
78

Annotating the Real World with Knowledge-Based Graphics
on a See-Through Head-Mounted Display

Steven Feiner
Blair MacIntyre

Doree Seligmann

Department of Computer Science
Columbia University

New York, New York 10027
{feiner, bm, doree }@cs.columbia.edu

Abstract

We describe an experimental, knowledge-based, virtual-world
system that uses a monocular "see-through" head-mounted
display to overlay graphics on the user's view of the real
world. In a simple equipment maintenance domain that we
have developed, the overlaid graphics include 3D represen­
tations of actual physical objects, textual annotations and cal­
louts, and virtual metaobjects, such as arrows. A set of 3D
position and orientation sensors monitor the user's head and
several of the objects in the world. Our system includes a
knowledge-based graphics component that determines what
information to present, a display-list-based display server that
represents the models to be displayed, and a set of sensor
servers that track the user and selected objects. The sensor
servers directly modify the object transformations and view­
ing specification in the display list. The knowledge-based
graphics component also receives the sensor data and uses it
to redesign the information being presented.

Resume

Nous decrivons un systeme graphique experimental a base de
connaissances, qui enrichit la vision du monde per~ue par
I'utilisateur en super-imposant des graphiques generes par le
systeme. L'utilisateur porte une lentille monoculaire semi­
reflective sur laquelle s'affichent les images que notre
systeme decide de montrer. Nous avons developpe le systeme
dans le domaine de la maintenance d'equipement. Dans ce
domaine assez simple, les graphiques superimposes compor­
tent des representations 3D des objets reels, des annotations
textuelles, et des "meta-objets" virtuels (par example, des
fleches). Un ensemble de detecteurs 3D determinent
I'orientation et la position de la tete de I'utilisateur et de
certains objets dans I'environnement. Notre systeme com­
prend trois composants principaux: un systeme de generation
de graphiques a base de connaissances determine non seule­
ment quelles informations doivent etre presentees mais aussi
comment les presenter; un gestionnaire d'ecran a base de Iiste
d' objets represente les modeles des objets a afficher, et un
ensemble de serveurs de detecteurs qui suivent la tete de
I' utilisateur et certains objets. Les serveurs de detecteurs
modifient la position des objets et les specifications de la

scene directement dans la liste des objets. Le compos ant
graphique a base de connaissances re~oit aussi les valeurs
retoumees par les detecteurs et utilise cette information pour
reviser I'information a presenter.

Keywords: knowledge-based graphics, virtual worlds, head­
mounted displays, heads-up displays, augmented reality

1 Introduction
Virtual worlds that use 3D displays and interaction devices
have the potential to make possible greatly improved explana­
tions of complex physical tasks. These technologies promise
to allow a user to view and manipulate information in ways
that better exploit our ability to interact with 3D spatial infor­
mation than does the use of flat 2D displays and input
devices. As the richness and variety of the information that a
system can present to a user increases, however, so does the
difficulty of designing the presentation. Desktop publishing
systems require more skill and time to master than do simple
word processors; multimedia presentation editors demand yet
more design expertise to use effectively. Perhaps the ultimate
design demands are posed by virtual worlds, which can re­
quire the coordinated design of material that affects all sen­
sory modalities, and that must respond continuously to the
user's interactions.

Over the past years, we have been developing knowledge­
based systems that address the automated design of presen­
tations that explain how to perform simple 3D tasks. These
systems generate static and animated graphics [6,22, 14], and
multimedia presentations [8] that satisfy a high-level expres­
sion of the information to be communicated. Here, we
describe some first steps that we have taken toward building a
testbed system for exploring the automated design of virtual
worlds to explain maintenance and repair tasks. In this work,
we are concentrating on the knowledge-based generation of
graphics that overlay the user's view of the physical world,
and which dynamically take into account information about
the user, task, and changes in the surrounding world.

