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Abstract 

Stochastic modelling has been successfully used in 
computer graphics to model a wide array of natural phe
nomena. In modelling three-dimensional fuzzy or par
tially translucent phenomena, however, many approaches 
are hampered by high memory and computat.ion require
ments, and by a general lack of user cont.rol. We will 
present a general stochastic modelling primit.ive that op
erates on two or more scales of visual detail , and which 
offers considerable flexibility and control of the model. 
At. the macroscopic level, the general shape of the model 
is constrained by an ellipsoidal correlation fun ction that 
cont.rols the interpolation of user-supplied data values. 
We use a technique called Kriging to perform this inter
polation. The microscopic level permits the addition of 
noise, which allows a user to add interesting visual tex
tural detail and translucency. A wide vari et.y of noise
synthesis techniques can be employed in our model. We 
shall describe the mathematical structure of our model, 
and give an attractive rendering implementation that can 
be embedded in a tradit.ional ray tracer rat.her than re
quiring a volume renderer. As an example, we shall apply 
our approach to the modelling of clouds. 

Resume 

En infographie, nombreux phenomenes naturels ont 
ete simules de maniere convainquante par des modeIes 
stochastiques. Neanmoins, dans la cas de phenomenes 
tri-dimensionels partiellement translucides ou flous, la 
plupart de ces modeles sont tres friands en memoire et 
en temps machine, et n'offrent qu'un controle limite du 
modele a l'ut.ilisateur. Dans cet art.icle nous presenterons 
un modeJe stochastique general operant sur deux ou 
plusieurs niveaux de detail visuel, qui est facilement 
controlable par l'utilisateur. Au niveau macroscopique, 
la forme generale du modeJe est une interpolation de 
donnees, specifiees par I'utilisateur, soumise a une fonc
tion de corr~lation ellipsoid ale. Nous utilisons une tech
nique appelee Krigage pour I'i nterpolation . Le niveau 
microscopique permet l'addit.ion de bruit, permettant a 
l'utilisateur d'ajouter une texture visuelle interessante 
et une transparence au modele. A ce niveau , un grand 
nombre de techniques de synthese de bruit peuvent €:tre 

utilisees. Nous decriverons la structure mathematique de 
notre modeJe et presenterons une mise en oeuvre d 'un al
gorithme de synthese d 'images de notre modeJe, qui peut 
etre facilement incorporee dans un logiciel standard: le 
lance de rayons. Comme exemple d'utilisation, nous ap
pliquerons notre modele a la simulation de nuages. 

Keywords: stochastic modelling , simulation of clouds, 
scattered data interpolation, solid textures, 
fractals, ray tracing. 

1 Introduction 
Many kinds of natural phenomena are resistant to direct 
deterministic physical or geometric modelling. A physical 
model, assuming one exists, can be too costly to compute, 
while a geometric model can be too large to manipulate 
efficiently. Hence it is appropriate to search for visual 
models instead. This means a model that simulates the 
perceived behaviour of the phenomenon . 

Our concern in this paper is the modelling of objects 
that have a discernible shape and have nonuniform den
sity or opacity. Among others, clouds , fire, and various 
classes of texture fall into this category. The model pre
sented in this paper is analytical , it has the advantages 
of having low storage requirements, and it is easily incor
porated into standard rendering software (such as a ray 
tracer) . A user controls both the global shape and the 
small scale detail of the phenomenon by specifying a cor
relation structure. Interestingly, the model turns out to 
be a generalization of Blinn's "blobbies" [4] and Gard
ner 's textured ellipsoids [7] . As a case study, we shall 
apply our model to simulate clouds. Clouds are inter
esting because of the wide variet.y of shapes and visual 
effects they exhibit. The next section reviews the basic 
notions and notations of stochastic modelling , and Sec
tion 3 reviews related work in computer graphics. Sec-

. tion 4 informally presents our model, the mathematics 
of which is discussed in Sections 5 and 6. Rendering is
sues are discussed in Section 7, followed by some basic 
modelling results in Section 8. 

