octree is traversed in
the FTB order determined by the viewing direction
(refer to Sec. 2).

3.1 FTB Traversal with Blocking Quadtrees
The fundamental schema of the proposed algorithm

for displaying an octree is as follows: For a given
viewing direction, an octree to be rendered is traversed
in the FTB order determined by the viewing direction.
During the traversal an octant visited is processed as
follows: If it is a blocked octant, set the faces shared by
the octant and its back neigh boring octants as blocked
faces, and discard the octant and all descendants (if it is
a G octant). Otherwise, the octant is not a blocked
octant and: If it is a B octant, paint the visible part of all
un-blocked faces of the octant and set the faces shared
by the octant and its back neighboring octants as
blocked faces. If it is a W octant, set the faces shared by
the octant and its back neighboring octants as un­
blocked faces. If it is a G octant, traverse its eight sub­
octants according to the FTB order and process them
similarly.

The above schema is efficient because of three
reasons. First, many blocked octants are simply
discarded with their descendants, if any. Second, only
un-blocked faces of B octants join the painting phase.
Third, the overhead to keep track of the necessary infor­
mation about blocked and un-blocked faces during the
octree traversal can be minimized by a technique called
blocking quadtrees.

Blocking quadtrees consist of three quadtrees with
the same resolution as that of the octree to be rendered.
They are called quadtree-X, quadtree-Y and quadtree-Z,
representing faces orthogonal to the X-, Y-, and Z-axes
respectively. The following modified schema makes use

Graphics Interface '91

162

of the technique of the blocking quadtrees.
Initially, each of the three quadtrees has only one

node, a W root node, representing the corresponding un­
blocked face of the root octant. During octree traversal,
the potentially visible faces of an octant encountered are
mapped onto their corresponding nodes of the quadtrees.
That is, the face perpendicular to the X -axis is mapped
onto the corresponding node of quadtree-X, and so on.
If these quadtree nodes are all B, the octant is blocked
and is discarded with all its descendants, if any. Other­
wise: if it is a B octant, paint the visible part of its
potentially visible faces whose corresponding quadtree
nodes are not B and then change these quadtree nodes to
B. If it is a W octant, change all corresponding quadtree
nodes to W. Lastly, if it is a G octant, perfonn the
following three steps in sequence: 1) for each corre­
sponding B (or W) quadtree node, change it to G and
generate four B (or W) son nodes for it, 2) process its
eight sub-octants of the octant recursively according to
the FfB order, and 3) change each corresponding
quadtree node to B if the quad tree has four B son nodes.

3.2 Blocking Bitmaps
Three fonnats could be used to represent a quadtree

of the blocking quadtrees. They are: a regular quadtree
with pointers, a linear quadtree, and the proposed fonnat
called blocking bitmaps. As discussed later, the pro­
posed fonnat is best suited for fast display with a
reasonable memory requirement

A blocking bitmap is a one dimensional array of all
nodes of the corresponding complete quadtree. A
complete quad tree is a specialized quadtree which
represents the recursive subdivision of the quadtree
space down to the pixellevel. In other words, a com­
plete quadtree represents all bitmaps with different
resolutions of the quadtree space. The nodes of a
complete quadtree are stored in a top-to-bottom and left­
to-right fashion in its corresponding blocking bitmap,
and each node of the blocking bitmap takes 2 bits of
memory space to store one of the three possible colors
(W, B, G) of the corresponding complete quadtree node.

The major advantage of representing blocking
quadtrees as blocking bitmaps is that mapping a poten­
tially visible face of an octant to its corresponding
blocking quadtree node becomes basically a simple
array indexing operation. This ensures that the most
extensive part of the overhead computation incurred by
the FfB approach will be perfonned in an extremely
efficient manner. The mapping mechanism will be
described in detail in Sec. 4, where the display algorithm
is presented.

The other advantage of using blocking bitmaps is
that updating the blocking quadtrees can be perfonned
very efficiently because no memory allocation is needed
and only different values are written into already
existing nodes. As for the memory space requirement,
since each node takes only two bits and no pointers are
stored, the overhead is acceptable (refer to Sec. 5 for the
space complexity analysis).