Ivan Sutherland, in his pioneering research on head-mounted
displays, developed a binocular "see-through" system [23].
Each eye viewed a miniature vector CRT, whose synthesized

Graphics Interface '92

79

•

.' ..
.... III., _ •• .;J'P

Figure 1: Prototype see-through head-mounted display in use in testbed laser printer maintenance application.

graphics were merged with the user's view of the real world
by means of a beam splitter. Since then, other graphics
researchers have explored the use of see-through displays,
both as part of head-mounted displays (e.g., [11,4]), and
desk-mounted displays (e.g., [15,21]). We have assembled a
relatively inexpensive see-through head-mounted display,
using a Reflection Technology Private Eye [20], a Logitech
3D position and orientation sensor [18], and a mirror beam
splitter. This system, shown in Figure 1 in use in an ex­
perimental maintenance application described below, is a
research prototype: it produces a dim, bilevel, monochrome
image, and overlays graphics on a relatively narrow portion of
the user's visual field, providing approximately a 22° horizon­
tal field of view. Nevertheless, it has proven to be a useful
research tool.

In the remainder of this paper, we describe the knowledge­
based graphics component that designs what the user sees, a
simple maintenance application with which we are ex­
perimenting, and the design and implementation of our over­
all system architecture.

2 Knowledge-Based Graphics Component

2.1 IBIS Overview
The knowledge-based graphics component that we use is
based on IBIS (Intent-Based Illustration System) [22] . IBIS is
a rule-based system that designs illuslraJions, a term that we
use to refer to pictures that are designed to satisfy an input

communicative intent. The communicative intent is specified
by a prioritized list of communicative goals. Each com­
municative goal specifies something that the picture is to
accomplish; for example, to show an object's location or
shape. IBIS distinguishes between design and stylistic choice.
The design of an illustration corresponds to its high-level
structure, specifying those visual effects that must be ac­
complished together to satisfy the illustration's communica­
tive goals; the styles used in an illustration represent the
different ways each visual effect may be accomplished.

IBIS uses two kinds of rules to design an illustration:
methods and evaluators. A method specifies how to ac­
complish a particular style or design; an evaluator determines
whether a particular style or design has been accomplished.
IBIS's rules allow it to examine partial solutions and to back­
track when conflicts occur.

The illustrations that IBIS generates are dynamic, rather than
static: IBIS can continuously receive and handle changing
constraints and goals, while at the same time realizing a
particular intent. For example, IBIS normally determines a
viewing specification of its own when designing an illustra­
tion. If the viewing specification is provided externally,
however, then IBIS attempts to use it in generating a picture
that satisfies the goals, and will incrementally redesign the
picture if the viewing specification changes. This allows
IBIS's user to navigate within the illustrated world by chang­
ing the viewing specification. IBIS's navigation facility is

Graphics Interface '92

different from that used in traditional "synthetic camera"
graphics in that the binding between the input intent and the
output illustration is preserved. IBIS continuously examines
the illustration as it is altered to attempt to satisfy the
illustration's communicative goals. As the user changes the
viewing specification, conflicts may occur, causing IBIS to
adopt a new design or set of stylistic choices. Thus, the
illustrated world itself may change as the user explores it. (A
rudimentary precursor of this capability was introduced in
early vector systems that made traversal of an object contin­
gent upon the screen size of its precalculated extent, allowing
an object's level-of-detail to change with its size [24] .)

As a simple example of how the original version of IBIS
works, consider the need to maintain object visibility. In the
course of satisfying the input communicative goals, IBIS will
determine that certain objects must be visible, and therefore
unoccludable. This typically occurs if the objects participate
directly in a communicative goal. Unoccludable objects must
not be obscured by others in the world. IBIS can maintain the
visibility of unoccludable objects by selecting an appropriate
viewing specification for the illustration, by generating an
inset sub-illustration, or by altering the appearance of the
obscuring objects. For example, IBIS can decide not to
render the obscuring objects at all, to render them as partially
transparent, or to use a "cutaway" view [9].

2.2 Extending IBIS for a Head-Mounted
See-Tbrougb Display

In extending IBIS to support a head-mounted see-through
display, we have had to take into account a number of impor­
tant differences:

• The original IBIS assumes that it generates all of
what the user sees. In overlaid graphics, however,
IBIS must instead enrich the user's view of the
world with additional information.

• The user could modify the viewing specification
after the original IBIS chose an initial viewing
specification. In contrast, when designing over­
laid graphics, our extended IBIS must from the
beginning relinquish to the user all control of the
viewing specification, since only the user can
determine where they look.

• The world was assumed to change only after an
illustration was completed in the original IBIS.
This was easy to enforce since IBIS maintained
control over what was visible, and based its il­
lustrations on a world model that was frozen
throughout the illustration's life. In contrast, our
extended IBIS must take into account ongoing
changes in the world as it generates illustrations.

