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Abstract 

Implicit surfaces are becoming increasingly popular in 
geometric modeling. Procedurally defined implicit sur­
faces, in particular surfaces built around skeletons, pro­
vide an intuitive representation for many natural ob­
jects, and objects commonly used in geometric model­
ing. This paper presents several techniques that provide 
good control over the way different skeletally defined im­
plicit surfaces blend together. Some extensions to these 
techniques provide a simple and convenient representa­
tion for "soft" surfaces of revolution , randomly deformed 
surfaces, and other interesting shapes that would other­
wise be difficult to model. 

Keywords: Implicit Surfaces, Blending Functions, 
Skeletons. 

Introduction 

Parametric curves and surfaces have traditionally been 
favorite modeling primitives in computer aided geomet­
ric design and graphics. A rich literature exists on tech­
niques for free-form modeling with these primitives. In 
recent years, however, implicit surfaces have become in­
creasingly important. The major advantage of implicit 
surfaces that makes them very attractive for modeling 
and animation is the blending property. Separate im­
plicit surfaces, unlike parametric surfaces, can blend to­
gether smoothly and form very complex, non-intersecting 
shapes. Implicit surfaces also conveniently define vol­
umes. It is easy to determine whether a point is above, 
below, or on the surface, simply by evaluating the im­
plicit function at the given point. Computing the sur­
face normal is also an easier task than it is for parametric 
surfaces. 

A frequent objection to the use of implicit surfaces is 
that the available modeling techniques do not provide 
sufficient control of the shape of the surface. Also, the 
shape of the surface is not very intuitive from its implicit 
formulation. The effects of changing coefficients in the 

algebraic formulation of the surface are usually unpre­
dictable and very difficult to control. The control flexi­
bility necessary in a design environment is, thus, hardly 
achievable by direct manipulation of the coefficient in the 
algebraic formulation of the surface. 

The goal of our research is to develop a modeling tech­
nique which will enable the designer to specify an im­
plicit representation of an arbitrary shape. The goal is 
ambitious and many problems still have to be solved. In 
this paper we present some new techniques that provide 
the designer with better control over the way in which 
procedural implicit surfaces blend together. Several new 
blending functions that can be customized interactively 
to the need of the designer are introduced. These blend­
ing functions have a considerable influence on the overall 
shape of the surface and can provide additional control 
in the design process . 

Skeletal Implicit Surfaces 

In order to provide a more intuitive representation we use 
skeletally defined implicit surfaces [Bloomenthal 90b]. In 
general, any three dimensional object can be a part of 
the skeleton, as long as it is possible to determine the dis­
tance from a given point in space to the skeleton. Skele­
tons are useful for several reasons: 

• skeletons provide intuitive representation for many 
natural objects, 

• skeletons themselves are simple and easy to manip­
ulate and display, 

• complex shapes can be modeled with few elements. 

In this paper we limit our discussion to skeletons that 
consist of elements such as points, lines, polygons, circles, 
spline curves and spline patches. Each skeletal element is 
surrounded with an imaginary force field F(r) , with the 
intensity of the field being the highest at the skeleton, 
and decreasing with distance r from the skeleton. The 
function F(r) that relates the field value (intensity) to 
distance from the skeleton has an impact on the shape 
of the surface, and more importantly, determines how 
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separate surfaces blend together. For that reason we call 
such functions blending functions . 

The surface is defined by the set of points in space for 
which the intensity of the field has some chosen constant 
value (thus the name iso-surface). We call this value a 
contour value. The surface so defined is an offset sur­
face of the skeleton. Fields from the individual elements 
of the skeleton add together (or subtract. in the case of 
negative force fields). what in turn has the blending ef­
fect on the surfaces defined by separate elements of the 
skeleton: 

Ftotal(P) = L CiFi(T;). 
,=1 

Ti = fi(P) = dist(P.Qi). 

where 

Ftotal(P) = the intensity of the field at the 
point p. 

