
78 

Annotating the Real World with Knowledge-Based Graphics 
on a See-Through Head-Mounted Display 

Steven Feiner 
Blair MacIntyre 

Doree Seligmann 

Department of Computer Science 
Columbia University 

New York, New York 10027 
{feiner, bm, doree }@cs.columbia.edu 

Abstract 

We describe an experimental, knowledge-based, virtual-world 
system that uses a monocular "see-through" head-mounted 
display to overlay graphics on the user's view of the real 
world. In a simple equipment maintenance domain that we 
have developed, the overlaid graphics include 3D represen­
tations of actual physical objects, textual annotations and cal­
louts, and virtual metaobjects, such as arrows. A set of 3D 
position and orientation sensors monitor the user's head and 
several of the objects in the world. Our system includes a 
knowledge-based graphics component that determines what 
information to present, a display-list-based display server that 
represents the models to be displayed, and a set of sensor 
servers that track the user and selected objects. The sensor 
servers directly modify the object transformations and view­
ing specification in the display list. The knowledge-based 
graphics component also receives the sensor data and uses it 
to redesign the information being presented. 

Resume 

Nous decrivons un systeme graphique experimental a base de 
connaissances, qui enrichit la vision du monde per~ue par 
I'utilisateur en super-imposant des graphiques generes par le 
systeme. L'utilisateur porte une lentille monoculaire semi­
reflective sur laquelle s'affichent les images que notre 
systeme decide de montrer. Nous avons developpe le systeme 
dans le domaine de la maintenance d'equipement. Dans ce 
domaine assez simple, les graphiques superimposes compor­
tent des representations 3D des objets reels, des annotations 
textuelles, et des "meta-objets" virtuels (par example, des 
fleches). Un ensemble de detecteurs 3D determinent 
I'orientation et la position de la tete de I'utilisateur et de 
certains objets dans I'environnement. Notre systeme com­
prend trois composants principaux: un systeme de generation 
de graphiques a base de connaissances determine non seule­
ment quelles informations doivent etre presentees mais aussi 
comment les presenter; un gestionnaire d'ecran a base de Iiste 
d' objets represente les modeles des objets a afficher, et un 
ensemble de serveurs de detecteurs qui suivent la tete de 
I' utilisateur et certains objets. Les serveurs de detecteurs 
modifient la position des objets et les specifications de la 

scene directement dans la liste des objets. Le compos ant 
graphique a base de connaissances re~oit aussi les valeurs 
retoumees par les detecteurs et utilise cette information pour 
reviser I'information a presenter. 

Keywords: knowledge-based graphics, virtual worlds, head­
mounted displays, heads-up displays, augmented reality 

1 Introduction 
Virtual worlds that use 3D displays and interaction devices 
have the potential to make possible greatly improved explana­
tions of complex physical tasks. These technologies promise 
to allow a user to view and manipulate information in ways 
that better exploit our ability to interact with 3D spatial infor­
mation than does the use of flat 2D displays and input 
devices. As the richness and variety of the information that a 
system can present to a user increases, however, so does the 
difficulty of designing the presentation. Desktop publishing 
systems require more skill and time to master than do simple 
word processors; multimedia presentation editors demand yet 
more design expertise to use effectively. Perhaps the ultimate 
design demands are posed by virtual worlds, which can re­
quire the coordinated design of material that affects all sen­
sory modalities, and that must respond continuously to the 
user's interactions. 

Over the past years, we have been developing knowledge­
based systems that address the automated design of presen­
tations that explain how to perform simple 3D tasks. These 
systems generate static and animated graphics [6,22, 14], and 
multimedia presentations [8] that satisfy a high-level expres­
sion of the information to be communicated. Here, we 
describe some first steps that we have taken toward building a 
testbed system for exploring the automated design of virtual 
worlds to explain maintenance and repair tasks. In this work, 
we are concentrating on the knowledge-based generation of 
graphics that overlay the user's view of the physical world, 
and which dynamically take into account information about 
the user, task, and changes in the surrounding world. 