2 Stochastic Modelling 
One conceptually simple approach to modelling a natural 
phenomenon is to specify it completely by a large set of 
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primitives such as polygons or particles. This set can be 
generated either by the user, which is somewhat imprac
tical, or by an algorithm. Reeves has successfully used 
particles to model fire and grass [18]. Rendering cost 
makes it difficult to use part.icles for ot.her phenomena. 
See, for example, the interest.ing but computat.ionally
prohibitive approach taken by Kajiya and Von Herzen to 
model and render clouds [9]. 

Another approach is to model a natural phenomenon 
as a function R(x, y, z) . For example, in the case of 
clouds the function could be the density at a given loca
tion of space, with a range of values between one, denot
ing total opacity, and zero, denoting total t.ranslucence. 
Many choices for R are possible, the most common be
ing smoot.h surfaces such as splines or blobbies [4]. More 
generally R could be any mathematical function, but to 
capture the irregularity of many natural phenomena, a 
stochastic function is often employed [6]. 

2.1 Random Fields 
A muIt.i-dimensional phenomenon can be modelled as a 
random field R. At each location t E Rd , a random vari
able R( t) is characterized by a probability distribution: 

Ft(r) = Prob(R(t) :::; r). (1) 

In practice, this distribution is unknown or nonexis
tent. Another way to characterize a random process 
is to specify its statistics. The two best-known statis
tics are t.he mean Jl(t) = E[R(t)], and the variance 
0'2(t) = E[R(t)2]- J1(t)2, where 

E[g(R(t))] = h g(r) dFd r). (2) 

In the simplest case, these two values are independent of 
t, giving rise to a homogeneous random field. 

For example, we can model terrain as a random height 
field h(x , y) . A three-dimensional example would be the 
density map described earlier for clouds. A dynamic phe
nomenon such as cloud formation can be modelled by a 
four-dim ensional random field d(x, y, z, t). The function 
R can itself be of higher dimension. For example, if the 
function R models wind velocities then the random field 
R itself is three-dimensional. 

2.2 Correlation Measures 
The values of a random field are independent random 
variables if the value of one is unaffected by the value of 
the other. The white noise produced by such a field is un
structured, and on its own is not a useful mode\. A richer 
structure can be imposed by a correlation measure of the 
random field. Intuitively, a correlation measure defines 
how the values of the random field R at two given posi
tions t and s are related . The most "nat.ural" measure 
is the variogram, which is the mean-square difference of 
the random field at locations t and s: 

")'(t,s) = ~E[(R(t) - R(S))2] . (3) 

Another correlation measure is the covariance: 

C(t,s) = E[R(t)R(s)]-Jl(t)J1.(s). (4) 

25 

Positive values of the covariance function indicate that 
the values of the random field at the two positions tend 
to be close. Conversely, negative values of the covari
ance indicate a probable large difference between the two 
values. The normalized version of the covariance is the 
correlation function: 

C(t,s) 
p(t, s) = O'(t)O'(s)' (5) 

The variogram and the covariance are second-orderstatis
tics. We shall assume as others have that the second
order statistics are sufficient to characterize the visual 
characteristics of the phenomenon [8], [ll]. If the phe
nomenon is purely Gaussian (i.e., Ft is a Gaussian dis
tribution), the second-order statistics exactly specify the 
distri bu tion. 

An isotropic random field is one in which the correla
tion measure only depends on the distance between the 
two points t and s. The covariance of an isotropic ran
dom field, for example, conveniently becomes a function 
of a single variable T: 

C(t, s) = C( lIt - sll) = C(T). (6) 

In other words, for a given t, the covariance is constant 
for all s lying on a sphere with centre t and given ra
dius. The variogram and the correlation function of an 
isotropic random field are similarly univariate. In this 
case, the variogram can be obtained from the covariance 
by the following relation: 

")'(T) = 0'2 + Jl2 - C(T), (7) 

if C exists. The existence of the variogram does not guar
antee that the covariance is well defined. A well-known 
counter-example is B7'Ow71ian motion [22], a random pro
cess with undefined covariance, but with a variogram di
rectly proportional to T . 