Ci = a scalar value (scale factor) that repre­
sents the fi eld magnitude due to the ith 
skeleton (it can be negative). 

Fi = the blending function for the ith skele­
ton . 

Ti = distance from the point P to the skele­
ton i. 

P(xP. YP. zp) = point in !R3 at which the field 
function is evaluated. 

Q(xQ.YQ.zQ) = point in !R3 
- the nearest 

point on the skeleton i to the point P. 

The evaluation of the field function has two steps. The 
first step involves finding the nearest point on the skele­
ton to the given query point and calculating the distance 
between them . This procedure depends on the geome­
try of the skeleton and can be very simple (trivial in the 
case of a point skeleton). or quite complex in the case of 
spline curves and patches. when an iterative or numer­
ical method has to be used . The second step involves 
evaluation of the blending function . 

The shape of a skeletally defined implicit surface is 
determined by: 

• the geometry of the skeleton. 

• a blending function to weight the contribution of 
individual skeletal elements. 

• modifications to the blending function that result 
from geometry. orientation. size. or other properties 
of the skeleton. 

• random deformations produced by perturbation of 
the blending function with some three dimensional 
noise function . 

The surface is controlled by applying local or global 
transformations. such as scaling. translation. and rota­
tion. to the elements of the skeleton. and by changing 
the blending functions . 

Many skeletally defined surfaces can be expressed ana­
lytically. but in order to keep the representation intuitive 
and simple these implicit functions are usually treated 
as procedural. i.e. defined by procedures that return 
a scalar field value for any point in 3-D space. Procedu­
ral implicit functions can be used to model surfaces for 
which analytical representation is difficult or impossible 
to formulate [Bloomenthal 90b]. 

Surface Smoothness 

The notion of surface smoothness is usually related to 
the concept of tangent plane (surface normal) continu­
ity. A surface is said to be smooth at a particular point if 
there exists a unique plane tangent to the surface at that 
point. The idea of tangent plane continuity can be gen­
eralized to higher orders of continuity. A more in depth 
discussion of geometric continuity for algebraic surfaces 
can be found in [Warren 89]. 

The gradient of the implicit function is the surface nor­
mal at a given point on the implicit surface. Procedural 
implicit surfaces may not have an analytical representa­
tion. or it may be very difficult to obtain. so the gradient 
must be approximated by evaluating the implicit func­
tion at three nearby points [Bloomenthal 90b]. It is very 
difficult. if not impossible. to prove analytically that a 
given procedural implicit surface is smooth. 

The smoothness of a skeletally defined implicit surface 
depends on: 

• the continuity of distance to the skeleton. 

• the continuity of blending function . 

Examples presented in this paper show objects whose 
skeletons consist of very simple elements for which the 
distance function is continuous. It should be noted. 
though . that distance functions may be discontinuous 
if the elements of the skeleton are themselves discontin­
uous. self-intersecting. or of such shape that for a given 
point within the radius of influence there is not a unique 
nearest point on the skeleton. This can easily happen 
when spline curves or patches are used for skeletons. or 
when skeletons are grouped together (see the section on 
selective blending) . 

A blending function is defined in this paper as order 
k continuous if the first k derivatives are continuous in 
the interval [0. RJ, and they vanish at the end points: 

di di 

-d . F(O) = O. -d . F(R) = O. i = O ..... k. 
r' T' 

It is important to notice that non zero derivatives at 
the end points result in discontinuities in the implicit 
field function at distance R form the skeleton and that 
the resulting surface is discontinuous (see Figures 7. 8 
and 9). 