• The original IBIS was responsible for achieving
all communicative goals itself. Because the ex­
tended IBIS controls only what it generates, the
user becomes an active participant in achieving
the communicative goals. For example, if a goal
is to specify an object's position, and the object's
projection does not lie within the window, IBIS
must indicate to the user where they should look.

80

Based on these differences, we have developed a preliminary
set of new IBIS rules to handle the input communicative
goals. At its core is a set of low-level style rules, each of
which may be invoked for any object. These include:

• Make an object visible. If the object's projection
falls within the overlay window and is not oc­
cluded by other objects, nothing need be done:
the object is not rendered. (In contrast, in the
original IBIS, the object would have to be ren­
dered.) If the object's projection is within the
window, but is occluded wholly or in part by
other objects, the object is marked for rendering
to allow it to be seen through its oCcluders; the
object's rendering style will be determined by
other rules. (Occlusion tests are performed with
a fast image-precision algorithm described
in [9].) If the object does not project to the win­
dow, the goal fails.l

• Highlight an object. If the object is within the
window, the object is marked for rendering and
tagged with a highlighted style (e.g., solid lines);
otherwise, the goal fails .

Representative higher-level design rules that invoke these are:

• Show an object. If the object is visible, nothing
need be done; otherwise, the find goal is ac­
tivated.

• Show the location of an object. If the object is
visible, it is highlighted; otherwise, the find goal
is activated.

• Find an object. A callout (currently, a "canned"
text string label) is created for the object, fixed in
20 relative to the overlay window. A dotted
rubberband leader line connects the callout to the
object. (If the object does not project to the
overlay window, then the dotted line extends to
the edge of the window in the direction of the
object, and can be followed by the user to find
the object; the callout and its end of the leader
line is always in view.)

• Show a change to be accomplished in an object's
state. This is achieved by generating a "ghost
image" of the object in the desired state.

• Show an action performed on an object. This is
achieved by adding a metaobject, such as an ar­
row, to depict the action (e.g., pushing or open­
ing).

• Identify an object. If the object is visible, a 30
callout (textual label) is generated near the ob­
ject; otherwise the find goal is activated.

IBIS is initially provided with representations of the physical
objects in the environment. It uses these representations both
to generate the overlaid graphics and to evaluate it, employing

'All goals succeed except where failure is indicated explicitly.

Graphics Interface '92

Figure 2: Overlay graphics of simple world model.

the approaches described in [22, 9] .

3 Testbed Application: End-User Laser Printer
Maintenance

To test our ideas, we have been experimenting with a simple
end-user maintenance application for a laser printer. This
entails relatively straightforward operations, such as refilling
the paper tray and and replacing the toner cartridge.

Figure 1 shows the system in use. The large white triangles
toward the top and bottom of the figure are Logitech sensor
transmitters, which have three small ultrasonic sources near
their vertices . Small triangles mounted on the display and on
the laser printer each contain three microphones. The top
transmitter is for the head; the bottom transmitter is for the
sensors that track the printer's paper tray and lid.

Figure 2 shows part of our simple laser printer world as
displayed in our head-mounted display ' s overlay bitmap with­
out any design done by IBIS. In contrast, Figure 3 shows an
example of an overlay illustration designed by IBIS, using the
same viewing specification, to fulfill the location and find
goals for the paper tray and the show goal for the toner
cartridge. To achieve the location goal, the paper tray is
highlighted (drawn solid), since the visible goal succeeded.
To achieve the find goal, a 2D label is generated with a dotted
leader line that terminates on the tray. This illustration also
shows the toner cartridge-since it is occluded by the obscur­
ing printer cover, it is drawn with dashed lines to make it
visible. Figure 4 shows the paper tray, shows the desired
action of pulling out the paper tray by means of a metaobject
arrow, and shows the change in the paper tray's location that
would result as a dotted "ghost" image.

4 System Architecture
The original version of IBIS synchronously designs and then
renders each illustration, and then incrementally redesigns the
picture in response to user interaction. While the resulting
delay is barely tolerable in fully-synthesized animation dis­
played on a conventional eRT, it is unusable if synthesized
graphics must not only change in response to head motion,
but must be registered with objects in the real world. In
addition, we also need to process data from a number of
motion trackers. Based on our own experience [7] and that of
other researchers [1, 12, 17], it was clear to us that it would be

8 1

'"

: ~~; -- ---" .. , ..
....

