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Abstract 

Recently in [7). a new multivariate B-spline scheme 
based on blending functions and control vertices was 
developed . This surface scheme allows CIo-1-continuous 
piecewise polynomial surfaces of degree k over arbitrary 
triangulations to be modelled . Actually, piecewise poly
nomial surfaces over a refined triangulation are pro
duced given an arbitrary triangulation . The scheme 
exhibits both affine invariance and the convex hull prop
erty, and the control points can be used to manipulate 
the shape of the surface locally. This paper describes 
a test implementation of the scheme for quadratic and 
cubic surfaces. Issues such as evaluating points on the 
surface, evaluating derivatives on the surface and repre
senting piecewise polynomial surfaces as linear combi
nations of B-splines will be discussed. Several examples 
illustrate the implementation. The work is incorporated 
into a surface editor which is currently being developed 
at the University of Waterloo. 

Keywords: Blossoming, B-patch, B-spline surface, 
blending functions, control points, simplex splines, po
lar forms . 

1 Introduction 
Tens6r-product B-spline surfaces [1, 2, 8, 9, 14, 24J have 
proven themselves an excellent tool for the modelling of 
free form surfaces. However, tensor-product surfaces 
also have their well-known draw-backs if the modelling 
of largely irregular objects is required. Therefore, not 
surprisingly, the need for B-splines over non-rectangular 
regions has been expressed quite early [25J. 

Splines over arbitrary triangulations of the parame
ter plane have first been considered in [5, 17) . These 
multivariate splines are defined as projections of sim
plices and are therefore called simplex splines . The 
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main drawback of simplex splines in the past has been 
the difficulty to form linear combinations and the ab
sence of control points . 

A different approach has been taken in [30). The B
patches developed there are based on the study of sym
metric recursive evaluation algorithms and are defined 
by generalizing the de Boor algorithm for the evalu
ation of a B-spline segment from curves to surfaces. 
B-patches have control points but the construction of 
smooth surfaces still requires considerable computation. 

Other approaches to the construction of B-splines 
over irregular domains have been based on subdivision 
[3, 11), interpolation [21), and on the use of multisided 
patches [18, 19, 26). However, each of these schemes 
has its own difficulties . 

One really needs a scheme which constructs auto
matically smooth complex surfaces and which contains 
control vertices for shape manipulation. A new multi
variate B-spline scheme based on a combination of B
patches and simplex splines which meets these criteria 
was developed in [7) . This paper discusses details of an 
implementation of it which is being used in a surface ed
itor being developed at the University of Waterloo . A 
process of converting piecewise Bezier polynomials to 
this new scheme and vice-versa will be explained. This 
leads to a method for surface refinement. 

The paper is divided up in the following way. Sec
tion 2 introduces some notation which will be used in 
the remainder of the paper. Section 3 describes the new 
B-spline scheme. Section 4 discusses the implementa
tion while Section 5 illustrates the new B-spline scheme 
through examples . We finally finish off with some con
cluding remarks . 

2 Notation and Definitions 

This section introduces some notation which is used in 
the rest of the paper. 

Let W = {WO, Wl , W2} C R2 be a set of a.ffinely 
independent points and let u E R2 . 1£ the determinant 
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d(W) is defined as 

d(W) = det ( 1 
Wo 

1 

and the determinant d.;(uIW) as d(W) with the point 
W j being replaced b'y u, then the barycentric coordinates 
of u with respect to the ordered set Ware given as 

Note that 

~ . ( ) _ dj(uIW) 
J u - d(W) , 

2 

U = L ~j(u)Wj and 
j= O 

j = 0 ... 2 (1) 

2 

L ~j(u) = 1. 

j=o 

For a set V = {vo, ... , V n } C R2 , we let [V] denote 
the convex hull of V and we let [V) denote the half
open convex hull of V . The definition of the half-open 
convex hull is given in [29] and is repeated here . 

Definition 2.1 (Half-Open Convex Hull) Given 
Vo, . .. , Vn E IR?, the half-open convex hull is then de
fined as follows : Let € be the unit horizontal vector in 
JR 2. A point u E JR2 belongs to the half-open convex 
hull [vo, ... , v n ) if and only if there exists a vector 71 
with positiv~ slope and a positive scalar € such that the 
set {,,€ + t71 I 0 < s, t, 0 < s + t < €} is completely 
contained in the interior of [vo, ... , v n ] . 