An implicit surface is said to be order k continuous if 
all the blending functions used are at least order k contin­
uous (assuming that distance functions along a straight 
path in space are also continuous for all the elements of 
the skeleton) . 
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Blending Functions 

In general, any function can be used for blending. 
Blinn used superimposed exponential density distribu­
tion functions to model atoms and molecules [Blinn 82]. 
A variation of the above surfaces, called soft objects, 
uses a blending function which is a cubic polynomial 
[Wyvill 86b, Bloomenthal 90b]. Soft object have been 
successfully used for modeling of objects and figures 
commonly found in nature, and for animation of ob­
jects that change shape in time [Wyvill 86a] . Blend­
ing surfaces based on low degree polynomial functions 
[Midlleditch 85] and super-elliptic blends [Rockwood 87] 
are used in solid modeling. 

From this earlier work and our own experience there 
are several important properties of blending functions: 

• each skeleton should have a limited radius of in­
fluence R, i.e. the value of the blending func­
tion should be zero beyond some radius of influ­
ence. This enables considerable computational sav­
ings because implicit functions of distant skeletons 
need not be evaluated. 

• blending functions have a maximum at the skeleton 
(zero distance) , and they drop smoothly and mono­
tonic1y to zero at the radius of influence. With­
out loss of generality, we assume that the maximum 
value is 1.0 and that the contour value is 0.5 . 

• the first, and if possible second derivative of the 
blending function should be continuous, and they 
should vanish at zero and at the radius of influence. 
This will ensure that surfaces blend smoothly (as­
suming that the distance function is continuous). 

The shape of the blending function affects the 
"amount of blending." Blending functions that drop to 
zero shortly after they fall bellow the contour value will 
result in very little blending (Figures 2 and 4). On the 
other hand , functions that drop slowly to zero will result 
in "soft" blending (Figures 1 and 3) . Too much blend­
ing is often undesirable. For example, when modeling a 
human body it is not desirable that the arms blend with 
the body anywhere but at the shoulders. As a result 
of using soft blending functions the blended surface is 
bulgy (Figure 3). "Hard" blending functions can reduce 
the bulge (Figure 4). 

Low degree polynomial functions are most commonly 
used for blending [Wyvill 86b, Bloomenthal 90b]. The 
lowest degree polynomial that satisfies the first order 
continuity requirements is a cubic: 

where 

r = distance from the skeleton 

R = radius of influence. 
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Figure 1: A "60ft" blending function 
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Figure 2 : A "hanf' blending function 

Figure 3 : A soft blend of cylinders using the blending func­
tion from Figure 1. Note the bulge around the intersection. 
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Figure 4 : A hard blend of cylinders using the blending func­
tion from Figure 2. The bulge is gone. 
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Figure 5 : Cubic blending function and it's derivatives. (Ft = 
O.5~~,F" = O.2~:~) 

A cubic in r2 (Figure 5) is more commonly used 
[Wyvill 86b, Bloomenthal 90b]: 

Since the first derivative 

is zero at r = 0 regardless of the choice of coefficients, 
additional constraint can be put on the cu rve Fcub2(r). 
In [Wyvill 86b] an additional point on the curve is spec­
ified such that Fcub2(0 .5) = 0.5 . This results in a curve 
(Figure 5) very similar to the ordinary cubic in r . Some 
sort of control over the shape of the blending function 
can be achieved by moving this point . However, very 
little variation from the shape in Figure 5 is achievable 
this way. 

The blending function can be defined as an interpolat­
ing curve through a number of control points. Any nu­
merical analysis book readily offers several interpolating 
schemes. Natural cubic spline interpolation is probably 
the most popular interpolating scheme, and it produces 
excellent results for a limited range of curves in our ex­
ample. However, interpolating curves do not posses the 
convex hull property and often fail to remain monotonic 
when the control points are moved around. 

Nonparametric curves in Bernstein-Bezier form 
[Farin 88] do not, in general, pass through the control 
points (except the end points) , have a convex hull prop­
erty and thus provide a very good solution to our prob­
lem: 

n 

F(r) = ~bjBj(rjR) 
j=O 

where 

Bj(rjR) 

bj E [0 , 1] = the ordinate of j-th control point 
(a scalar value) . 