.... . _0-_~_. ". " <: •
............

. : ~ : ",

Figure 3: Overlay graphics designed by IBIS to find and
show location of paper tray and show toner
cartridge.

....

Figure 4:

.. ' > .. (........ .
.. ",," J}

, ,
",,' "

"'~
.

. \::/
....

Overlay graphics designed by IBIS to show action
of pulling out paper tray and resulting change in
tray's state.

necessary to distribute processing over multiple processes and
processors.

The Private Eye, in its 720 x 280 resolution mode, presents an
interface that appears as a bare single-bit-deep framebuffer.
We created a small 3D structured display-list-based display
server. The server supports line and text primitives, linestyle
and font attributes, and a set of structure management
operators that allow hierarchical objects to be created, edited,
and deleted. Positions in the display server's move and draw
commands may be either 2D device coordinates or 3D world
coordinates, and may be intermixed in a single primitive,
allowing the creation of lines that are anchored to the scr.een
on one end, and to a point in the 3D world on the other. As
shown in Figure 5, when the system is initialized, IBIS creates
the initial display list by sending a set of object models to the
display server.

Each tracker is handled by a low-level tracker process. These
processes in turn interact with a set of object servers and a
head server. Each object server is associated with an object in
the real world that is monitored with a tracker. At initializa­
tion, IBIS provides each object server with the identifier of
the display server structure containing the object's vector
representation. It also tells the server the position and orien­
tation of the object's tracker relative to the object's coordinate

Graphics Interface '92 4

Initialize ~

t--------tl~~

•••

•••

Figure 5: System architecture: Initialization

~ystem. Similarly, IBIS provides the head server with the
identifier associated with the scene in the display server. (The
head and object servers actually use the same executable, so
each must also be told whether it is tracking the head or an
object.)

Figure 6 shows the system's operation after initialization.
The head and object servers are responsible for maintaining
the integrity of the object and head motion information that
they represent. They edit the display list stored in the display
server directly. Each object server regularly edits the display
list position and orientation information associated with its
object. The head server updates the display list viewing
specification for the scene. Both head and object servers also
report their information to IBIS. This avoids the delay that
would result if IBIS were to serve as a go-between, making
possible relatively smooth visual response to head and object
motion, while assuring that IBIS always has the latest infor­
mation on which to base its illustration design.

IBIS determines the presence and appearance of the objects in
the display list-all information for which it has not explicitly
relinquished control to the head and object servers. This
includes the specification of metaobjects, such as arrows and
text. (IBIS can also dynamically reassign tasks to the head
and object servers, a facility that we have not yet used.) In
work on the automated design of multimedia presentations,
IBIS is presented with a set of communicative goals to satisfy,
which are output by other components that determine what to
say and which media should be used to say it [8] . In the
research reported on here, we have instead used a much
simpler content planner to generate the set of communicative
goals that IBIS receives.

IBIS first designs an illustration that satisfies the initial set of
goals set by its content planner, obeying the constraints im­
posed by the head and object trackers. Then it loops, using its
evaluators to determine whether the current illustration design

82

View
spec

Draw ~
r-------tl~~

Figure 6: System architecture: Steady state

is satisfactory in the face of changes in the goal set, the user,
and the world. Whenever the illustration is determined to be
unsatisfactory, IBIS's rules result in modifications that are
communicated to the display server. For example, if the 3D
label of an object that IBIS determines must be identified no
longer lies within the overlaid graphics window, then IBIS
will generate a new 20 screen label and 3D leader line that
points to the object.

Because IBIS has relinquished to the head and object servers
the straightforward matters of display-list traversal and up­
dates of the viewing-specification and monitored object trans­
formations, user interaction with the current illustration stored
in the server is fully interactive, and occurs while incremental
redesign takes place on a separate processor. We currently
achieve about 15 frames per second for a model containing 70
displayed vectors, but with some jerkiness due to network
contention.