Alternatively, regular quadtrees with pointers or
linear quadtrees [6] could be used to represent blocking
quadtrees. However, the following disadvantages make
these approaches inappropriate. For regular quad trees
with pointers, space must be allocated and deallocated

dynamically when the blocking quadtrees are updated,
which adds extra computation burden. More seriously,
if the quadtrees become sufficiently complex, the
memory space needed to store them will be greater than
that of blocking bitmaps because of the space taken by
the pointers. The memory space for the worst case of a
regular quadtree with pointers is far greater than that of
the proposed fonnat and has yet to be guaranteed since
in general it can't be detennined in advance how
complex the quadtree will become during the course of
the program execution.

For linear quadtrees, the space requirement might
be smaller than the proposed fonnat since they only
store the B nodes of the corresponding regular
quadtrees. However, there is no guarantee since each
node in a linear quadtree is represented by its linear
code, that takes 3n bits (where n is the resolution of the
octree space), and the linked list structure must be used
to maintain the linear quadtree (since it is to be Updated
dynamically), that needs extra space for storing pointers.
More seriously, the computation for checking against
and updating blocking quadtrees is in general much
more expensive than that of the proposed fonnat. This
is because: 1) A binary search must be perfonned to find
a desired quadrant in a linear quadtree for mapping of
an octant face, whose speed depends on the number of
nodes in the linear quadtree and is slower than that of a
simple constant-time array indexing operation as for the
proposed fonnat in most situations. 2) Updating a linear
quadtree involves allocating and deal locating memory
space and linked list pointer re-arrangement, consumimg
more computation time than simply writing integer
values to array elements.

4. Algorithm
The proposed FTB octree display algorithm

traverses an octree in a FfB order detennined by a given
viewing direction and produces a depth image of visible
surfaces of the object represented by the octree. The
depth image is stored in a two-dimensional z-buffer
array that can be used to generate a shaded image with
any of the existing gradient shading methods [7] in a
post-processing step. In the following. the algorithm is
flrst presented, then some of the details are explained
further. To avoid confusion, octree nodes will be called
octants and blocking quadtrees nodes will be called
nodes.
Algorithm: FTB Display of an Octree.

1. If the root octant of the octree is W, then tenninate.
2. Initialize the z-buffer to "un-painted".
3. If the root octant of the octree is B, then scan­

convert its visible faces to the z-buffer and
tenninate.

4. Initialize the root nodes of the blocking quad trees to
W.

5. Invoke procedure "Process a G Octant" to process
the root octant and then tenninate.

Procedure: Process a G Octant.
I. Locate nodes of the blocking quad trees that corre­

spond to the potentially visible faces of the
octant.

2. If at least one node is not B, do steps 3-5.
3. Refine the blocking quadtrees.

Graphics Interface '91

4. Invoke procedure "Process a G Octant" or "Process
a W or B Octant" to process each of the eight
suboctants of the octant according to the FrB order.

5. Compact the blocking quadtrees.

Procedure: Process a W or B octant.
1. Locate nodes of the blocking quadtrees that corre­

spond to the potentially visible faces of the
octant.

2. If at least one node is not B, do steps 3-4.
3. If the octant is aB octant, then invoke procedure

"Scan-Convert a Face" for each un-blocked face of
the octant

4. Update the blocking quadtrees.

Procedure: Scan-Convert a Face
1. Find the plane equation of the face in image space.

163

2. For each scanline that intersects the face, do steps 3-
4.

3. Find intersections of the scanline with the left and
right edges of the face.

4. Fill in all "un-painted" pixels of the z-buffer
between the pair of intersections with the correspond­
ing z values of the face obtained through the plane
equation of the face.

Indexing of Blocking Bitmaps
A more detailed explanation is needed for proce­

dures "Process a G Octant" and "Process a W or B
Octant" to understand the operations on the blocking
quadtrees. Remember that the blocking quadtrees are
represented as blocking bitmaps.