The k- th derivative (k :::; n) is also a nonparametric 
curve in Bernstein-Bezier form : 

.6. 1 bj = bj+l - bj , 

.6.kbj = .6. k
-

1 bj +l _ .6.k- 1 bj 

= t ( ~ ) (_l)k -i bi+j . 
,=0 

The n + 1 control points (jRjn,bj) j j = O, ... ,n are 
equally spaced , with increasing abscissae, along the r 
axis in the interval [0 , R]. The curve is thus guaran­
teed to be a functional curve. Setting bo, ... , bk = 1, and 
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Figure 6: Fifth degree Bernstein-Bezier blending function. 
it's control points and derivatives. (F' = 0.5 ~~. F" = 
0 .15f.f) Note that both derivatives have zero values at the 
end points. 

bn-k • ... • bn = 0 results in the first k derivatives being 
equal to zero at the end points (r = O. and r = R) . For 
k = 1 at least 4 control points are necessary to assure 
that the first derivative will vanish at the end points, and 
the resulting curve is cubic. For k = 2 we need at least 
6 control points to have both first and second derivative 
vanish at the end points. at the cost of having to evaluate 
a fifth degree polynomial (Figure 6). Our examples (Fig­
ures 7, 8 and 9) show that a blended surface produced 
by a second order continuous blending function appears 
considerably smoother than the surface produced by a 
blending function which only has first order continuity. 
The difference is particularly noticeable on surfaces poly­
gonized at a low level of subdivision (i.e. when fewer 
polygons are used to approximate the surface). 

Nonparametric B-splines described in [Farin 88] pro­
vide more control flexibility than Bezier curves. The 
abscissae of the control points are derived form the knot 
sequence (which is very non-intuitive for interactive de­
sign) and are, in general, less constrained. Fewer control 
points are necessary in order to achieve similar control 
flexibility and the degree of the curve is generally lower, 
but the curves are not as smooth. 

One additional property of blending functions is of­
ten required. If the point with the contour value on the 
graph of the blending function is moved in the r direction, 
the size of the objects defined by individual skeletons is 
changed. It is often undesirable that the choice of blend­
ing function should affect the size or shape of a single 
object. It should only affect the blending of two or more 
separate objects. Without loss of generality we will addi­
tionally constrain our blending functions, so that every 
function has the contour value exactly at one half the 
radius of influence: 

F;(R/2) = contour value = 0.5 . 

In the case of a single skeleton any blending function 
should produce the same surface, which is an offset by 

Figure 7: A blend of two cylinders using an order zero con­
tinuous Bernstein-Bezier blending function with four control 
points. 

Figure 8: A blend of two cylinders using a first order con­
tinuous Bernstein-Bezier blending function with four control 
points. 
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Figure 9: A blend of two cylinders using a second order con­
tinuous Bernstein-Bezier blending function with six control 
points (Figure 6). 
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Figure 10: Arctangent blending function and it's derivatives. 

(Cl = lOO,F' = 0 .03~~,F" = 0 .04f,{) 

R/2 from the skeleton . As a result of this additional 
requirement most of the blending functions will be sym­
metrical in respect to the point (R/2, 0.5). 

The control of the blending is achieved by changing 
the slope of the function at R/2, while maintaining the 
constraints at the end points, smoothness, and mono­
tonicity of the function. While all the blending functions 
described so far can easily be constrained to pass through 
the point (R/2, 0.5), it is often difficult to considerably 
change the slope of the function at that point. A very 
good solution for steep blending functions is based on 
the arctangent function (Figures 2 and 10): 

where 

1 
Fatan(r) = 0.5 - - arctan(cl(r/ R - C2)) 

11' 

Cl = a number that controls the steepness of 
the function (10 -1000) . The slope of the 
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function at the point of inflection (which 
also has the contour value) is -cl/1I'. The 
function will approximate the step func­
tion as the value of Cl increases; 

C2 = value of r/R for which Fatan has the con­
tour value (0.5). 