3 Bivariate B-Splines 
The new B-Spline scheme is obtained by matching B
patches [28, 30] with simplex splines [5, 17]. By match
ing we mean that the recurrence relation which de
scribes simplex splines is made to agree with the re
currence relation for B-patches under some conditions. 
Before we present this, we need some background infor
mation on simplex splines and B-patches. 

3.1 Simplex Splines 

Definition 3.1 (Simplex Splines) 
Let V = {to, . .. , t m} be a finite set of points in JR2 and 
let u be a point in JR2. The simplex spline M(ulV) = 
M(ulto, ... , t m) is defined recursively as follows . For 
V = {to, h, t 2 } we let 

where 

M(ult t t) = X[to,t"t,)(u) 
0, I, 2 Id(to, t 1 , t 2 )1 ' 

if u E [to, tl , t 2) 
otherwise 

(2) 

(3) 

u the characteristic function on [to, t 1, t2 ). For V = 
{to, ... , t m}, m > 2, we set 

2 

M(ulV) = ~ dj~(~~) M(ulV\{tij}) (4) 
J=O 

2 

where W = {t.o ' ti, , t.,} is any subset of affinely in
dependent points in V [!30J. The points t o, ... ,tm are 
referred to as knots. 

It is worth mentioning that the above definition is 
completely independent of the choice of W [20] . 

Equations (2) and (4) differ slightly from the ones 
given in [17, 20] in that we have based the character
istic function on the ha.lf-open convex hull [to, t 1, t 2) 
(Definition 2.1) instead of the convex hull [to,t1,t2]. 
Otherwise, problems arise when the recurrence relation 
is used for points u which lie along knot lines (lines 
connecting any two knots) [20] . The above definition 
alleviates the problem by modifying the area of sup
port for the B-splines . This is a.nalogous to the case for 
univariate B-splines [27] where they are non-zero on the 
half-open interval [to, tt} instead of the closed interval 

[to,td· 
The simplex splines M(ulV) then exhibit the follow

ing properties : 

• Piecewise polynomial of degree k = m - 2 

• Local support on the closed convex hull [V] 

• Non-negative - M(ulV) 2: 0 for all u E R2 

• Ck-1-continuous everywhere 

Further information can be obtained fr om [5 , 6 , 15, 16, 
17,20,32]. 

Definition 3.1 shows us that plenty of simplex splines 
exist. The question which remains is how to form lin
ear combinations from them such that piecewise poly
nomial surfaces over arbitrary triangulations can be 
constructed . This involves choosing the right simplex 
splines and the right norma.1ization. These problems 
may be solved by studying B-patches. 

3.2 B-patches 

B-patches [30] are a patch representation for polyno
mial surfa.ces that arises from generalizing the de Boor 
algorithm from curves to surfaces [28, 30] . One defini
tion of B-patches is by means of their blending functions 
BMu). 

Definition 3.2 (B-patch Blending Functions) 
Let 6(I) = [t' o, t ." t. ,] E JR2, I = (io, il,i2) 
be given along with the additional set of knots 
ti o,O , .. . , t io, h.-l, tit .O, . . " ti 1, k - l , ti2 ,O , ... , ti 2,k-l In 

JR2 such that tio,O = t io' t i" O = t i" and t ."o = 
ti, . Also, assume that eve ry trip le set of knots 

(t' o,co ,ti"C" t i"C,), 0 ::::: {30 + {31 + rh ::::: k - 1 is 
affinely independent, i. e . [tio ,c, , ti , ,131 , t. i"C,] forms a 
proper triangle . Then, for u E JR2 , the B-patch blend
ing fun ctions BJ(u), 1.61 = k, of degree k over 6(I) 
are giv en by the recurrence 

B(o,o,o) (u) = 1, (5) 

Graphics Interface '92 



and 

2 

Bh(U) = L.A~_'J,j(u)B~_'J(u), 1.81 > o. (6) 
j= O 

Terms with negatitle indices are set to zero and 
.A~,j(u) = dj(uIWJ)/d(WJ) are the barycentric coordi
nates of u with respect to WJ = {tio ,,(90' til ,,(91' ti, ,,(9, } . 
Here eO = (1,0,0), e

1 = (0, 1,0), and e2 = (0,0,1) . 