Two parameters, depth and card num, are needed
to invoke procedure "Process a G OCtant". depth is the
depth of the octant of the octree, where the root octant
of the octree has depth 0, and its child octants have
depth I, and so on. card num is a one-dimensional
array of three elements. card num{i] (i = X, Y or Z)
stores the cardinal number of The potentially visible i­
face of the octant. An i-face of an octant is perpendicu­
lar to the i-axis of the octree space and the cardinal
number of a face is defined as the cardinal number of its
corresponding node in a blocking quadtree. It should be
noted that the cardinal numbers of three visible faces of
the root octant are O.

Three local variables, ind num, ind num son and
card num son are needed in procedure "Process a G
Octant". They are explained as follows:

ind num is a one-dimensional array of three
elements. ind num{i] (i = X, Y or Z) stores the index
number of the-potentially visible i-face of the octant and
is determined by:

ind num[i] = ind tab{depth] + card num{i], (1)
where lnd tab is a pre-computed table with
ind tab{ dipth] giving the index number of the left-most
node at depth depth in a complete quadtree. Once
ind num[ij is found, the actual location of the node in
quadtree-i is determined by

(ind num[i] div4. ind num{i]mod4), (2)
where lnd _ num{ i] div 4 oetermines the array index of
the byte that contains the node and ind num{i] mod 4
the location of the node inside the byte~ Formula (2)
completes step 1 of the procedure.

ind _num_son is a two-dimensional array of 12

elements. ind num son{i] [j] (i is X, Y or Z, and j is 0,
I, 2 or 3) stores the Index number of the j-th child node
of the potentially visible i-face of the octant Where:

ind_num_son{i][j] = ind_tab{depth+l] +
4 x card num[ij + j. (3)

ind num son{i]{j] is needed in step 3 of the procedure.
If nOde iNJ num{i] is W (or B), then all its 4 child nodes
are set to ViI (or B) and the node is set to G. Otherwise
(ind num{i] is G), nothing needs to be done.

card num son is a one-dimensional array of three
elements:- cara num son{i] (i = X, Y or Z) stores the
cardinal number of tlle potentially visible i-face of a
child octant of the octant. card num son is used as a
parameter (card num) to invoke procedure "Process a G
Octant" or "Proc-ess a W or B Octant" for processing a
sub-octant of the octant in step 4 of the procedure. The
cardinal number of the potentially visible i-face of the
sub-octant, oct (oct = 0, 1,2,3,4,5,6 or 7), of the
octant is determined by:

card num son[ij = 4 xcard num{i] +
- -quad tab{octj[i].- (4)

where quad tab is-defined in Table I.
Step 5 of procedure "Process a G Octant" needs

ind num and ind num son. If the four child nodes of
node ind num{irare all B, then the node is set to B. This
compactiOn is necessary because otherwise blocked
faces of octants to be processed later may be mistakenly
considered as un-blocked faces. Although this has no
effect on the correctness of the [mal image (refer to step
5 in procedure "Scan-Convert a Face", where a check is
made before painting a pixel to ensure that only "un­
painted" pixels are painted), it may cause some redun­
dant computation.

Similar to procedure "Process a G Octant", proce­
dure "Process a W or B Octant" also needs two parame­
ters, depth and card num. It needs one local variable
ind num. Step 4 ofthe procedure sets node ind num[ij
(i =- X, Y or Z) to the calor of the octant to update
blocking-quadtree- i. Finally, it should be noted that
formulas (1) - (4) involve only array indexing and
integer addition, shift and modular operations. There­
fore, the operation on the blocking quadtrees can be
performed efficiently.

Scan-Conversion of a Face.
The following techniques are used to make proce­

dure "Scan-Convert a Face" as efficient as possible.
First, since all octant faces perpendicular to a coordinate
axis of the octree space have the same face normal
vector in the image space, only three face normals (in
the image space) are calculated at the beginning of the
algorithm for faces perpendicular to the X-, Y- and Z­
axes, respectively. Therefore, the normal vector of a
face to be scan-converted need not be recomputed and
the plane equation of the face can be easily found by
using the normal vector and the image space coordinates
of a vertex of the face. Second, instead of using the
standard edge-table technique [1], the simple method
shown in the algorithm is used to scan-convert an octant
face because it is a convex polygon in the image space.
This is faster because keeping track of left and right
edges is more efficient than updating the edge-table.
Third, intersection of scanlines and face edges are
calculated incrementally involving only additions by

Graphics Interface '91

employing edge coherence [1]. Lastly, z values of the
face are also calculated incrementally involving only
additions by employing scanline coherence [1].