This function is used to produce the blended surface in 
Figure 4 (Cl = 100). The function does not pass through 
points (0,1) and (R, 0), and it's derivatives do not van­
ish at the end points. However, the discrepancies are 
small (Figure 10), and may safely be ignored for steep 
functions. For not so steep functions (Cl < 50) the fol­
lowing modification will assure that Fatanl,O(O) = 1, and 
Fatanl,O(R) = 0: 

Fatano(r) = Fatan(r) - Fatan(R), 

Fatanl,o(r) = Fatano(r)/ Fatano(O). 

All the functions described so far in this paper are 
explicit, i.e. they are expressed in terms of r. It is well 
known that parametric curves are much better suited 
for shape design. We have found low degree parametric 
curves useful for design of our blending functions: 

F = fI(t), 

r=h(t),tE~. 

For any given r it is necessary to solve h for t, in 
order to calculate F . For quadratic and cubic paramet­
ric spline curves, a closed form solution exists. Care has 
to be taken to assure that the spline curve defined by 
the control points indeed is a functional curve, i.e. there 
must not be points with vertical slope or with multiple 
values of F for a given r . If that is provided, a single real 
solution to h exists for any given r. The method is prone 
to floating point imprecisions when coefficients, particu­
larly the coefficient with the highest power of t , become 
very small. That is usually the case when the control 
points are almost collinear, or when they are equally 
spaced along the r axis. Special care has to be taken to 
detect such situations. Figure 11 shows the useful range 
of a single segment cubic Bezier spline. The Cardano's 
formula used to solve the cubic equation in t, is numeri­
cally stable in that range. The soft blending function in 
Figure 11 also produces the blended surface in Figure 3. 
The hard blending function produces a blended surface 
that is slightly softer than the surface in Figure 4. 

More segments of a piece wise quadratic or cubic spline 
curve can be used if additional flexibility is desired, at 
an increased cost of computation. 

Selective Blending 

As previously mentioned, surface blending is not always 
a desirable effect . There are two practical solutions to 
this problem. One is to group skeletons of objects which 
should not blend together [Beier 90] . The group is then 
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F(r) 0.5 

O~-------.--~~~~ 

o R/2 R 
r 

Figure 11: Single segment cubic Bezier blending functions 
(parametric). The four control points are (0, I), (c, I), 
(R-c, 0), (I, 0), where 1/3 < c < 1. The soft (thick) curve is 
identical to the cubic curve Fcub. 

treated as a single skeleton, and the distance to the skele­
ton is the minimum distance to any of the elements of 
the group. Another solution is to use different blending 
functions for different skeletons. Surfaces that should 
not blend together can use "hard" blending functions, 
while other surfaces can use "soft" blending functions. 

Interactive Control of Blending Functions 

An additional benefit of using spline curves, both non­
parametric and parametric, is the ability to interactively 
design blending functions, simply by moving the control 
points. Similarly, the shape of the arctangent function 
is affected by interactively changing the value of Cl . A 
great deal of information about the blending function 
is hidden in the shape of it's derivatives. Displaying the 
first two derivatives together with the function itself pro­
vides very valuable information for the interactive design 
of blending functions. 

Depending on the blending function used, the poly­
gonization of a simple surface, such as that defined by 
two intersecting cylinders, or by two spheres, is a rela­
tively fast process. The effects of changing the blending 
function can thus be visualized sufficiently quickly for in­
teractive design, although we cannot do this in real time 
with our current implementation. 

Modifications to Blending Functions 

Blending functions need not be defined in terms of dis­
tance only. Other parameters based on geometry and 
orientation of the skeleton can be used to modify the 
shape of the surface: 

• position of the nearest point on the skeleton. 

• orientation of the skeleton in space. Additional pa­
rameter (or parameters) need be specified for the 
reference orientation. 