The B-patch blending functions form a partition of 
unity (30), i.e . 2:1,(91=10 Bh(u) = 1. Every polynomial 
surface F can be represented as a linear combination of 
them as follows : 

where 

F(u) = L c~Bh(U), c~ E R3 
1,(91=10 

(7) 

(8) 

are the B-patch control points which form the B-patch 
control net. Here f represents the bloHom or polar form 
of F [10 , 22 , 23]. The representation given by (7) is 
called the B-patch. 

The shape of a B-patch is strongly influenced by the 
shape of its control net . We can form larger surfaces 
by piecing together individual B-patches. However, the 
construction of overall smooth surfaces still requires 
quite a bit of computation. What is needed are blending 
functions which produce smooth piecewise polynomial 
surfaces automatically. Simplex splines, which were in
troduced in Section 3 .1, give usjust that and by combin
ing them with B-patches, we are led to the new B-spline 
scheme . 

3.3 The New B-Spline Scheme 

The development of the B-spline scheme in [7] is based 
upon the fact that the recurrence relations (2), (4) and 
(5),(6) agree under the proper renormalization and the 
proper selection of knots. We now briefly describe its 
construction. 

Let T = {6(I) = [tio, ti l ,ti, 1 I 1 = (io,il,i2) E 

T <;;; Z~} define a triangula.tion of R2 or some bounded 
domain D C R2 . Then, for any two I , JET, 6 (1) n 
6 ( J) is empty or is a common vertex or edge of 6 (1) 
and 6(J) (see Fig. 1). 

Next, a sequence of knots ti,O, . .. , ti ,k is assigned to 
each vertex ti in the triangulation such that ti ,o = t i 
and that any set of three knots is affinely independent . 
The sequence of knots ti,o, ... , ti,k is referred to as the 
cloud of knots associated with the vertex ti . We are 
now in a situa.tion to construct simplex splines of degree 
k over the triangulation T . We consider the following 
simplex splines: 

M(uW) = M(uWJ) (9) 

3 

t11 

Figure 1: Triangulation of a bounded domain D C 
ill? 

where 1 E T, 1.81 = k, and 

(10) 

{tio,O , " . , tio,,(9o' til ,0, · · · , ti l ,,(9I' ti" O, ... , ti",(9,}. 

We define the regions n~ as follows: 

We also assume that n~ "# 0 which can be obtained if 
each of the clouds of knots associated with the three 
vertices of a triangle is kept separate from one another . 
In other words , for each vertex ti in the triangulation T, 
its cloud of knots is contained within a circle Ci centred 
at ti such that Ci nCj = 0, for all i "# j (i.e ., none of the 
circles intersect one another). Figure 2 below illustrates 
an example of this setup. 

Figure 2: The region n~ 

Then , under these conditions, it is shown in [7] that 

Bh(u) = Id(WJ)IM(ulv/ff), for all u E Ok (12) 

where 1131 k, VJ is defined 111 (10) and 

~l'J = {tio,,(9o, t;1 ,,(91' t;",(9, }. From (12), we let the 
normalized B-splines be defined as 

NJ(u) := Id(WJ)IM(uWJ) . (13) 

These will be the blending functions used in the new 
B-spline scheme. A B-spline surface F of degree k o-/er 
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a given triangulation T with a knot net K = {ti,1 liE 
Z,l = 0, . . . , le} can then be defined as 

F(u) = L L CI,f3 NJ(U). (14) 

lET 1f3I=h 

The CI,f3 E R3 are the control points which make up 
the control net for the surface F. 

Since both simplex splines and B-patches are used 
to develop the new scheme, their individual properties 
are inherited by the new scheme. It is these proper
ties which make it possible (relatively easily) to model 
Ch-I-continuous piecewise polynomial surfaces of de
gree le over arbitrary triangulations. 

Affine Invariance: The relationship between the 
control points and the B-spline surface is invariant 
under affine coordinate transformations. That is, if 
et : R 3 -+ R 3 is an affine map (rotation, translation, 
scaling), then 

lET 1f3I=h lET 1f31=1o 
( 15) 

Convex Hull Property: A B-spline surface lies in 
the convex hull of its control points. 

Local Support: Movement of the control point c~ 
only influences the region of the surface on 6(1) and 
those surrounding it. 