Ivan Sutherland, in his pioneering research on head-mounted 
displays, developed a binocular "see-through" system [23]. 
Each eye viewed a miniature vector CRT, whose synthesized 
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Figure 1: Prototype see-through head-mounted display in use in testbed laser printer maintenance application. 

graphics were merged with the user's view of the real world 
by means of a beam splitter. Since then, other graphics 
researchers have explored the use of see-through displays, 
both as part of head-mounted displays (e.g., [11,4]), and 
desk-mounted displays (e.g., [15,21]). We have assembled a 
relatively inexpensive see-through head-mounted display, 
using a Reflection Technology Private Eye [20], a Logitech 
3D position and orientation sensor [18], and a mirror beam 
splitter. This system, shown in Figure 1 in use in an ex­
perimental maintenance application described below, is a 
research prototype: it produces a dim, bilevel, monochrome 
image, and overlays graphics on a relatively narrow portion of 
the user's visual field, providing approximately a 22° horizon­
tal field of view. Nevertheless, it has proven to be a useful 
research tool. 

In the remainder of this paper, we describe the knowledge­
based graphics component that designs what the user sees, a 
simple maintenance application with which we are ex­
perimenting, and the design and implementation of our over­
all system architecture. 

2 Knowledge-Based Graphics Component 

2.1 IBIS Overview 
The knowledge-based graphics component that we use is 
based on IBIS (Intent-Based Illustration System) [22] . IBIS is 
a rule-based system that designs illuslraJions, a term that we 
use to refer to pictures that are designed to satisfy an input 

communicative intent. The communicative intent is specified 
by a prioritized list of communicative goals. Each com­
municative goal specifies something that the picture is to 
accomplish; for example, to show an object's location or 
shape. IBIS distinguishes between design and stylistic choice. 
The design of an illustration corresponds to its high-level 
structure, specifying those visual effects that must be ac­
complished together to satisfy the illustration's communica­
tive goals; the styles used in an illustration represent the 
different ways each visual effect may be accomplished. 

IBIS uses two kinds of rules to design an illustration: 
methods and evaluators. A method specifies how to ac­
complish a particular style or design; an evaluator determines 
whether a particular style or design has been accomplished. 
IBIS's rules allow it to examine partial solutions and to back­
track when conflicts occur. 

The illustrations that IBIS generates are dynamic, rather than 
static: IBIS can continuously receive and handle changing 
constraints and goals, while at the same time realizing a 
particular intent. For example, IBIS normally determines a 
viewing specification of its own when designing an illustra­
tion. If the viewing specification is provided externally, 
however, then IBIS attempts to use it in generating a picture 
that satisfies the goals, and will incrementally redesign the 
picture if the viewing specification changes. This allows 
IBIS's user to navigate within the illustrated world by chang­
ing the viewing specification. IBIS's navigation facility is 
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different from that used in traditional "synthetic camera" 
graphics in that the binding between the input intent and the 
output illustration is preserved. IBIS continuously examines 
the illustration as it is altered to attempt to satisfy the 
illustration's communicative goals. As the user changes the 
viewing specification, conflicts may occur, causing IBIS to 
adopt a new design or set of stylistic choices. Thus, the 
illustrated world itself may change as the user explores it. (A 
rudimentary precursor of this capability was introduced in 
early vector systems that made traversal of an object contin­
gent upon the screen size of its precalculated extent, allowing 
an object's level-of-detail to change with its size [24] .) 

As a simple example of how the original version of IBIS 
works, consider the need to maintain object visibility. In the 
course of satisfying the input communicative goals, IBIS will 
determine that certain objects must be visible, and therefore 
unoccludable. This typically occurs if the objects participate 
directly in a communicative goal. Unoccludable objects must 
not be obscured by others in the world. IBIS can maintain the 
visibility of unoccludable objects by selecting an appropriate 
viewing specification for the illustration, by generating an 
inset sub-illustration, or by altering the appearance of the 
obscuring objects. For example, IBIS can decide not to 
render the obscuring objects at all, to render them as partially 
transparent, or to use a "cutaway" view [9]. 