• size (deformation) of the skeleton. This is useful 
in animation when skeletons change size, either by 

p 

t = 1 

Figure 12: Parameters that can be used to modify the blend­
ing function of a line skeleton (Ot = a) . 

being stretched or squashed, in order to simulate the 
preservation of volume. Stretched objectss would, 
thus, appear thinner, and squashed objects would 
be thicker. 

Skeletons that have natural parametrization, such as 
lines, spline curves and patches, are particularly suited. 
Functions of the parameter(s) of the nearest point on the 
skeleton can be used to modify the field function . 

A few ideas for possible modifications to blending 
functions are discussed in the next three sections. 

Surfaces of Revolution and Generalized 
Cylinders 

The offset surface of a line is a cylinder. The thickness 
of the cylinder is determined by the radius of influence 
R, and the blending function. If the radius of influence 
R is not treated as a constant, but rather as a function 
of the parameter of the nearest point on the line, 

R=!t(tp), 

F = h(r, R). 

the result is a cylinder of varying thickness, which is 
actually a surface of revolution of the curve !t around the 
line. The cup in Figure 15 is an offset of a line skeleton 
with the thickness being controlled by a sine function. 

If a cylinder is intersected with a plane perpendicu­
lar to the axis, the cross section is a circle. N oncircular 
cross sections can be achieved by applying yet another 
modification to the blending function . If an additional 
reference vector that is perpendicular to the line is de­
fined , the thickness of the cylinder can be varied with a 
function of the angle (l' between the reference vector VreJ 

and the vector from the nearest point on the line to the 
point on the surface (Figure 12): 

R = !t(tp). !J(a), 

F = h(r, R). 
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Figure 13: Parameters that can be used to modify the blend­
ing function of a circle or torus (01 = a,f3 = b). 

Twisted surfaces may be modeled by rotating the ref­
erence vector along the line . 

Similar modifications also apply to general cylinders -
offset surfaces of spline curves. However, the consistency 
of the reference vector along the spline is more difficult 
to maintain, as described in [Bloomenthal 90a]. 

Disc and Torus 

A disc is an offset surface of a planar circular disc, and 
a torus is an offset of the circular line (Figure 13) The 
skeleton is defined by a point C (the center of the circle), 
a normal to the plane of the circle, and a radius. The 
radius can be given by the reference vector Vre!, which is 
perpendicular to the circle normal . The only difference 
between a disc and a torus is in the way the nearest point 
on the skeleton (Qd and Qt respectively) is calculated. 
The additional parameters that can be used to modify 
the blending function are (see Figure 13): 

• angle or between the reference vector Vr e ! and the 
CQ vector, 

• distance between points C and Qd (disc only) , 

• angle f3 between the circle normal iJ and the QtP 
vector (torus only) . 

The base of the cup in Figure 15 demonstrates how the 
first two of these parameters can be used. 

Random D eformations 

Blending functions can be perturbed by solid noise func­
tions, such as those described in [Perlin 85, Peachey 85, 
Lewis 89]: 

F(P) = h(rp) . (1 + CN · Noise( P)). 

NoiseO is a scalar function that returns a value in 
the range [-1, 1] for a point in 3D space. The value 
of the noise function is computed by smooth interpola­
tion between the pseudorandom values assigned to the 
points on a 3D integer lattice [Perlin 85]. Any blending 
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Figure 14: Bumpy Donut. The bumps are built into the sur­
face by incorporating the solid noise function into the blending 
function. 

function described in this paper can be used for such 
an interpolation. In order to assure that the gradient 
of the noise function is continuous, at least a cubic in­
terpolation function should be used. The amplitude of 
the deformation thus produced is controlled by CN , and 
the frequency by the size of the integer lattice. Multiple 
noise functions with different amplitudes and frequencies 
may be applied to the same surface. The result of apply­
ing such a noise function (see Figure 14) is equivalent to 
that produced by having a point skeleton with a random 
maximum intensity and a radius of influence equal to the 
size of the grid , at every point on the integer lattice. 