Continuit.y A degree le B-spline surface is a piece wise 
polynomial of degree le over the sub-triangulation in
duced by its knot net that is Ch-I-continuous every
where if its knots are in general position. But, from the 
theory of simplex splines, knot multiplicities along a line 
reduce the order of continuity along this line [20) . For 
example, a degree 2 surface with knots in general posi
tion is Cl-continuous everywhere. Placing three knots 
on a line reduces the continuity to CO and placing four 
knots produces a discontinuity along the line . Thus, 
the underlying knot net provides additional degrees of 
freedom to control the shape of the surface. Figure 3 
shows the quadratic normalized B-splines over different 
knot configurations. 

4 Implementation 

The theory presented in the previous sections is used 
in a surface editor which is being developed at the Uni
versity of Waterloo. A surface editor allows one to ma
nipulate the shape of 8 . surface through the movement 
of the control vertices which make up the control net . 
The new B-spline scheme also allows surface changes 
to be made through movement of knots . This section 
describes some of the algorithms used in the editor . 

4 

4.1 Evaluation 
The most important algorithm required is one which 
evaluates points on the surface. That is, given a pa
rameter value u E R 2 in the triangulation T, we want 
the value of the point on the surface corresponding to 
u. We use equation (14) as the basic formula in our 
algorithm. Since the normalized B-splines NJ(u) are 
the most complex terms in the equation, we will only 
concentrate on them. 

In order to evaluate the normalized B-splines NJ(u) 
defined in (13), we first need to compute the simplex 
splines M(uIVJ) defined by the recurrence (2), (4). We 
start off by describing the evaluation of linear simplex 
splines because all higher order splines are composed of 
these. 

Let VJ = {to,tl,t2,t3 } C R2 and without loss of 
generality, let the set W = {to, t l , t 2 } . Then, after 
expansion of the recurrence and substitution of the base 
case (2), the linear simplex spline becomes 

M(uIVJ) 
do(uIW) X(t"t.,t3)(u) + 

deW) Id(t l ,t"t3 )1 
dl(uIW) X(tO,t.,t3)(u) + 

deW) Id(to, t 2 , t 3 )1 

d2 (uIW) X(tO ,t"t3)(U) 

deW) Id(to,tl,t3 )1 ' 
(16) 

One can evaluate (16) by blindly computing and plug
ging in values for each of the terms . However, depend
ing on the value of the characteristic function X (3), 
some of the terms may be zero . This can lead to a 
very inefficient evaluation technique . A better method 
is to compute only those terms for which the character
istic function is non-zero . This is, in itself, governed 
by the choice of W. To do this , we need to know 
where in the knot configuration the point u lies . This 
involves looking at the various knot configurations for 
a linear spline (see Fig. 4). We first point out that 

Figure 4: The four essentially different knot config
urations for a linear B-spline lIf(ulto, tl, ta, t3). 

each of the configurations is composed of the fOllr trian
gles (although some may be degenerate): 6 [ t o, t1, t 2 ), 

6 [tO, t l, t3J, 6 [tO, t2 , hJ, 6 [tl,t2 , t3) . Each of these 
triangles appears in at most one of the characteristic 
functions in (16) or ill the set W . For every single one 
of the configurations ab ove, if a point 11 is inside its 
half-open convex hull , then 11 belongs to exa.ctly two of 
its triangles . For inst ance, in the leftmost configuration 
above, if 11 E [to,t l, t,), then either 11 E [to,t l ,t3) or 
11 E [tl, t 2, t3) but not both . If 11 lies on the boundary 
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N{lo over 
Nioo over 

N{l o over Nioo over 

Figure 3: The quadratic normalizedB-splines N[lO(U) and NJoo(u) over the six different knot configura
tions. ® is a double knot and CD is a triple knot. 
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between two triangles or on the vertex of t.wo or more 
triangles, then Definition 2.1 for the half-open convex 
hull ensures that u only belongs to one of them. It is 
this, which allow points on knot lines to be evaluated 
correctly [16, 20) . 

Using these facts then, we let W be one of the trian
gles in which u belongs . In light of the above discussi on, 
this will force two of the three characteristic functions 
to be zero, and hence leaving only one term in (16) to 
be evaluated. 

The only real work involved then is to figure out 
which triangles the point u belong. One way is to calcu
late the barycentric coordinates of u with respect to the 
vertices of the triangle. If the coordinates are all greater 
or equa.l to zero, then u is inside, otherwise it's outside. 
Of course, a slight modification has to be made since 
we are dealing with the half-open convex hull instead 
of the closed convex hull. 