Arbitrary Viewing Direction

164

So far the algorithm has been described based on
the assumption that a given viewing direction makes
three faces of an octant potentially visible. To handle an
arbitrary viewing direction, two global variables, axis
and axis nums, are needed. axis is a one-dimensional
array of Three elements. axis nums is an integer. They
are initialized at the beginning of the algorithm accord­
ing to the given viewing direction, where viewing
direction is defined as follows:
• XYZ: three faces of an octant are potentially visible.
• XY: an X-face and aY-face of an octant are poten­

tially visible.
• XZ: an X-face and a Z-face of an octant are poten­

tially visible.
• YZ: aY-face and a Z-face of an octant are potentially

visible.
• X: an X-face of an octant is potentially visible.
• Y: aY-face of an octant is potentially visible.
• Z: a Z-face of an octant is potentially visible.
Obviously, only the corresponding axis nums blocking
bitmaps need to be used. The correct formulas can be
obtained by substituting axis[ii] for all i's in formulas
(1)-(4), where 0 ~ ii ~ axis_nums.

5. Complexity Analysis
Space Complexity

The space taken by the blocking quadtrees is:
(1 + 4 + 42 + ... + 4n) x 3 x 2/8 =
(4n+ 1 - 1)/4 = 4n (bytes),
where n is the resolution of the octree space.

Time complexity
For an octree to be rendered and a given viewing
direction, assume that:
NW: number of W octants of the octree.
NB: number of B octants of the octree.
NG: number of G octants of the octree.
Nb-W: number of blocked W octants of the octree.
Nnb-W: number of un-blocked W octants of the octree.
Nb-B: number of blocked B octants of the octree.
Nnb-B: number of un-blocked B octants of the octree.
Nb-G: number of blocked G octants of the octree.
Nnb-G: number of un-blocked G octants of the octree.
Nvb-W: number of W octants of the octree that are
visited and found blocked.

Nvb-B: number of B octants of the octree that are
visited and found blocked.

Nvb-G: number of G octants of the octree that are
visited and found blocked.

Then the time spent to render the octree is proportional
to (note that formulas (1)-(4) involve only constant-time
calculations):

Nnb-W + Nvb-W + Nnb-G + Nvb-G + Nnb-B + Nvb-
B + T(nb-B),

where Nnb-W + Nvb-W is the time spent to process W
octants, Nnb-G + Nvb-G is the time spent to process G
octants, Nnb-B + Nvb-B is the time spent to process B
octants before rendering them, and T(nb - B) is the time

spent to render all non-blocked B octants.
The non-blocked B octants are rendered by scan­

converting their un-blocked faces to the z-buffer.
Assume that:

Nnb-face: number of un-blocked faces of all un­
blocked B octants.

Nscanline: number of accumulated intersecting scan
lines.

Npixel: number of accumulated pixels to be checked
and painted in the z-buffer.
Explanation of Nscanline and Npixel. Supposing

there are two faces to be rendered, and that face a has 5
intersecting scan lines and face b has 7, then Nscanline
in this case is 12. Note that face a and face b may have
some common scan lines. Similarly, if 30 pixels are to
be checked and painted for face a and 40 for face b, then
Npixel is 70.
Then T(nb-B) is proportional to:

Nnb-face + Nscanline + Npixel,
where Nnb-face is the time spent for obtaining plane
equations of faces, Nscanline is the time spent for
calculating intersections, and Npixel is the time spent for
calculating depth values.

Therefore, the worst time complexity for the
algorithm is:

O(TWG + TB),
where TWG (or Nnb-W + Nvb-W + Nnb-G + Nvb-G) is
the time to process W and G octants, and TB (or Nnb-B
+ Nvb-B + Nnb1ace + Nscanline + Npixel) is the time
to process B octants.