Isotropy is often a convenient property for reasons of 
computation and modelling. However, most natural phe
nomema have correlations with preferred directions. For 
example, t.he ripples on the surface of t.he sea are influ
enced by wind direction . Rather than immediately jump 
to nonisotropic random fields, however, we can general
ize spherical correlations to ellipsoidal correlations [22]. 
For isotropic random fields, all points lying on the same 
sphere centred at a point t have the same correlation 
with t. We can instead insist that all points lying on an 
ellipsoid about the point t have the same correlation. An 
ellipsoid is simply a scaling in the coordinate system of 
the random field. The covariance (or variogram) IS now 
of the form: 

C(s, t) = C«(s - t)Q(s - t)l) (8) 

where Q is a dxd positive-definite and symmetric matrix, 
d being the dimension of the field. Setting Q to the 
identity matrix brings us back to a standard isotropic 
correlation. All the properties of the isotropic case are 
preserved in this more general setting. 

Rather than specifying the matrix Q directly, we could 
instead specify the major axes and the eccentricity (i of 
the ellipsoid along each of these axes. From these values 
Q can be calcu lated automatically. We form a diagonal 

Graphics Interface '91 



matrix D with respect to the coordinate system defined 
by these axes, with elements Ai given by: 

(9) 

If P is the transformation mat.rix from the canonical co
ordinate system to the system given by the major axes 
of t.he ellipsoid, t.hen 

Q = PDpt
• (10) 

All covariance functions must possess the positive defi
niteness propert.y, namely that for all point.s tl , t2, ... , tn 
and coefficients AI, A2, ... ,An we have the following in
equality : 

n 

L AiA)C(ti , t j ) 2: O. (11) 
i,j=1 

The inequality holds similarly for the correlat.ion fun c
tion . For isotropic random fi elds stronger condit.ions exi st 
[22) [11). 

2.3 Spectral R.epresentation 
Another way to characterize a random fi eld is to analyse 
its frequency response using a FOllrier transform . Let 
n(w) be the FOllrier transform of th e random fi eld R(t). 
As in [23) we define th e 8pectral den8ityfllnct.ion 5(1.01) as: 

lim 5T(W) = lim -T1In(w)12. (12) 
T-oo T-oo 

The Wiener-I<hint.chine theorem [22) states that for a 
homogeneolls random fi eld , the spectral density func
tion and t.he covariance form a FOllrier t.ransform pair. 
Thus in theory these two fun ctions have exactly the same 
modelling power. Since the Fourier transform preserves 
isot.ropy, the spectral density fun ction of an isot.ropic ran
dom fi eld is al so isotropic. One simple way to generate 
a random field is to convolve a canonical random fi eld 
such as white noise W(t) with a determini st.ic filter ker
nel H(t): 

R(t) = J H(s - t)W(s) ds. ( 13) 

In frequ ency domain , this reduces to multiplication : 

n(w) = 1l(w)W(w). (14) 

If 5 w (w) is t.h e spectral densit.y of the random fi eld W(t), 
then the spectral densit.y of the t.ransform ed random field 
R( t) is [22): 

5R(W) = 11l(wW 5w(w) . (15) 

In the case of white noise, which has constant spectral 
density, the above equat.ion gives us a direct way to con
st. ruct 1l(w) from the desired spectral densit.y function. 

2.4 Nondeterministic fractals 
Fractals can describe highly irregular phenomena, and 
they exhibit detail at all scales [13]. Some fractals are de
terministically self similar. Exact self similarity is nonex
istent in nature, but we can require that the random field 
modelling a phenomenon has second-order statistics that 
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are self similar. The nondeterministic fractal fractional 
Brownian motion (fEm) has the statistical self-similarity 
property, and is characterized by the following variogram: 

(16) 

whe re H = d + 1 - D is directly related to the frac
tal dimension D . H = t gives Brownian motion. For 
any value of H, the random field has an infinite variance 
and hence the covariance is undefi ned . Because fDm is 
non-homogeneous, the Wiener-I<hintchine theorem is in
applicable. The spectral density function for fErn can be 
derived heuris tically, however, and is in fact [23): 

5(1.01) oc 111.0111-,6 (17) 

whe re (J = 2H + 1. The spectral distribution is non-zero 
for all frequencies. This impli es that fEm has detail at 
all scales. The statistical self simil ar ity (or self affinity, 
[23]) is given by the relation 

(18) 

where a 2: 0 is any scaling factor. 

3 Previous Work 
T here have been many successful approaches to the mod
elli ng of na tural phenomena using stochastic techniques. 
T he main difficu lti es with most of these approaches for 
3-D objects are high costs for storage and computation 
and a lack of control over the global shape of the phe
nomenon. 