2.2 Extending IBIS for a Head-Mounted 
See-Tbrougb Display 

In extending IBIS to support a head-mounted see-through 
display, we have had to take into account a number of impor­
tant differences: 

• The original IBIS assumes that it generates all of 
what the user sees. In overlaid graphics, however, 
IBIS must instead enrich the user's view of the 
world with additional information. 

• The user could modify the viewing specification 
after the original IBIS chose an initial viewing 
specification. In contrast, when designing over­
laid graphics, our extended IBIS must from the 
beginning relinquish to the user all control of the 
viewing specification, since only the user can 
determine where they look. 

• The world was assumed to change only after an 
illustration was completed in the original IBIS. 
This was easy to enforce since IBIS maintained 
control over what was visible, and based its il­
lustrations on a world model that was frozen 
throughout the illustration's life. In contrast, our 
extended IBIS must take into account ongoing 
changes in the world as it generates illustrations. 

• The original IBIS was responsible for achieving 
all communicative goals itself. Because the ex­
tended IBIS controls only what it generates, the 
user becomes an active participant in achieving 
the communicative goals. For example, if a goal 
is to specify an object's position, and the object's 
projection does not lie within the window, IBIS 
must indicate to the user where they should look. 
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Based on these differences, we have developed a preliminary 
set of new IBIS rules to handle the input communicative 
goals. At its core is a set of low-level style rules, each of 
which may be invoked for any object. These include: 

• Make an object visible. If the object's projection 
falls within the overlay window and is not oc­
cluded by other objects, nothing need be done: 
the object is not rendered. (In contrast, in the 
original IBIS, the object would have to be ren­
dered.) If the object's projection is within the 
window, but is occluded wholly or in part by 
other objects, the object is marked for rendering 
to allow it to be seen through its oCcluders; the 
object's rendering style will be determined by 
other rules. (Occlusion tests are performed with 
a fast image-precision algorithm described 
in [9].) If the object does not project to the win­
dow, the goal fails.l 

• Highlight an object. If the object is within the 
window, the object is marked for rendering and 
tagged with a highlighted style (e.g., solid lines); 
otherwise, the goal fails . 

Representative higher-level design rules that invoke these are: 

• Show an object. If the object is visible, nothing 
need be done; otherwise, the find goal is ac­
tivated. 

• Show the location of an object. If the object is 
visible, it is highlighted; otherwise, the find goal 
is activated. 

• Find an object. A callout (currently, a "canned" 
text string label) is created for the object, fixed in 
20 relative to the overlay window. A dotted 
rubberband leader line connects the callout to the 
object. (If the object does not project to the 
overlay window, then the dotted line extends to 
the edge of the window in the direction of the 
object, and can be followed by the user to find 
the object; the callout and its end of the leader 
line is always in view.) 

• Show a change to be accomplished in an object's 
state. This is achieved by generating a "ghost 
image" of the object in the desired state. 

• Show an action performed on an object. This is 
achieved by adding a metaobject, such as an ar­
row, to depict the action (e.g., pushing or open­
ing). 

• Identify an object. If the object is visible, a 30 
callout (textual label) is generated near the ob­
ject; otherwise the find goal is activated. 

IBIS is initially provided with representations of the physical 
objects in the environment. It uses these representations both 
to generate the overlaid graphics and to evaluate it, employing 

'All goals succeed except where failure is indicated explicitly. 
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Figure 2: Overlay graphics of simple world model. 

the approaches described in [22, 9] . 

3 Testbed Application: End-User Laser Printer 
Maintenance 

To test our ideas, we have been experimenting with a simple 
end-user maintenance application for a laser printer. This 
entails relatively straightforward operations, such as refilling 
the paper tray and and replacing the toner cartridge. 

Figure 1 shows the system in use. The large white triangles 
toward the top and bottom of the figure are Logitech sensor 
transmitters, which have three small ultrasonic sources near 
their vertices . Small triangles mounted on the display and on 
the laser printer each contain three microphones. The top 
transmitter is for the head; the bottom transmitter is for the 
sensors that track the printer's paper tray and lid. 

