
174 

A Frame Buffer Architecture for Parallel Vector Generation 

Xiaolin Wu • 
Department of Computer Science 

University of Western Ontario 
London, Ontario, Canada N6A 5B7 

Abstract - An intelligent frame buffer archi­
tecture is proposed for parallel and distributed 
line scan-conversion . The architecture is of the 
type of wavefront array processors. It is demon­
strated that the new frame buffer architecture 
achieves extremely high throughput and yet with 
very low frame buffer bandwidth requirement in 
scan-conversion, providing a solution to the bottle­
neck problem of pushing pixels into the frame buffer. 

1 Introduction 

Line is probably the most important computer 
graphics primitive. Research on plotting digital 
lines has remained active since the early days of 
computer graphics [2, 3,7,8,9]. The author and his 
former professors at the University of Calgary devel­
oped very fast line scan-conversion algorithms that 
significantly outperform the classic Bresenham's al­
gorithm. However , the impact of our achievements 
on interactive computer graphics is restricted by the 

fact the bottleneck in raster image generation is no 
longer in scan-conversion but in frame buffer access. 
In short, the modern image engines can compute 
images at a much higher speed than that of writing 
pixels into the frame buffer . Many hardware archi­
tectures were proposed to break the frame buffer 
bandwidth bottleneck [5, 4, 6]. This paper presents 
a new frame buffer architecture to facilitate parallel 
two-dimensional vector generation with the num-

"The author gratefully acknowledges the financial sup­
port of the Canadian Government through NSERC grant 
OGP0041926. 

ber of frame buffer accesses as few as the number 
of lines which presents a substantial reduction from 
the number of pixels. 

The new frame architecture is a fundamental de­
parture from the previous ones by sending on ly line 
end points into the frame buffer and letting pixels 
computed right inside the frame buffer . Further­
more, the new architecture allows distributed draw­
ing of non-mutually-intersecting lines rather than 
just computing pixels of a single line in parallel , 
increasing the degree of parallelism from the pre­
vious pixel level to vector level. Despite its high 
performance, the new frame buffer architecture is 
conceptually and structurally simple, t.hus suitable 
for VLSI implementation. The algorithm for par­
allel line drawing is a variation of classic DDA line 
generator, and it is wired into wavefront array pro­
cessors. Programming in the new frame buffer ar­
chitecture is exactly the same as in today's standard 
frame buffer environment . Although the architec­
ture is designed in this paper for very high through­
put and low frame buffer bandwidth requirement in 
vector generation, it can be easily extended to sup­
port parallel and distributed processing for polygon 
scan-conversion, smooth shading and depth compu­
tations in Z-buffer algorithm. 

The paper is organized as follows. First we de­
rive in the next section a variation of the con ven­
tional DDA line generator, called integer DDA. The 
new DDA algorithm is particularly suitable to be 
implemented by wavefront array processors in par­
allel. In section 3 we design the parallel architec­
ture of wavefront array DDA processors that can 
be integrated into a frame buffer. Then in section 

Graphics Interface '91 



4 we demonstrate how the new frame buffer archi­
tecture can revolutionize line scan-conversion with 
high throughput but low frame buffer bandwidth 
requirement. Section 5 contains some discussions 
about the new architecture, its comparison with the 
previous designs, and its extension to support incre­
mental graphics algorithms in general. 

2 DDA and Integer DDA 

The classic DDA (digital differential analyzer) is 
a simple and straightforward scheme for line scan­
conversion. Without loss of generality we consider 
only lines of slopes between 0 and 1. Lines of 
other slopes can be accommodated by symmetry. 
In DDA we march along x axis in unit step , i .e., 
Xi = Xi-l + 1, and increment Y by a floating value 
k that is the slope of the line, i.e., Yi = Yi-l + k. 
The floating value Yi is rounded to its closest inte­
ger , and the pixel (Xi, LYi + 0.5J) is plotted in the 
i-th iteration . In this section we first introduce a 
simple but important modification of the original 
DDA to eliminate the floating arithmetic involved. 
This can be done by changing the floating addition 
to a module addition. The error introduced can be 
controlled by limiting the line lengths . The algo­
rithm operates on an n-bit integer D. To draw a 
line from (xO, yO) to (xl, yI), xO < xl, yO < yI, 
o ~ k = (yI - yO)j(xI - xO) ~ 1, we initialize 
D = 2n-l , x = xO and y = yO . The line is scan­
converted from left to right. For every increment of 
x the integer 

d = Lk(2n - 1) + 0.5J (1) 

is added to D. The addition is carried out in module 
2n and the overflow of D is recorded . Whenever an 
overflow occurs, y gets incremented by 1. 