In the implementation of the su rface editor, the com
putation is organized such tha.t intermediate results ob
tained from determining the regions containing u are 
later re-used in the evaluation of the linear B-spline. In 
this way, only a small number of determinants need to 
be explicitly computed while others can be derived from 
some linear combination of these . 

Higher order simplex splines (m ~ 4) are simply com
puted using the recurrence relations (2),(4). We do not 
try to optimize the computation like we did in the lin
ear case above because it is not worthwhile due to the 
increase in the number of knot configurations. At each 
level of the recurrence, any choice is suitable for the set 
W C VJ as long as it forms a proper triangle. However, 
a good choice is to pick W such that u E [W) which 
gives positive barycentric coordinates. This eliminates 
any negative terms and hence, increases the numerical 
stability of the evaluation [16). 

Having computed the value for the simplex spline, we 
can get t.he value for the normalized B-spline from (13) 
and finally evaluate the point on the surface from (14) . 

4.2 Derivatives 

A directional derivative along a given direction v E R2 
for a parameter value 11 E R2 may be computed in the 
same ma.nner as in its evaluation . The only difference 
lies in the fact that the barycentric coordinates of a 
vector v add up to zero instead of one, i.e. 

2 2 

L/Lj(v) = 0 and v = L/Lj(v)tj. (17) 
j=O j=O 

The directional derivatives for degree k simplex splines 
is then given as 

2 

'VvM(ulV) = k L /L j(v)M(uIV\ {tiJ) (18) 
j=O 

with V as defined in Definition 3.1. Then t.he direction al 
derivative along the direction v at a parameter value u 

6 

for a surface F is given by 

VvF(u) = L L c~DvNJ(u) (19) 
lET 1i91=1e 

with 
DvNJ(u) = Id(WJ)IDvM(ulV) . (20) 

We can then use (19) to calculate the tangent normal 
for a point on the surface in the following way. Any 
two directional derivatives Vl, V2 E R 2 

(Vl 1= aV2, a E 
R) are computed at the point and the resulting cross
product Dv, F(u) x Dv,F(u) will yield the desired 
normal vector. The surface editor makes use of these 
directional derivatives in its surface shading (Gouraud) 
routines . 

4.3 Piecewise Polynomial Surfaces 

For a surface scheme to be as flexible as p ossible, it 
must be able to represent as many surfaces as possible. 
This section shows that any piecewise polynomial sur
face F over a triangulation T can be represented as a 
linear combination of norma.lized B-splines NJ(u) . It 
also shows that B-splines can be represented as piece
wise Bezier surfaces. 

The precise statement for the representation of piece
wise polynomials as linear combinations of B-splines is 
as follows [31) 

Theorem 4.1 Let F be any piecewi!e polynomial sur
face of degree k over a given triangulation T that i! 
Cle-l-continuou! everywhere and let h be the polar 
form of the restriction of F to the triangle 6(1), I E 1 . 
Then 

F(u) = L L CI,i9 NJ(U) (21) 
lET 1i91=1e 

with 

CI ,i9 = fl(tio, O, . . . , tio,i9o-l, "" ti"O, ... , ti"i9,-I). 
(22) 

If we let F == 1, then its pola.r form f == 1 and from 
Theorem 4.1, we get LI,i9 NJ(u) = 1 which shows that 

the normalized B-splines NJ(u) form a global partition 
of unity. 

Piece wise Bezier surfaces F of degree k over irregu
lar triangulations T can be converted to B-spline sur
faces of the same degree by using Theorem 4.1. Briefly, 
the algorithm is as foll ows . For each vertex ti of a 
given triangula.tion T of a. bounded region D ~ n 2 , 

knots ti,o , . .. , ti,1e are assigned (in general posit.ion) to 
i.t such that t i,o = ti. The assignment must follow the 
conditions in Section 3.3 and in addition, vertices on 
the boundary of D must have their knots outside of D . 
Then , polar forms fr of the restriction of F to every 
6 (1) E T , I E 1, are computed using the multiaffine 
version of the de Ca.steljau algorithm [10, 23) . The B
spline cont.rol points c~ are then obt ained by evaluating 
h using (22). 
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Converting degree k B-spline surfaces F over arbi
trary triangulations T to piecewise Bezier surfaces P 
requires a bit more work. We need to come up with two 
things: a triangulation and the Bezier control points. 
We cannot use T as our triangulation, as in previous 
case, because we now need a finer triangulation due to 
the additional lines introduced by the knots. A finer tri
angulation can be derived from the knot net associated 
with each 6(1) E T, I E 'I (see Fig. 2). Let's consider 
01lly the 6 [tio,O , tit,O, ti.,O] in Figure 2 and its interior 
including all line segments passing through the interior 
We have, in effect, divided up the triangle into regions 
using the knot lines. Note that not all of the regions 
in 6[ tio ,0, ti 1 ,0 , ti. ,0] are triangular; so, we must further 
divide (arbitrarily) these regions up . The resulting con
struction yields the refined triangulation 1'1 restricted 
to 6 ( 1) . Then, the refined triangulation for the piece
wise Bezier surface P is l' = UITI, 6(1) E T , lET. 