5.1 Time complexity of BTF algorithm
For comparison purposes, the time complexity of

the traditional BTF algorithm [3] is:
O(NG + NB + Mface + Mscanline + Mpixel),
where Mface is the number of all potentially visible

faces of all B octants, Mscanline is number of accumu­
lated intersecting scan lines, and Mpixel is the number
of accumulated pixels to be painted in z-buffer. Simi­
larly, it can also be written as:

O(TG + TB),
where TG (or NG) is the time to process all G

octants, and TB (or NB = Mface + Mscanline + Mpixel)
is the time to process all B octants.

6. Experimental Results
The proposed algorithm has been implemented

using C on a Sun-3/6O and a Sun-SparC. For compari­
son purposes, the traditional BTF algorithm [3] was also
implemented. Two example objects have been used to
test two algorithms. The first object is artificially
created (typed in) and represented as an octree with a
resolution of n = 7. The octree consists of 32 W octants,
32 B octants and 9 G octants. The second object is part
of a human skull obtained from 24 (256 x 256) er slices
after preprocessing (linear interpolation and threshold­
ing). It is represented as an octree with a resolution of
n= 8 that consists of 348,996 W octants, 285,954 B
octants and 90,707 G octants. Table lI(a) shows the sta­
tistics of running the two programs using the artificial
object on a Sun-3/6O and Plate l(a) shows the corre­
sponding depth shaded image produced. Table 1I(b)
shows the statistics of running the two programs using
the human skull on a Sun-SparC and Plates l(b)-(e)

Graphics Interface '91

165

show the corresponding depth shaded images produced.
Note that the statistics are obtained by the UNIX utility
program gprof.

From Table 11 it is clear that the major reason for
the significant speed-up of the new FI'B algorithm over
the conventional BTF one is the drastic reduction of the
time to process B octants. This is achieved because
many blocked B octants and B octant faces are simply
discarded in the FTB algorithm. In other words, many
floating point operations needed to process B octants are
eliminated (3D coordinate transformation and polygon
scan-conversion). This is effective since only simple
integer operations are involved to process W and G
octants in the FI'B algorithm. Therefore. the overall
result is that the overhead of the FTB algorithm is much
smaller than its speed gain.

To verify the speed-up from the time complexity.
Table III is produced for the object of human skull. For
the face view. the result in Table III is very consistent
with that in Table IT(b). For other cases. since more than
one quadtree has to be processed. the constant factors
are greater than 1. which explains the differences
between Table IT(b) and Table Ill.

7. Conclusion
To improve rendering speed. a new algorithm is

proposed, analyzed and implemented for displaying 3D
voxel-based binary objects encoded via octrees. The
performance of the algorithm is compared with a con­
ventional octree display algorithm [3] from both
theoretical and experimental viewpoints. The new
algorithm achieves a 55-79% time reduction over the
conventional algorithm in rendering a 256 x 256 x 256
medical image (human skull) acquired by a CT (Com­
puted Tomography) scanner. The timing result is also
verified by theoretical analysis.

The proposed octree display algorithm requires
extra memory space to store the blocking quadtrees in
order to perform the octant visibility test. The space
overhead is acceptable for two reasons. First. in general.
the storage required by an octree is far greater than the
corresponding blocking quadtrees. For example. the
octree for the human skull requires about 24 MB. while
the blocking quadtrees require only 64 KB or less than
0.3% of the octree storage. Of course. when imple­
mented on a Sun-SparC, only a portion of the octree can
reside in the main memory for processing. Swapping
between memory and disk has to be performed. Second.
for a Sun-SparC up to 8 MB of main memory can be
used for the user's program, of which only 64 KB or
0.8% stores the blocking quadtrees.

Future research could proceed in the following
directions. First, the algorithm for displaying linear
octrees based on the concept of blocking quadtrees can
be designed and implemented. It would be interesting to
compare the timing results of that algorithm with the
conventional linear octree display algorithm [2] and the
results presented in this paper. Second. interactive
display techniques for octree encoded objects have not
been studied in the past It would be very interesting to
investigate the impact of the concept of blocking
quadtrees on the design of an efficient interactive
display system via octree representations. Third.
comparisons of the proposed algorithm with other

volume rendering methods would be a very interesting
task from both theoretical and experimental viewpoints.
Finally. it is possible to investigate the design of a
special architecture based on the concept of blocking
quadtrees to achieve an even faster rendering speed.