To see the above logic we can imagine that the 
integer D is a fractional number with the decimal 
point is to the left of its highest significant bit . Thus 
its initialization D = 2n

-
1 is 0.5 in fraction . If 

we treat D as the imagined fraction number, its 
increment d is then an approximation of the line 
slope k, with the approximation error being 

(2) 

Clearly the error can be bounded by lel ~ 2- n . 

Since D has an initial value of 0.5, when D overflows 

175 

x := xO; y := y ; 
D := 2n

-J
; 

d:= Lk(2"-1)+O.5J; 
set pixel(x,y); 

x:= x+l; 

Yes 
.>----~ tenninate 

Yes 

No 

Figure 1: The integer DDA line generator. 

at Xi, the line crosses the Xi column above the mid­
point between the two adjacent pixels (Xi, Lkx;J) 
and (Xi, rkxil), if we ignore the error term which is 
less than i2- n . Thus y should get an increment of 
1 due to rounding. We call the above integer arith­
metic for line drawing integer DDA to distinguish 
it from the traditional DDA. The integer DDA al­
gorithm for lines of 0 ~ k ~ 1 is described by the 
flowchart of Fig. 1. 

Graphics Interface '91 



3 Wavefront Array DDA Pro­
cessors 

The integer DDA derived earlier was not intended 
as a competitive alternative for incremental line al­
gorithms, although it can be one. The real power 
of the integer DDA algorithm is that it is very suit­
able for massive parallel hardware realization . In-
deed, in each iteration of the integer DDA algorithm 
the arithmetic and logic operations are extremely 
simple , namely, an addition and an overflow check; 
furthermore, those two operations are done on the 
same integer variable D. If we associate with each 
pixel in frame buffer with an adder and intercon­
nect a pixel to its four 4-connected neighbors locally, 
then we can propagate the control integer variable 
D from a pixel to its neigh boring pixel on the course 
of a digital line based on the simple integer DDA 
algorithm. That is, we give each pixel some intelli­
gence to determine whether it is on or off the digital 
line locally without being told by a central proces­
sor and hence eliminate frame buffer writing all to­
gether. Let us examine the array of integer adders 
for DDAs as described by Fig. 2. For the simplicity 
in explaining our design, only the connections nec­
essary for drawing lines of 0 ::; k ::; 1 are shown in 
the figure. Each cell in the proposed architecture 
performs very simple computations (see Fig. 2(a)) . 
It takes integers d and D with its overflow bit O. 
If the overflow bit 0 = 0, the pixel at the current 
cell is set, the cell to the right is fired, and values d 
and D + d are sent to the right neigh boring cell; in 
the case of 0 = 1, the cell to the top is fired , and 
values d and D with its overflow bit 0 reset to 0 
are sent to the upper neigh boring cell. Clearly de-
scribed above is an asynchronous architecture that 
may be classified as wavefront array processors . It 
is easy to see that the proposed architecture and 

176 

D.d 

enable 

D+d if 0=0 
d 

D if 0=1 

---fire 

(a) 

(b) 

the computations of each cell implement the inte- Figure 2: DDA cell (a) and DDA array (b) for COI11-

ger DDA algorithm. To draw a line from (xO, yO) puting lines of 0 ::; k ::; 1. 
to (xl, y1), the cell for (xO, yO) is fired first with 
D = 2n

-
1 and d = Lk(2n - 1) + 0.5J as its input 

data. From this point on the cells on the digital line 
will be fired sequentially and set the pixels along the 
line. To terminate the line propagation at (x1,y1) 
we need to set a flag at the cell at (x 1, y 1) so that it 
will not fire any of its neighbors when it gets fired 
at the last. 