The head server is responsible for instructing the display
server to render the image. Since polling the head ' s motion
tracker requires much less time than rendering the image, we
need to avoid building up a backlog for the display server.
We accomplish this by having the head server send its com­
mands for the current frame to the display server and then
wait until it receives the display server's acknowledgment that
the previous frame was rendered. This allows rendering and
polling to proceed in parallel. All of the actions requested of
the display server (e.g ., modifying the contents of an object)
are processed atomically to ensure that the scene always ap­
pears in a valid, drawable state.

5 Implementation
The components of the system run on several different
machines under different flavors of UNIX, and communicate
through sockets. IBIS is implemented in C++ and the CLIPS
production system language [5], and runs under HPUX on an
HP 9000 380 TurboSRX graphics workstation, which

Graphics Interface '92

provides a fast hardware z-buffer-based graphics accelerator
that IBIS uses in its illustration design process. The display
server is written in C and runs under Mach on an Intel 486-
based PC "clone," which supports the Private Eye display
entirely in software. (A significant portion of the display
server's time is spent implementing double buffering, copying
the graphics frame buffer to the Private Eye's frame buffer
and clearing it for the next frame.) The head/object server
and lower level tracker processes are written in C and C++.
Since the tracker hardware requires only an RS232 interface,
and the servers can impose a large load on the machine on
which they execute, we run them on other workstations.

Our current 6-DOF tracker devices include three Logitech
ultrasonic sensors [18] and one Polhemus magnetic
sensor [16]. Our software allows both kinds of 6-DOF sen­
sors to be used interchangeably, for example to trade off an
ultrasonic sensor's freedom from magnetic interference
against a magnetic sensor's ability to work without a direct
line of sight to its source.

One important point, that others have noted before [2], is that
experimental interfaces that are coupled tightly to the user
often require a fair amount of calibration. Our head-mounted
display is no exception. Since the generated image must be
registered with that of the real world, each user must perform
three kinds of calibration:

• focus . The Private Eye is focusable from less
than a foot to infinity, with each user requiring
separate focus adjustments based on their
eyesight. After putting on the display, the user
must position a slider until a calibration image is
comfortably in focus (but see below).

• visible area. Due to the physical relationship
between the Private Eye, the beam splitter, and
the current focus setting, a small portion of the
display may not to be visible to a viewer. There­
fore, we request that the user determine the view­
able area by adjusting the size and position of a
visible rectangle until it is as large as possible.
This establishes a "safe-title" area that is com­
municated to IBIS, in which IBIS can assume
that anything that is drawn will be visible.

• viewing specijicaJion. To register the image with
the world, the user must first physically adjust the
display on their head. Next., they must register a
virtual object with its corresponding physical ob­
ject, which in turn must be viewed in a known
position relative to the user. The software takes
into account the difference in position and orien­
tation of the user' s eye and the measured position
and orientation of the sensor.

Registration is a serious issue: Our current motion trackers
have neither the spatial nor angular resolution needed to
register graphics precisely with the surrounding world.
However, we have yet to try mapping sensor inaccuracies to
correct for nonlinearities [21], and believe that we can also
improve accuracy with a better calibration strategy.

83

(Registration is currently off by about an inch in world coor­
dinates in Figures 2-4.)

We have also found focus to be a particular problem in our
current application. We originally built our head-mounted
display for a hybrid user interface, which embeds the user 's
view of a "notebook" flat-panel display inside a partial spheri­
cal information surround presented on the head-mounted
display [10] . The flat-panel display is relatively small and
tangent to the sphere, which is centered about the user's head.
Assuming that the user's head is stationary, it is easy to adjust
the Private Eye so that the material that it displays is focused
at the same distance from the user as the flat-panel display. In
comparison, "heads up" flight displays are focused at
infinity [19], since this is effectively where out-of-the-cockpit
targets are located.

In contrast to both, our application requires that graphics be
overlaid on nearby objects that necessitate constant changes in
visual accommodation to focus in sequence. Since the Private
Eye must be focused manually, the need for readjustment as
the viewing distance to the object of interest changes is
irritating.2 There is an interesting benefit., however, to the
precise focus control provided by the Private Eye. Even
though we are currently using a monocular display, when the
display is adjusted so that a small synthesized object is in
focus at a partiCUlar distance, the illusion of it being at the
selected position is quite compelling. (Note that one of the
difficulties that many users experience in viewing fixed focus
stereo displays is developing independence between their
ocular convergence and focus accommodation.)