Acknowledgements
The authors would like to thank the Department of

Nuclear Medicine, Cross Cancer Institute. Edmonton.
Alberta for providing image data for experimentation.

References
1. J. D. Foley & A. VanDam. Fundamentals ofInterac­
tive Computer Graphics. Addison-Wesley. Reading.
Mass .• 1982.

2. I. Gargantini. T. R. Walsh & O. L. Wu. "Viewing
Transformation of Voxel-Based Objects via Linear
Octrees". IEEE CG&A. Vol. 6. pp. 12-21. Oct 1986.

3. D. J. Meagher, "Geometric Modeling Using Octree
Encoding". Computer Graphics and Image Processing.
Vol. 19. pp. 129-147. 1982.

4. D. J. Meagher. "Efficient Synthetic Image Generation
of Arbitrary 3-D Objects". Proc of the IEEE Conference
on PR/Pt pp. 473-478. Hawaii. Jun 1982.

5. B. W. Heal. "Hidden Octree Node Removal as a
Pipeline Process". Computer Graphics Forum. Vol. 8.
pp. 199-206. 1989.

6. H. Samet. "The Quadtree and Related Hierarchical
Data Structures". ACM Computing Surveys. Vol. 16. pp.
187-260. 1984.

7. Y. W. Tam & W. A. Davis. "Display of 3D Medical
Images", Proc. Graphics Interface '88. Edmonton. pp.
78-86. Jun 1988.

Table I. Determination of quad_tab.
X y Z

0 1 2 0
1 1 3 1
2 3 2 2
3 3 3 3
4 0 0 0
5 0 1 1
6 2 0 2
7 2 1 3

Graphics Interface '91

166

Table 11 a) Timing Results for H.
VPN #ofB #ofB #ofW #ofG Time to Total (%)

octant-faces octants octants octants process time (sec) reduction
se an- visited visited visited B octants (excluding Fm

converted (sec) I/O) overBTF

Fm 1 -1 1 48 32 32 9 4.87 5.15 52.6
BTF 1 -1 1 96 32 - 9 10.63 10.87 -

Table 11 b) Timing Results for Skull.

VPN #ofB #ofB #ofW #ofG Time to Total (%)
octant -faces octants octants octants process time (sec) reduction

scan- visited visited visited B octants (excluding Fm
converted (sec) I/O) overBTF

Fm 1 -2 1 204728 248186 319197 84986 76.89 112.83 55.9
BTF 1 -2 1 857862 285954 - 90707 247.86 255.60 -
Fm -1 -2 1 202692 244345 314453 83395 75.20 111.48 56.5
BTF -1 -2 1 857967 285954 - 90707 248.44 256.16 -
Fm 1 -1 0 118269 153722 215954 60765 37.18 57.24 63.2
BTF 1 -1 0 571908 285954 - 90707 147.94 155.57 -
Fm 0-10 32943 80222 121396 35639 10.72 19.42 79.2
BTF 0-10 285954 285954 - 90707 85.83 93.30 -

Table III Theoretical Results for Skull

VPN #of # ofpixels Total # of pixels % reduction
scanlines accumulated scanlines, octant of Fm over

accumulated faces & octants BTF
processeed

Fm 1 -2 1 547118 1188518 2592733 70.5
BTF 1 -2 1 2352103 5213049 8799675 -
Fm -1 -2 1 540965 1174078 2559928 70.9
BTF -1 -2 1 2352225 5213246 8799994 -
Fm 1 -1 0 241407 516725 1306842 73.2
BTF 1 -1 0 1195784 2735609 4879962 -
Fm 0-10 36456 82038 388694 79.1
BTF 0-10 344781 850416 1857812 -

Graphics Interface '91

167

a) VPN = 1, -1, 1

b) VPN - 1, -2 1 c) VPN = -1, -2, 1

d) VPN = 1, -1, 0 e)VPN=O,-10

Plate 1. Depth Shaded Images.

Graphics Interface '91