Graphics Interface '91 



Figure 3: The connection of wavefront array pro­
cessors for line scan-conversion . 

The extension of the above design to include lines 
of all slopes is straightforward. In Fig. 3 illustrated 
is the connection of of wavefront array DDA proces­
sors for lines of all directions. Of course, we have 
to put more logic into each cell to accommodate 

lines of all orientations . To make the decision as to 

which of the 4-connected neighbors to be fir ed in 
the line propagation , we need to add to the data 
flow a two-b it direc tion code C = Cl Co: Cl Co = 00 

for 0::; k ::; 1, CICO = 01 for -1 ::; k < 0, CICO = 10 
for 1 < k < 00, and ClCO = 11 for -00 < k < -l. 
Let R jir e , Ujire, Ljire and D jir e be the signals to 
fire the right , upper , left, and lower cell. Then the 
logic of fi ring the next cell becomes: 

Rjire (0 /\ Cl) V (0 /\ ClCO) 

U jire (0/\ Cl) V (0 /\ ClCO) 

L jire 0/\ CICO 

Djir e 0/\ ClCo (3) 

The reason for the 4-connection rather than 8-
connection of the wavefront array DDA processors 
is to reduce the amount of inter-cell connections. 

177 

As the result, a diagonal pixel move is accomp lished 
by two axial moves . Our design has a ll the desir­

able features for easy YLSI implementat ion, namely, 
simple connection, modularity and regu larity. Each 

cell and inter-cell connections a re identical. The 
processor at each cell consists of an integer adder 
plus the logic circuit for Eq(3) . In tegrating t he 
above wavefront array processors in to the fr ame 
buffe r , one processor per pixel , configures an inte l­

ligent frame buffer . 

4 High-Speed 
Line Drawing 

Distributed 

The proposed architecture has massive paralle li sm. 
The wavefront a rray DDA processors can comp ute 
a ll lines in a scene simultaneously as long as they 
do not intersect among each other. The time re­
quired is proportional to the lengt h of the longes t 
line , independent of the total number of pixels set. 
This level of parallelism makes it possible to com­
pute wired-frame images in the time linear to the 
resolution of the display not to the comp lexity of 
the image. 

The requirement of no two lines under scan­
conversion intersect ing each other is due to a re­

source contention problem. To guarantee th e cor­
rectness of generated lines , no DDA cell may be fired 
by two sources at the same time. Since our design is 

asynchronous it is better to adopt the conservat ive 

prevention of disa llowing line inte rsect ions. I3ut this 
strategy will not rest rict the paralleli sm of the a rch i­
tecture but rather shift the computational burdens 
to the central processor to solve the bottleneck prob­
lem in writing the frame buffer. The central proces­
sor will not compute the pixel scree n coord in ates 
and push the pixels into the fr ame buffer. Ins tead 
it will use the saved comp uting power to find the 

line intersections , and partition the lines into non­

intersecting smaller line segments, and submit those 
shorter lines simultaneously to the wavefront a rray 

DDA processors integrated into the frame buffer . 
So the lines can be computed right inside the frame 

buffer in parallel, achieving extremely high through­

put with very few frame buffer accesses from the 
central processor . The number of frame buffer ac­
cesses in the new architecture is the number of 

Graphics Interface '91 



line scan-conversion jobs submitted rather than the 
number of pixels in the scene. 

5 Discussions 

For the new intelligent frame buffer architecture 
clipping against the screen becomes unnecessary. 
We simply terminate the line propagation at the 
cells on the boundaries of the screen. 

The type of incremental computations suitable 
for the proposed wavefront array architecture is 
common in computer graphics, for instances, the 
inner loops in polygon scan-conversion algorithm, 
in incremental depth computations of Z-buffer al­
gorithm, and in smooth shading algorithms, are all 
of the form D := D + d along the x axis. Therefore, 
with some elaborations on the above architecture, 
it is possible for all these algorithms to be imple­
mented in parallel and right in frame buffer . All 
the current mentioned algorithms that propagate 
on a line-by-line basis can then proceed along all 
scan lines simultaneously, with their running time 
bounded by the widest extent of the polygon (the 
longest scan line) not by the polygon area. 