6 Conclusions and Future Work
The work that we have reported on here represents our first
steps in designing a testbed for the knowledge-based genera­
tion of maintenance and repair instructions using a head­
mounted, see-through display. We have developed a prelimi­
nary set of rules that allow us. to augment the user's view of
the world with additional information that supports the perfor­
mance of simple tasks such as finding designated objects and
carrying out simple actions on them. Our software architec­
ture makes a clean distinction between design and rendering
to help prevent design decisions from interfering with inter­
active rendering.

Our experience with the system has suggested many research
directions that need to be explored. For example, one impor­
tant problem is the development of a formal model of how a
user's performance will be affected by different decisions
made in designing 3D illustrations, taking into account the
purpose for which the illustration is generated (specified by
our communicative goals), as in the 2D design work of
Casner [3].

2We have considered automating the process by using a servomotor to adjust
the focus to that of a selected object Note, however, that focus in the entire
overlay would be affected unifonnJy.

Graphics Interface '92 ~.

84

Support for visible-line and visible-surface determination is
another issue. IBIS currently bases its illustration design in
part on whether selected objects are occluded in the current
viewing specification, and computes these relationships itself.
Our display server, however, does not support visible-line
determination. We are particularly interested in incorporating
into the display server what Kamada and Kawai [13] refer to
as "picturing functions," which determine how a projected
line fragment should be rendered, based on the set of surfaces
that obscure it. For example, while mIS currently sets the
graphical attributes of an entire object based in part on its
visibility, we would like more precise control to be ac­
complished by the display server, based on the visibility
relationships of each line fragment. mIS would then be
responsible for determining the high-level policies used by the
display server (e.g., making obscured parts dashed). One
challenge is to do this while still maintaining real-time perfor­
mance. We believe this could be possible on our current
hardware if IBIS were allowed to select a subset of objects
against which the display server would perform visibility
tests. Another intriguing research direction is to explore how
to design support facilities that would allow IBIS to specify a
rich set of additional high-level policies to be enforced by the
display server.

Acknowledgments

Research on this project is supported in part by the Office of
Naval Research under Contract NOOOI4-91-J-1872, the Cen­
ter for Telecommunications Research under NSF Grant
ECD-88-11 111, NSF Grant CDA-9022123, and an equipment
grant from the Hewlett-Packard Company. Work on the
original version of mIS was supported in part by the Defense
Advanced Research Projects Agency under Contract
NOO039-84-C-0165 . Our work owes much to the portable
computing infrastructure software developed for the Colum­
bia Student Electronic Notebook project directed by Daniel
Duchamp, Steven Feiner, and Gerald Maguire. We thank Ari
Shamash and Sushil Da Silva for their work on the Logitech
6-DOF tracker process and bitmap scan-conversion package,
Brad Paley for sharing his tracker support code, Cliff Beshers
for his help in porting his distributed DataGlove server, and
Jim Barnes of Logitech for his assistance. Michael Elhadad et
Colette Johnen nous ont aides a traduire le resume.

References

[I]

(2)

Blanchard, C., Burgess, S., Harvill, Y., Lanier,
J. Lasko, A., Oberman, M ., and Teitel, M.
Reality Built for Two: A Virtual Reality Tool.
In Proc. 1990 Symp. on Interactive 3D Graphics

(Computer Graphics, 24:2, March 1990), pages
35-36. Snowbird, UT, March 25-28, 1990.

Brooks Jr., F.
Grasping Reality Through Illusion-Interactive

Graphics Serving Science.
In Proc. CHI '88, pages 1-10. Washington, DC, May

15-19, 1988.

(3) Casner, S.
A Task-Analytic Approach to the Automated Design

of Graphic Presentations.
ACM Transactions on Graphics 10(2):111-151, April,

1991.

[4] Chung, J., Harris, M ., Brooks, F., Fuchs, H., Kelley,
M., Hughes, J. , Ouh-young, M., Cheung, C., Hol­
loway, R., and Pique, M.
Exploring Virtual Worlds with Head-Mounted Dis­

plays.
In Proc. SPIE Non-Holographic True 3-Dimensional

Display Technologies, Vol. 1083. Los Angeles,
January 15-20, 1989.

