
86

Algorithms for the Detection and Elimination of Specular Aliasing

John Amanatides

Dept. of Computer Science
York University

North York, Ontario
Canada M3J 1 P3

Abstract

This paper introduces an algorithm that, given
the geometry and surface characteristics of an object
(the Phong highlight model is assumed), detects when
specular or highlight aliasing is expected and indicates
the correct sampling rate to eliminate it. This is
accomplished by noting the geometric properties of the
surface, the direction and distances to the eye and light
sources, and the specular shading parameters. Also, an
auxiliary algorithm is presented that eliminates the
specular aliasing without increasing the sampling rate.
It accomplishes this by clamping the specular function
parameters to values that will not introduce significant
high frequency components.

Keywords

anti-aliasing, shading, highlights, image synthesis

Introduction

An area of research in computer graphics that
continues to receive a lot of attention is anti-aliasing
(Crow, 1977; Cook, 1986). Much work, however,
has concentrated with the edges of the display primi
tives, noting, correctly, that the most noticeable alias
ing artifacts would occur there. Unfortunately, this
approach has ignored another form of a1iasing, that
introduced by the highlight or specular component of
the shading function. For example, if we are rendering
cylinders, the highlight down the center of the cylinder
may be quite jagged if the surface is very shiny
(Crow, 1981). These defects are also sometimes visi
ble when bump mapping (Blinn, 1978). The standard
approaches of anti-aliasing in computer graphics will
not correctly handle specular aliasing. This paper will
first review a1iasing and then three earlier attempts to
solve the specular aliasing problem. It then introduces
an algorithm for detecting specular aliasing plus a new
method of specular anti-a1iasing, along with resul ts
produced using this new method.

Background

Aliasing is possible when the two dimensional
image function J(x, y) , representing the image on the
viewing screen, contains frequencies greater than those
that can be faithfully reproduced on the display device.
If we sample this function, the resulting pixel values
will not be correct. Aliasing is manifested in the form
of jagged edges, distortions of small objects, inconsis
tencies in areas of complicated detail and in animated
sequences. To remove these errors, several techniques
have been advanced (Crow, 1977). We can sample
the image function at higher resolution. This expen
sive process can diminish the problem but will not
eliminate it. The best approach is to filter J(x, y)
before we sample, and there are strong theoretical rea
sons for doing this (Peatt, 1978).
ldealy, if we perform the following convolution

I'(x, y) = J J J(a, P) H(x - a) H(y - P) da dp

with the appropriate sampling filter H

sin(wou)
H(u) = ----'--

7rU

we can generate I'(x, y), a function that is identical to
J(x , y) except that it contains no frequency compo
nents greater than Wo (wo would be dependent on the
output device resolution).

Unfortunately, this convolution is impractical; it
is too expensive. Consequently, simplifications have
been used in computer graphics to compute the convo
lution in reasonable time. The major simplifications
are simpler sampling filters and capitalization of the
coherence properties of the image function.

Let us assume that the object is modeled with
polygons. The image function approximation begins
with the observation that as we sample along a poly
gon the signal will change relatively slowly. It is only
when we cross polygon boundaries that great

Graphics Interface '92 ~<i)

fluctuations in intensity will occur. Thus we can
assume that within a pixel the intensity of each poly
gon is constant. This implies we have to calculate the
shade of each polygon within a pixel only once, a great
saving in computation. Consequently, the area and
position that a polygon covers within a pixel along
with just one shade computation for that polygon is
enough to calculate that polygon's contribution to the
intensity function at that pixel.

Over the last decade there have appeared many
papers indicating solutions to the aliasing problem that
are similar to the approach outlined above
(Crow, 1977; Catmull, 1978; Crow, 1981;
Crow, 1982; Carpenter, 1984; Duff, 1989;
Tanaka, 1990) and, in general, they work very well.
What most researchers have ignored, however, is that
in regions where the surface curvature of an object is
large, another form of aliasing becomes noticeable:
specular aliasing. Consider Plate 1. It consists of two
cylinders, one slightly tilted, each having a very shiny
surface. A light source behind the viewer introduces a
narrow highlight that is visible down the center of each
cylinder. If we rotate the cylinder slightly, we see that
the highlight breaks up, introducing aliasing artifacts.
The high curvature causes the specular component of
the shading function (the component most susceptible
to orientation) to introduce high frequencies into
I(x, y), frequencies that cannot be represented by the
current sampling rate. This aliasing cannot be
removed by the traditional approaches to anti-aliasing
because of the assumptions they make to simplify the
low pass filtering. The problem does not occur at the
border of the cylinder (where most algorithms expect it
to be) but in the interior.