Figure 2 shows part of our simple laser printer world as 
displayed in our head-mounted display ' s overlay bitmap with­
out any design done by IBIS. In contrast, Figure 3 shows an 
example of an overlay illustration designed by IBIS, using the 
same viewing specification, to fulfill the location and find 
goals for the paper tray and the show goal for the toner 
cartridge. To achieve the location goal, the paper tray is 
highlighted (drawn solid), since the visible goal succeeded. 
To achieve the find goal, a 2D label is generated with a dotted 
leader line that terminates on the tray. This illustration also 
shows the toner cartridge-since it is occluded by the obscur­
ing printer cover, it is drawn with dashed lines to make it 
visible. Figure 4 shows the paper tray, shows the desired 
action of pulling out the paper tray by means of a metaobject 
arrow, and shows the change in the paper tray's location that 
would result as a dotted "ghost" image. 

4 System Architecture 
The original version of IBIS synchronously designs and then 
renders each illustration, and then incrementally redesigns the 
picture in response to user interaction. While the resulting 
delay is barely tolerable in fully-synthesized animation dis­
played on a conventional eRT, it is unusable if synthesized 
graphics must not only change in response to head motion, 
but must be registered with objects in the real world. In 
addition, we also need to process data from a number of 
motion trackers. Based on our own experience [7] and that of 
other researchers [1, 12, 17], it was clear to us that it would be 
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Figure 3: Overlay graphics designed by IBIS to find and 
show location of paper tray and show toner 
cartridge. 
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Overlay graphics designed by IBIS to show action 
of pulling out paper tray and resulting change in 
tray's state. 

necessary to distribute processing over multiple processes and 
processors. 

The Private Eye, in its 720 x 280 resolution mode, presents an 
interface that appears as a bare single-bit-deep framebuffer. 
We created a small 3D structured display-list-based display 
server. The server supports line and text primitives, linestyle 
and font attributes, and a set of structure management 
operators that allow hierarchical objects to be created, edited, 
and deleted. Positions in the display server's move and draw 
commands may be either 2D device coordinates or 3D world 
coordinates, and may be intermixed in a single primitive, 
allowing the creation of lines that are anchored to the scr.een 
on one end, and to a point in the 3D world on the other. As 
shown in Figure 5, when the system is initialized, IBIS creates 
the initial display list by sending a set of object models to the 
display server. 

Each tracker is handled by a low-level tracker process. These 
processes in turn interact with a set of object servers and a 
head server. Each object server is associated with an object in 
the real world that is monitored with a tracker. At initializa­
tion, IBIS provides each object server with the identifier of 
the display server structure containing the object's vector 
representation. It also tells the server the position and orien­
tation of the object's tracker relative to the object's coordinate 
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Figure 5: System architecture: Initialization 

~ystem. Similarly, IBIS provides the head server with the 
identifier associated with the scene in the display server. (The 
head and object servers actually use the same executable, so 
each must also be told whether it is tracking the head or an 
object.) 

Figure 6 shows the system's operation after initialization. 
The head and object servers are responsible for maintaining 
the integrity of the object and head motion information that 
they represent. They edit the display list stored in the display 
server directly. Each object server regularly edits the display 
list position and orientation information associated with its 
object. The head server updates the display list viewing 
specification for the scene. Both head and object servers also 
report their information to IBIS. This avoids the delay that 
would result if IBIS were to serve as a go-between, making 
possible relatively smooth visual response to head and object 
motion, while assuring that IBIS always has the latest infor­
mation on which to base its illustration design. 

IBIS determines the presence and appearance of the objects in 
the display list-all information for which it has not explicitly 
relinquished control to the head and object servers. This 
includes the specification of metaobjects, such as arrows and 
text. (IBIS can also dynamically reassign tasks to the head 
and object servers, a facility that we have not yet used.) In 
work on the automated design of multimedia presentations, 
IBIS is presented with a set of communicative goals to satisfy, 
which are output by other components that determine what to 
say and which media should be used to say it [8] . In the 
research reported on here, we have instead used a much 
simpler content planner to generate the set of communicative 
goals that IBIS receives. 