[5] Culbert, C.
CLIPS Reference Manual
NASNJohnson Space Center, TX, 1988.

[6] Feiner, S.
APEX: An Experiment in the Automated Creation of

Pictorial Explanations.
IEEE Computer Graphics and Applications

5(11):29-38, November, 1985.

(7) Feiner, S. and Beshers, C.
Worlds within Worlds: Metaphors for Exploring

n-Dimensional Virtual Worlds.
In Proc. UIST '90 (ACM Symp. on User Interface

Software), pages 76-83. Snowbird, UT, October
3-5, 1990.

(8) Feiner, S. and McKeown, K.
Automating the Generation of Coordinated Mul­

timedia Explanations.
IEEE Computer 24(10):33-41, October, 1991.

(9) Feiner, S. and Seligmann, D.
Dynamic 3D Illustrations with Visibility Constraints.
In Patrikalakis, N. (editor), Scientific Visualization of

Physical Phenomena (Proc . Computer Graphics
International '91, Cambridge, MA, June 26-28,
1991), pages 525-543. Springer-Verlag, Tokyo,
1991.

(10) Feiner, S. and Shamash, A.
Hybrid User Interfaces: Breeding Virtually Bigger In­

terfaces for Physically Smaller Computers .
In Proc. UIST '91 (ACM Symp. on User Interface

Software and Technology) , pages 9-17. Hilton
Head, SC, November 11-13, 1991.

(11) Fisher, S., McGreevy, M., Humphries, J., and
Robinett., W.
Virtual Environment Display System.
In Proc.1986 Workshop on Interactive 3D Graphics,

pages 77-S7. Chapel Hill, NC, October 23-24,
1986.

(12) Green, M. and Shaw, C.
The DataPaper: Living in the Virtual World.
In Proc. Graphics Interface '90, pages 123-130.

Halifax, Nova Scotia, May 14-18, 1990.

Graphics Interface '92

[13]

[14]

(15)

(16)

(17)

Kamada, T. and Kawai, S.
An Enhanced Treatment of Hidden Lines.
ACM Transactions on Graphics 6(4):308-323 , Oc-

tober, 1987.

Karp, P. and Feiner, S.
Issues in the Automated Generation of Animated

Presentations .
In Proc. Graphics Interface '90, pages 39-48.

Halifax, Canada, May 14-18, 1990.

Knowlton, K.
Computer Displays Optically Superimposed on Input

Devices .
The Bell System Technical Journal 56(3), March,

1977.

Kuipers, J.B.
SPASYN-A New Transducing Technique for

Visually Coupled Control Systems.
In Proc. Symp . on Visually Coupled Systems:

Development and Application. Brooks AFB, TX,
September, 1973.

AMRL/WPAFB Report No . AMD TR-73-1.

Lewis, B., Koved, L., and Ling, D.
Dialogue Structures for Virtual Worlds.
In Proc. CHI '91, pages 131-136. ACM Press, New

Orleans, LA, April 27-May 2,1991.

85

[18]

[19]

[20]

(21)

(22)

(23)

Logitech, Inc.
Logitech 2D/6D Mouse Technical Reference Manual

(Preliminary).
Fremont, CA, 1991.

Norman, J. and Ehrlich, S.
Visual Accommodation and Virtual Image Displays:

Target Detection and Recognition.
Human Factors 28(2):135-151,1986.

Reflection Technology.
Private Eye Product Literature.
Waltham, MA, 1990.

Schmandt, C.
Spatial Input/Display Correspondence in a Stereo­

scopic Computer Graphic Work Station.
Computer Graphics (Proc. SIGGRAPH '83)

17(3):253-261 , July, 1983.

Seligmann, D. and Feiner, S.
Automated Generation of Intent-Based 3D Illustra­

tions.
In Proc. ACM SIGGRAPH '91 (Computer Graphics,

25:4, July 1991), pages 123-132. Las Vegas, NV,
July 28-August 2, 1991.

Sutherland, 1.
A Head-Mounted Three Dimensional Display.
In Proc. FJCC 1968, pages 757-764. Thompson

Books, Washington, DC, 1968.

(24) van Dam, A. , Stabler, G., and Harrington, R.
Intelligent Satellites for Interactive Graphics .
Proc. IEEE 64(4):483-492, April, 1974.

Graphics Interface '92 ~