Applications to Animation 

Skeletally defined implicit surfaces have been used suc­
cessfully in computer animation [Wyvill 86a]. They are 
particularly suitable for animating objects that change 
shape as they move. In this earlier work models change 
their shape by altering the relative positions of skele­
tons. This shape change can be driven from a key 
frame approach [Wyvill 88], where parameters govern 
the kinematic relationship between skeletal elements , or 
using dynamic simulation [Terzopoulos 89]. In this latter 
work a liquid like appearance was obtained using blended 
spherical particles. 

One of the advantages of using spline curves to pro­
vide our blending functions is that the positions of the 
control points can be changed over time to alter the 
blending from say soft to hard. Figure 11 shows suit­
able extremes that can be used for such an animation. 
The shape change may be used where a soft looking ob­
ject e.g. a cloud, undergoes metamorphosis into a hard 
object such as the cup shown in Figure 15. 

The shape of the surfaces of revolution is controlled by 

Graphics Interface '91 



244 

Figure 15: Cocktail a la Doughnut de Bump. The cup is a 
surface of revolution (cylinder) controlled by a sine function of 
the parameter. The interior is taken out by a smaller negative 
cylinder. The base is an offset of a circle (disc) controlled by 
a cosine function of the angle ex (see Figure 13) and by a 
linear function of the distance from the center. The straw is 
a straight line cylinder. The cup and the straw use a very 
hard arctangent (Cl = 100) blending function, while the base 
and the donut use a soft cubic function . There is a moderate 
amount of blending between "hard" and "soft" surfaces, and 
very little blending between two "hard" surfaces. 

Figure 16: Bumpy Donut Trophy. This is the result of an 
early attempt to model the cup from Figure 15. The side 
of the cup is too thin and the surface is polygonized at an 
insufficient uniform rate of sampling. The effect is easily re­
producible and can be used to create some exciting forms. 

a function of the parameter of the nearest point on the 
axis of rotation. Functions of other parameters can be 
used to modify the blending. These functions can also 
be changed over time by altering the positions of the 
control points. This leads to a very smooth alteration of 
shape with time and some exciting possibilities for un­
usual metamorphic operations for computer animation. 
(E.g. it would be relatively simple to change a glass into 
a bottle.) 

Conclusion 

Techniques that are presented in this paper provide good 
control over the way implicit surfaces blend together, and 
to a certain degree, over the shape of the entire blended 
surface. In terms of control flexibility and surface fitting 
ability implicit surfaces, in general, still do not parallel 
parametric surfaces. In certain cases, however, especially 
when modeling objects that have a well defined skeletal 
structure, very good results can be achieved . 

Of the various blending functions with which we have 
experimented there are certain advantages and disadvan­
tages to each. These are summarized in Table 1. 

One of the features of our approach is that all the tools 
work systematically so that the blending functions can 
be applied to any of the skeleton shape functions and any 
of the different shapes can be blended together to form 
complex shapes that would extremely difficult or tedious 
to make with other modeling techniques. 
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Smoothness Computa-
Blending function Flexibili ty (order of tional Best used for 

continuity) Efficiency 

cubic polynomial in r~ none good (1) excellent constant soft blending 
interpolating cubic spline fair good (1) good general purpose functions 
non parametric Bezier curve good excellent (any) fair smooth blending 
non parametric B-spline very good very good (any) fair wide range of blending 
arctangent good good (2 approx.) very good hard blending 
parametric spline very good good (0-1) fair wide range of blending 

Table 1 : Comparison of different blending functions. The flexibility refers to the ease of specifying a wide range of blending, 
from soft to hard. The computational efficiency is relative to the cubic function. The arc tangent function is a few times slower 
while spline curves can easily take an order of magnitude longer to compute, depending on the number of control points and 
the degree of the curve. 
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