Having constructed the triangulation, we next dea.! 
with the Bezier control points. For each domain trian
gle 6 (1) E 1', we associate with it , a Bezier triangle 

with control vertices b~. From the theory of Bezier 
triangles [12], a Bezier surface interpolates the corner 
vertices (those which lie at the corners of the domain 
triangles) of its control net . Thus, these corner control 
vertices will precisely lie on the surface F and can be 
computed by eva.!uating F(ti) for all vertices ti in the 
triangulation T. The other control vertices are given by 

110 times f3'J times 

where f is the multi affine definition of F . 

4.4 Refinement 

For practical purposes, surface schemes must also allow 
for refinement or subdivision [4, 13] . The idea is that 
fine detail may be required for parts of the surface but 
the existing control points do not allow for the mod
elling of such detail. Thus, we need to be able to add 
extra control points only to those regions . 

Then, for the new B-spline scheme, we need to have 
a finer triangulation over the areas that need to be re
fined . A finer triangulation will, in effect , provide us 
with more control vertices . We use a combination of 
the conversion algorithms from Section 4.3 to solve the 
problem. 

Suppose we are given a B-spline surface F over an 
arbitrary triangulation T and we want to refine the sur
face region FI that's restricted to 6(1) E T . First, FI 
is converted into a piece wise Bezier surface PI using 
the la.tter algorithm in Section 4.3. Then, the result
ing Bezier surface PI can be converted back into B
spline representation using Theorem 4.1. Hence , a finer 
triangulation with control vertices over 6 (1) has been 
produced. This technique also lends itself to recursive 
refinement (i .e. refined areas may be further refined, 
etc ). 

7 

5 Examples 

This section illustra.tes examples of quadratic surfaces 
produced from our test implementation. The creation 
of the triangulations and the positioning of the knots 
for the surfaces were all done manually - no automatic 
procedure was involved . However, the B-spline editor 
was used to position the control vertices . The examples 
show advantages and applications of the new B-spline 
scheme. 

Figure 5 shows the a.dvantage of converting a C l _ 
continuous piecewise polynomial quadratic Bezier sur
face into a quadratic B-spline surface. The movement 
of a Bezier control point will generally destroy the con
tinuity of the surface (Fig . 5(b)), but the movement 
of a B-spline control point will preserve the smoothness 
and Cl-continuity throughout the entire surface (Fig . 
5(d)) . Thus, when designing an object, one does not 
need to worry about preserving its smoothness, but, 
can concentrate solely on designing its shape. 

Figure 6 shows two examples of an application to the 
polygonal hole problem. This problem involves a degree 
k piecewise polynomial surface containing an interior 
hole . We wish to patch up the hole such that the over
all smoothness or continuity of the surface is preserved 
(especially around the boundary of the hole) . The idea 
of the solution is the following . We first represent the 
piecewise polynomial surface around the hole as a lin
ear combination of B-splines (Theorem 4.1). Then, this 
B-spline surface is extended into the hole to produce an 
overall Ck-l-continuous fill of the hole. 

6 Conclusion 

The new B-spline scheme offers a method of modelling 
complex and irregular objects over arbitrary triangula
tions. Smoothness, locality and the modelling of discon
tinuities are inherited from simplex splines while con
trol points, affine invariance, and the representation of 
piece wise polynomials are obtained from B-patches. 

The implementation that is presented in this paper 
has succeeded in demonstrating the practical feasibil
ity of the fundamental a.!gorithms underlying the new 
surface scheme. Quadratic and cubic surfaces over ar
bitrary triangulations can be edited and rendered in 
real-time. Applications like the filling of polygonal holes 
demonstrate the potential of I.he new scheme when deal
ing with concrete design problems. Further improve
ments to our editor that simplify user input and addi
tional applications are currently under way. 
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