Spectral Models. Voss [23) was the first to sug
gest spectral models to generate random fi elds to sim
ulate visual phenomena. By exploiting Eqs. 14,15,17, 
a frequency-domain characterization , n(w) , of the phe
nomenon is created by filtering white noise. The ran
dom field R( t) is just the inve rse Fourier transform. The 
method is reasonably efficient for 2-D synthesis if the Fast 
Fourier Transform (FFT) is used . For 3-D phenomena, 
this technique suffers from the above problems. Particu
larly evident is the lack of control over the global shape 
of the phenomenon, which is an unpredictable trial-and
error process. Anjyo has recently generalized Voss work 
[1 J. 

Stochastic Displacement. Fournier, Fussell and 
Carpenter introduced in [6) the most popular fractal 
based model : random midpoint displacement. The 
model is efficient and global shape can be controlled by 
specifying the value of the phenomenon at certain given 
points. Hence they call their algorithm stochastic inter
polation. The algorithm recursively adds detail (higher 
frequencies), with new values being linearly interpolated 
from the old ones and then perturbed by Gaussian noise 
having zero mean and a variance satisfying Eq. 16. A 
lot of effort has been put into ray tracing these models 
[5) . Again this me thod is memory-intensive and is hence 
unsuited for three-dimensional phenomena. 

Constrained Fractals. Szeliski and Terzopoulos re
cently presented a new model to generate fractals [21) . 
The main advantage of their model is the possibility of 
controlling the global shape of the phenomenon. The 
model has two components, one smooth component, 
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which is a spline approximating the data constraints pro
vided by the user, and a stochastic component. giving the 
fractal statistics. Interestingly, this model thus combines 
two popular modelling techniques in comput.er graphics 
into one. The model is generated by solving a variational 
problem. The quantity to be minimized is the "spline 
energy" and the "data const.raint" energy. It turns out 
that the frequency response of the spline energy has a 
fractal spectrum (see Equation 17). As wit.h the other 
techniques, it does not gracefully extend to 3-D phenom
ena. 

Generalized Stochastic Subdivision. Lewis in [11] 
generalized the midpoint displacement algorithm to n'on
fractal random fields. He was the first to suggest the 
use of the correlation function as a modelling tool in 
computer graphics. His model is also procedural, requir
ing the solution of a linear syst.em for the generation of 
each new value, as it is estimated from the previously
generated values. The technique he uses (Wiener inter
polation) is similar to the est.imation scheme described 
later in this paper. However, estimation in our model 
is used for a different purpose, namely to estimate the 
global shape. His model has t.he same drawbacks as t.he 
midpoint displacement algorithm, although it is not re
stricted to fractals. 

Textured Ellipsoids. An algorithm similar in spirit 
to the one presented in this paper is presented by Gardner 
[7]. His model works essent.ially for density maps, which 
includes clouds and trees . Gardner uses the ellipsoid as 
the basic building block of his model. The user speci
fies the global shape of the phenomenon by arranging a 
set of ellipsoids. Small-scale detail is then added by us
ing a (solid) texture. Gardner uses an analytical random 
function t.exture. Rendering is very simple: the translu
cence threshold is modified as a function of the projected 
equation of the ellipsoid ont.o the viewing plane. This 
threshold is high near the border of the ellipsoid and low 
near the centre of the ellipsoid. 

Hypertexture. In the SIGGRAPH 89 proceedings 
we can find two 3-D modelling techniques that are similar 
in spirit [10] [17] . In both techniques the global shape of 
a phenomenon is defined using standard graphics prim
itives. Small-scale detail is then added by mapping a 
"thick" texture onto the global shape. Rendering is ac
complished by rather expensive volume-rendering tech
niques. Both approaches give impressive results. 

4 Overview of the Model 
We will now present a new model for simulat.ing visually 
a certain class of natural phenomena. As stated in the 
introduction we want an analyt.ical model t.hat. permits a 
strong degree of cont.rol over t.he global shape, and over 
the small-scale random perturbation of the object. The 
perturbation is given by a random function, which is used 
as a solid texture [15] [16], although a variety of noise
synthesis techniques can be employed. 