IBIS first designs an illustration that satisfies the initial set of 
goals set by its content planner, obeying the constraints im­
posed by the head and object trackers. Then it loops, using its 
evaluators to determine whether the current illustration design 
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Figure 6: System architecture: Steady state 

is satisfactory in the face of changes in the goal set, the user, 
and the world. Whenever the illustration is determined to be 
unsatisfactory, IBIS's rules result in modifications that are 
communicated to the display server. For example, if the 3D 
label of an object that IBIS determines must be identified no 
longer lies within the overlaid graphics window, then IBIS 
will generate a new 20 screen label and 3D leader line that 
points to the object. 

Because IBIS has relinquished to the head and object servers 
the straightforward matters of display-list traversal and up­
dates of the viewing-specification and monitored object trans­
formations, user interaction with the current illustration stored 
in the server is fully interactive, and occurs while incremental 
redesign takes place on a separate processor. We currently 
achieve about 15 frames per second for a model containing 70 
displayed vectors, but with some jerkiness due to network 
contention. 

The head server is responsible for instructing the display 
server to render the image. Since polling the head ' s motion 
tracker requires much less time than rendering the image, we 
need to avoid building up a backlog for the display server. 
We accomplish this by having the head server send its com­
mands for the current frame to the display server and then 
wait until it receives the display server's acknowledgment that 
the previous frame was rendered. This allows rendering and 
polling to proceed in parallel. All of the actions requested of 
the display server (e.g ., modifying the contents of an object) 
are processed atomically to ensure that the scene always ap­
pears in a valid, drawable state. 

5 Implementation 
The components of the system run on several different 
machines under different flavors of UNIX, and communicate 
through sockets. IBIS is implemented in C++ and the CLIPS 
production system language [5], and runs under HPUX on an 
HP 9000 380 TurboSRX graphics workstation, which 
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provides a fast hardware z-buffer-based graphics accelerator 
that IBIS uses in its illustration design process. The display 
server is written in C and runs under Mach on an Intel 486-
based PC "clone," which supports the Private Eye display 
entirely in software. (A significant portion of the display 
server's time is spent implementing double buffering, copying 
the graphics frame buffer to the Private Eye's frame buffer 
and clearing it for the next frame.) The head/object server 
and lower level tracker processes are written in C and C++. 
Since the tracker hardware requires only an RS232 interface, 
and the servers can impose a large load on the machine on 
which they execute, we run them on other workstations. 

Our current 6-DOF tracker devices include three Logitech 
ultrasonic sensors [18] and one Polhemus magnetic 
sensor [16]. Our software allows both kinds of 6-DOF sen­
sors to be used interchangeably, for example to trade off an 
ultrasonic sensor's freedom from magnetic interference 
against a magnetic sensor's ability to work without a direct 
line of sight to its source. 

One important point, that others have noted before [2], is that 
experimental interfaces that are coupled tightly to the user 
often require a fair amount of calibration. Our head-mounted 
display is no exception. Since the generated image must be 
registered with that of the real world, each user must perform 
three kinds of calibration: 

• focus . The Private Eye is focusable from less 
than a foot to infinity, with each user requiring 
separate focus adjustments based on their 
eyesight. After putting on the display, the user 
must position a slider until a calibration image is 
comfortably in focus (but see below). 

• visible area. Due to the physical relationship 
between the Private Eye, the beam splitter, and 
the current focus setting, a small portion of the 
display may not to be visible to a viewer. There­
fore, we request that the user determine the view­
able area by adjusting the size and position of a 
visible rectangle until it is as large as possible. 
This establishes a "safe-title" area that is com­
municated to IBIS, in which IBIS can assume 
that anything that is drawn will be visible. 