By the above argument the wavefront array archi­
tecture should also fit the bresenham 's incremental 
line algorithm. Although this is true, Bresenham's 
algorithm uses two different increments in its inner 
loop rather than one in the integer DDA algorithm. 
Thus in the wavefront array architecture for Bre­
senham's algorithm we need one more constant in 
the data flow than the architecture for integer DDA 
algorithm. This increases the complexity of VLSI 
implementation and decreases the processing speed . 
Of course, the integer DDA may introduce accumu­
lated error for very long lines while Bresenham's 
algorithm is error-free. But since the accumulated 
error can be bounded by the line length , the central 
processor may chop a long line into pieces before 
submitting it to the intelligent frame buffer to con­
trol the error and also to increase the throughput. 
So we do not think the error as a disadvantage of 
the parallel integer DDA algorithm. 

Among all previous logic-enhanced frame buffer 
architectures, the one closest to our design is Fuches 
et. al.'s Pixel-Planes architecture [4]. They used 
a one-bit ALU for each pixel and organized those 
one-bit ALUs into a binary tree. The proposed 

178 

frame buffer architecture requires a full ra ther than 
one-bit adder per pixel, hence more hardware ex­
tensive. However, the wavefront array design has 
higher modularity and simpler connection, hence 
more suitable for VLSI implementation . The de­
gree of parallelism for the new architecture is higher 
by magnitudes than Fuchs et. al.'s design since the 
former computes objects in parallel whereas the lat­
ter computes pixels in parallel. Admittedly Fuches 
et. al.'s architecture can support a wider range of 
graphics and image processing operations with more 
elaborated parallel algorithms. More pa rallel graph­
ics algorithms in wavefront array architect ure are 
under our investigation. Wavefront array architec­
ture has been successfully used in image process­
ing [1] . It is the author's belief that more research 
is needed to explore wavefront array architecture's 
applications in computer graphics. 

6 Conclusion 

An intelligent frame buffer architecture in the form 
of wavefront array processors is prop osed. The 
new architecture can perform parallel line scan­
conversion at extreme ly high throghput and yet. 
with very low frame buffer bandwidth requirement. 
This architecture is advocated to para llelize other 
incremental graphics algorithms. 

References 

[1] E. R. Dougherty and C. R. Giardina, Ma­
trix Structured Image Proce ssing, Pren ti ce­
Hall, 1987. 

[2] J. E. Bresenham, "Algori thm for Computer 
Control of Digital Plotter," IBM Syst. J. , vo!. 

4, no. 1, 1965, p . 25-30. 

[3] J. E. Bresenham , "Run Length Slice Algo­
rithms for Incremental Lines," in Fundamen­

tal Algorithms Jor Computer Graphics (R. A . 

Earnshaw ed.), p. 59-104, NATO ASI Series, 
Springer-Verlag, 1985. 

[4] H. Fuchs, J. Goldfeather , J. Hultquist , S. 
Spach , J . Austin , F . Brooks, J. Eyles , and 
J. Poulton, "Fast Spheres, Shadows, Textures, 
Transparencies, and Image Enhancements in 

Graphics Interface '91 



Pixel-Planes," Proc. SIGGRAPH'85, 1985, p. 
111-120. 

[5] S. Gupta and R. F. Sproull, "A VLSI Architec­
ture for Updating Raster-Scan Displays," Proc. 

SIGGRAPH'81, 1981, p . 71-78 . 

[6] M. Potmesil and E. M. Hoffert, "The Pixel 
Machine: A Parallel Image Computer," SIG­
GRAPH'89, 1989, p. 69-78. 

[7] X. Wu and J . Rokne, "Double-Step Incremen­
tal Generation of Lines and Circles" , Computer 
Vision, Graphics, Image Proc., vol. 37, 1987, p. 
331-344. 

[8] B. Wyvill, "Symmetric Double Step Line Algo­
rithm", in Graphics Gems edited by A. Glass­
ner , Academic Press, 1990 , p. 101-104. 

[9] B. Wyvill, J. Rokne and X. Wu, "Fast Scan­
Conversion of Lines," ACM Trans . on Graph­
ics, vol. 9, no. 4, Oct. 1990, p. 376-388. 

179 

Graphics Interface '91 