Our approach distinguishes between large scale and 
small scale visual detail. In our model, the user specifies: 
the value of the phenomenon at some arbit.rary locations 
of space, and a correlat.ion function describing how the 
values at these points are related. The global shape is 

27 

smoothly interpolated from this data using linear esti
mation. 

Small scale detail, which is produced by an analytic 
random function, makes the phenomenon "look real". 
Without it the object can appear too smooth and artifi
cial. The user has control over this small scale by spec
ifying the correlation function of the random field. We 
will describe below the classes of random functions suit
able for generating small-scale detail. The advantages of 
choosing analytical random functions over random data 
bases (such as those generated by FFT based methods) 
are manifold: storage requirements do not increase ex
ponentially with the dimension of the random field, and 
each value of the random field can be computed inde
pendently, hence the algorithm can be parallelized in a 
straightforward manner. 

The model at both levels of scale uses a correlation 
measure. Unlike fractals, the correlation measures need 
not be the same. The model can also be stratified into 
more discrete levels of scale or generalized to continuous 
scale space. 

5 Smooth Estimation 
A user constrains the global shape by providing n pairs of 
data (ti, di), where ti is the location of the value di. The 
obvious way t.o get the global shape is by smooth inter
polation. In smooth interpolation we look for a smooth 
function L(t) such that 

L(t;)=di (19) 

for i = 1 . . . n. Furthermore we require that the function 
is "well behaved" away from the data locations, which 
precludes the use of Lagrange interpolation. A better 
choice would be thin-plate interpolation [21]. A more 
general solution is obtained if we view the interpolation 
problem as an estimation problem. In estimation the
ory, we wish to estimate the value of a random field at 
a certain location, given the knowledge of its values at a 
set of locat.ions and its second order statistics. A popu
lar estimation method first developed in geostatistics is 
called Kriging [8] . Kriging is a minimum variance, unbi
ased, linear estimation method which solves the following 
problem: given a random field R(t) with known correla
tion C(r) and a set of known values 

find a linear estimator 

L(t) = L Aidi (21 ) 
i=l 

such that E[(L(t) - R(t))2] is a minimum over all such 
(linear) estimators. To ensure uniqueness, we also require 
that the estimator be unbiased: 

E[L(t)] = E[R(t)] = /1-. (22) 

This condition implicitly assumes that the random 
fi eld is homogeneous . Later some extensions for non
homogeneous random fields will be mentioned. The 
above problem is a classical variational problem and can 
be solved by introducing a "Lagrange Multiplier" v. The 
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result is a linear system for the coefficients Ai and the 
multiplier v: 

.AM = bet) (23) 

where.A = (AJ, ... , An, v). The matrix M only depends 
on the covariance of the random field and on t.he location 
of the data points. More precisely, it is 

( 

C(O) 
C2J 

CnJ 

1 
Cn2 

1 
C(O) 

1 

(24) 

where Cij stands for c(lIti - t j ll) . The righthand side of 
Eq. 23 is a vector depending on the data locat.ions and t 
only: 

bet) = (c(lIt - tJ 11), . .. , C(lIt - tnll) , 1). (25) 

Because M is positive-definite and symmetric (cf. Eq. 
11), not only does Eq. 23 always have a solution, there 
are stable methods to compute it. 

It may appear that the met.hod is inefficient, because 
we have to solve a linear system for each location t. How
ever, using the symmetry of M and some linear algebra, 
we can prove that 

L(t) = b(t)y!, (26) 

where y is t.he solution of the linear system 

yM = d (27) 

with d = (d J , ••• , dn , 0). As M and d do not depend 
on t, this system only has to be solved at most once per 
frame . Therefore our estimator is: 

n 

(28) 
i=l 

If we consider a Gatlssian covariance function C( r) = 
exp( _O'r2) then L is a "blobby" [4J. 

In the case t.hat the covariance is undefined, it is still 
possible t.o derive the above equations in t.erms of the 
variogram. In practice, however, we define a pseudo
co variance [8J : 

C'(r) = A -'"Y(r), (29) 

and then apply the above equations to the pseudo
covariance inst.ead of to the covariance. If the covariance 
exists, then A is actually equal to (T2 + p.2 in accordance 
with Eq. 7. The quantity A is t.he asymptotic value of 
the variogram as r tends to infinity. This assumes that 
the correlation structure is inherently local. For the frac
tal models this is not true in theory, but in practice it 
works as an approximation. 