• viewing specijicaJion. To register the image with 
the world, the user must first physically adjust the 
display on their head. Next., they must register a 
virtual object with its corresponding physical ob­
ject, which in turn must be viewed in a known 
position relative to the user. The software takes 
into account the difference in position and orien­
tation of the user' s eye and the measured position 
and orientation of the sensor. 

Registration is a serious issue: Our current motion trackers 
have neither the spatial nor angular resolution needed to 
register graphics precisely with the surrounding world. 
However, we have yet to try mapping sensor inaccuracies to 
correct for nonlinearities [21], and believe that we can also 
improve accuracy with a better calibration strategy. 
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(Registration is currently off by about an inch in world coor­
dinates in Figures 2-4.) 

We have also found focus to be a particular problem in our 
current application. We originally built our head-mounted 
display for a hybrid user interface, which embeds the user 's 
view of a "notebook" flat-panel display inside a partial spheri­
cal information surround presented on the head-mounted 
display [10] . The flat-panel display is relatively small and 
tangent to the sphere, which is centered about the user's head. 
Assuming that the user's head is stationary, it is easy to adjust 
the Private Eye so that the material that it displays is focused 
at the same distance from the user as the flat-panel display. In 
comparison, "heads up" flight displays are focused at 
infinity [19], since this is effectively where out-of-the-cockpit 
targets are located. 

In contrast to both, our application requires that graphics be 
overlaid on nearby objects that necessitate constant changes in 
visual accommodation to focus in sequence. Since the Private 
Eye must be focused manually, the need for readjustment as 
the viewing distance to the object of interest changes is 
irritating.2 There is an interesting benefit., however, to the 
precise focus control provided by the Private Eye. Even 
though we are currently using a monocular display, when the 
display is adjusted so that a small synthesized object is in 
focus at a partiCUlar distance, the illusion of it being at the 
selected position is quite compelling. (Note that one of the 
difficulties that many users experience in viewing fixed focus 
stereo displays is developing independence between their 
ocular convergence and focus accommodation.) 

6 Conclusions and Future Work 
The work that we have reported on here represents our first 
steps in designing a testbed for the knowledge-based genera­
tion of maintenance and repair instructions using a head­
mounted, see-through display. We have developed a prelimi­
nary set of rules that allow us. to augment the user's view of 
the world with additional information that supports the perfor­
mance of simple tasks such as finding designated objects and 
carrying out simple actions on them. Our software architec­
ture makes a clean distinction between design and rendering 
to help prevent design decisions from interfering with inter­
active rendering. 

Our experience with the system has suggested many research 
directions that need to be explored. For example, one impor­
tant problem is the development of a formal model of how a 
user's performance will be affected by different decisions 
made in designing 3D illustrations, taking into account the 
purpose for which the illustration is generated (specified by 
our communicative goals), as in the 2D design work of 
Casner [3]. 

2We have considered automating the process by using a servomotor to adjust 
the focus to that of a selected object Note, however, that focus in the entire 
overlay would be affected unifonnJy. 
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Support for visible-line and visible-surface determination is 
another issue. IBIS currently bases its illustration design in 
part on whether selected objects are occluded in the current 
viewing specification, and computes these relationships itself. 
Our display server, however, does not support visible-line 
determination. We are particularly interested in incorporating 
into the display server what Kamada and Kawai [13] refer to 
as "picturing functions," which determine how a projected 
line fragment should be rendered, based on the set of surfaces 
that obscure it. For example, while mIS currently sets the 
graphical attributes of an entire object based in part on its 
visibility, we would like more precise control to be ac­
complished by the display server, based on the visibility 
relationships of each line fragment. mIS would then be 
responsible for determining the high-level policies used by the 
display server (e.g., making obscured parts dashed). One 
challenge is to do this while still maintaining real-time perfor­
mance. We believe this could be possible on our current 
hardware if IBIS were allowed to select a subset of objects 
against which the display server would perform visibility 
tests. Another intriguing research direction is to explore how 
to design support facilities that would allow IBIS to specify a 
rich set of additional high-level policies to be enforced by the 
display server. 
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