The non-bias condition of Eq. 22 assumes that the 
random field has the same mean for all locations t . If 
the mean does depend on t , i .e. p. = p.(t), we introduce 
a homogeneous random field, called the residual, 

Set) = R(t) - p.(t). (30) 

It is now possible to apply the above Kriging procedure to 
the residual. However, the mean p.(t) may not be known 
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at all. In this case, it is often assumed [8] that the mean 
has a simple form 

k 

p.(t) = L a;/i(t) (31) 
i=l 

where the coefficients ai become additional unknowns of 
the Kriging equations and the li are a set of "basis func
tiolls". Usually the functions li are polynomials of a 
small degree. 

6 Random Functions 
We shall model the small-scale features with a simple ran
dom function. As with the large-scale level, this function 
is characterized by its second-order statistics. By a sim
ple function we mean one that is given by a small number 
of coefficients and that can be evaluated at a point with 
no dependence on previous computations. We will now 
discuss two possibilities. 

6.1 Spectral Sums 
By Fourier analysis, we know that each random field can 
be approximated by a sum of spectral components. This 
is the basic idea behind the different "spectral sum" ran
dom functions. In [16] Perlin introduced a noise function 
N(t). This function smoothly interpolates an integer lat
tice of independent Gaussian random variables. It is thus 
clearly bandlimited. Perlin uses this function as a ba
sis for building more complicated random functions. By 
summing scaled versions of this function he is able to 
generate a fractal "1/ I-noise" : 

(32) 

This corresponds to a fBm with spectral parameter f3 = 
3, as shown in [19]. Mandelbrot in [13] gave an analytical 
random function, which is a modification of Weierstrass 
famous "nowhere differentiable but continuous" function: 

N 

Wet) = L Ak TkH '1j;(O'T-
kt + tPk) (33) 

k=-N 

where the Ak are Gaussian random variables, '1j; is any 
periodic function of period 0', the tPk are uniformly dis
tributed random variables over the interval [0,0'], H is 
the fract.al codimension and r is the lacunarity factor. 
A thorough study of this function can be found in [3]. 
Several extensions to higher dimensions have been stud
ied. Ausloos and Berman in [2] consider the following 
extension: 

M 

net) = LWjW)(nj ' t) (34) 
j=J 

Where the Wj are uniformly distributed random 
variables, the Wj are one-dimensional Weierstrass
Mandelbrot functions and the nj are unit vectors uni
formly distributed over the unit sphere. The constants 
N and M are a tradeoff between image quality and effi
ciency. If M is too small, then directional artifacts be
come visible [20]. The Weierstrass-Mandelbrot function 
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is interesting if we are interested in fractal random func
tions. All the above functions have a random component , 
unlike for example, Gardner in [7], who used a determin
istic spectral sum . The apparent randomness is achieved 
by coupling the phases of the sinusoidal functions in the 
several coordinates. 

6.2 Sparse Convolution 
In [12] Lewis thoroughly reviewed most random func
tions and introduces a new random function to computer 
graphics: 

P(t) = L aih(t - t;) . (35) 

This corresponds to a discrete version of a convolution , 
with kern el h, of a Poisson noise process . A Poisson 
noise process is an ensemble of uncorrelated values ai , 
distributed at uncorrelated locations in space ti . The 
kernel entirely specifies the second-order statist.ics of the 
random function (see Eq. 15) . The qualit.y of th e random 
function can be controlled by changing the densi ty of the 
Poisson noise process. 

7 Rendering of the Model 
7.1 The Rendering Algorithm 
While it is possible to render the a bove model usi ng 
volume-rendering techniques, we prefer to use rendering 
techniques that exploit the geometry of the model and if 
necessary, develop special-purpose renderers to deal with 
common subcases of the model. A particularly desirable 
goal would be to develop t.echniques that. can be incor
porated into a stand ard scanlin e or ray-tracing renderer. 
Let us assume that the phenomenon to be rendered is a 
cloud. We will briefl y outline the algorithm for a ray
tracing environment. 

For each ray do 
(1) Calculate intersection points of ray with 

the isosurface of the global shape 
(2) If no intersection then next ray 
(3) Calculate brightness and self-shadowing at 

the intersection point usi ng the geomet.ry of 
the global shape 

(4) Perturb bright.ness and calculate 
t.ranslucency usi ng the small-scale noi se 
function 

(5) If translucence < 1 then continue to trace 
the ray 

Next ray 

We will discuss s tep (1) in more detail in Section 7.2 
and will present a simple algorithm for steps (3) and (4) 
based on Gardner's work [7] in Section 7.3. 

7.2 Ray Tracing Generalized Blobbies 
While it is possible to generalize the heuristic techniques 
used by Blinn [4] to ellipsoidal correlations, we prefer to 
use a more robust approach based on interval arithmetic, 
which was introduced to computer graphics by Mitchell 
[11]. Recall that our global model has the following form : 

n 

L(t) - T = LYiC((t - ti)Qi(t - ti)l) - T, (36) 
i=l 
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where T is a given threshold (defining the blobby as an 
isosurface), and the Q i are as in Eq. 8, which gives an 
ellipsoidal shape to the correlation measure. When cal
culating the intersection of a ray and the blobby, we first 
transform the ray to its canonical form R(t) = (0,0, t) , 
and then substitute R(t) into L(t) to get the equation 

<p(t) = LYiG(Ci + bi(t - Zi) + ai(t - Zi)2) = T (37) 
i=l 

where ai, bi and Ci are given by the coefficients of Qi 
and the components of t i. We isolate all the roots of <p 

in intervals using interval arithmetic. Once we have an 
interval [a , b], which is guaranteed to contain only one 
root , we can apply a standard root finder such as the 
Newton iteration . For more details see [20]. 

7.3 The Illumination Model 
From the global shape we get an intersection point P , 
the normal N to the surface and the distance d traversed 
through the cloud by the ray. First we calculate the 
classical illumination I c/a .. ic given by any illumination 
model incorporating the ambient, diffuse and specular 
term . I c/aHic accounts for semi-global illumination ef
fects such as self-shadowing. We then texture the global 
shape by some random fun ction R: t = R(P) , and com
pare this texture value t to a threshold T whi ch is a 
fun ction of the distance d and the cosine of the angle 
J.L between the vi ewing vec tor and the normal N. We 
defin e a threshold Tl at the "edge" of the cloud (typi
cally very high) and a threshold T2 at the "centre" of the 
cloud (typically very low). The threshold is varied in our 
current implem entat ion as 

where 0' is a user specified parameter which influences 
the "fuzziness" of th e cloud's "edge" . The fin al texture 
val ue is set to 

to = max(O, v(t , T)) (39) 

wh ere v is a normalization function which is currently 

v(t , T) = (t - T)/(1 - T). ( 40) 

If hack is the illumination coming from behind the cloud 
then the final illumination is given by: 

I = tolc/aHic + (1 - to) ex p( -O'dll)hack. (41) 

8 Results 
As a tes t case, we have applied our model to clouds . 
Figures 1 and 2 depict sample data given by reddish 
spheres, with saturation of red denoting proximity to the 
viewer. These figures illustrate the global shape under 
an isotropic (spherical) correlation function with differ
ent parameters. Figures 3 and 4 depict the addition of 
various amounts of noise to the shape from Figure 3. Fig
ure 5 gives a global shape resulting from the same data 
as in previous figures but using an ellipsoidal correlation 
function . Lastly, Figure 6 gives a resulting cloud a fter 
adding noise. Rendering costs are not high: on the order 
of 15-20 minutes for a 256 x 256 images on a SGI Personal 
Iris 25. 
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9 FUture Work 
We have introduced a new multiple-scale stochast ic mod
elling primitive and have described a low-cost , low
st.orage rendering technique t.hat can be embedded in a 
stand a rd ray tracer. The directions to go from here are 
varied. The model permit.s great fl exibility in the choice 
of correlation functions for t.he global shape. So far we 
have only used a Gaussian, but. others are possible . We 
also wish to apply other noise-sy nthesis techniques to the 
local-scale model. Lastly, because our model is inherently 
geometric at the global scale, we have analytic values 
for dept.h and density through th e object. This means 
that it may be possible to construct more reali stic models 
containing terms for self-shadowing and refraction . The 
model is certainly not specific to clouds , and we hope 
to demonstrat.e other phenomena that are equally-well 
modell ed. 
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