Previous Work

Solution 1

The first solution for performing specular anti
aliasing was outlined by Frank Crow (Crow, 1982).
He performed this anti-aliasing by computing the spec
ular component at a higher resolution in pixels where
the surface normal changed significantly. The draw
back to this approach was that the user had to manu
ally define a "threshold curvature" which was then
used to indicate when higher resolution highlights
were required. As no information about the surface
reflectance properties were included (the highlight is
also a function of surface characteristics), this "thresh
old curvature" may not have been an accurate indicator
of specular aliasing for a particular surface. Thus the
user had to, at times, change the threshold and

87

recompute the specular component if the aliasing was
still noticeable (this manual approach would be very
inconvenient in animations).

Solution 2

The second solution was reported by Lance
Williams (Williams, 1983). It involves storing a
spherical texture map representing the illumination
from the scene. The specular shading computation is
replaced by a look-up in the spherical texture map.
Local surface curvature is used to compute how much
of the texture map to integrate. Unfortunately this
approach requires a great deal of storage for the tex
ture map, cannot deal with varying surface shininess
nor handle light sources that are at a finite distance.

Solution 3

A third, more limited solution, advocated by
Saito, Shinya and Takahashi (Saito, 1989), for edges
of planar surfaces, consists of developing special
purpose cylinder shaders and inserting thin cylinders
over edges and drawing them as wire-frames.

Detecting Specular Aliasing

In this section we will derive a specular aliasing
detection algorithm. The highlight function that we
will use, 1= Kspec cosn(a), is Phong's
(Bui T. Phong, 1975). As the parameter n increases,
the highlight becomes more concentrated and the sur
face appears more glossy. Let us look at the Fourier
series of this function. Recall that every even periodic
function with a period T can be represented by the
cosine expansion (Hwei P. Hsu, 1970)

~

!(t) = t £(j + L an cos(nWot) ,
n=1

27r
Wo=-

T

The cosine expansion of cosn(a) can be extracted from
(Oberhettinger, 1973):

21 _ -21 2 liEn cos(2na)
COS (a)- 2 (I). L (I)1(/-)"

n=O +n. n.

EO = 1, En = 2, n = 1, 2, 3, . ..

COs21+1(a) = 2-21 (21 + I)! ± cos«2n + l)a)
n=O (l + 1 + n)!(l- n)!

If we look at this Fourier transform of cosn(a) we see
that the high frequency components increase as n does.
In fact, the highest frequency is n radians. For a given
n there is a sampling step size, Aan (Aan = 7r/n) ,
above which aliasing is inevitable. To detect specular

Graphics Interface '92 ~

aliasing we must detect situations during
where we go above this sampling step size.

Consider the geometry of shading:

o

Figure 1

rendering

Here, :N, L, E and R are unit vectors in the direction of
the surface normal, light source, eye and reflected eye

directions respectively. Changing any of N, L or E
will change a, the a of Phong's highlight function. If
any of these change within a pixel when rendering,
specular aliasing may occur (Williams, 1983). Luck
ily, unless the light source or eye are very close to the
surface, their effect is minimal. The surface normal,
however, has a more pronounced effect. It can change
Significantly within a pixel, thus noticeably affecting
a . If the surface is shiny (a high value of n), the
change in a (Lla) within the pixel can exceed Llan

(which is smaller for larger values of n) and aliasing
results. Consequently, to detect specular aliasing, we
must, within each pixel, determine how much the sur-

face normal N changes and relate it to the maximum

allowed by n. (Note: a change of N by Ll radians
changes a by 2Ll radians).

The most straightforward way to compute how
much the surface normal changes is to compute the
normal at the corners of the pixel and find the pair
which diverge the most (by computing the six dot
products of the various pairs of normals and finding
the minimum). The smallest of these six dot products,
dot&;, is compared to the smallest dot product allowed
for the current value of n, dot/la. (via a lookup on n
into a pre-computed table). If it is greater than the
value in the table, then no aliasing can occur. Other
wise, we have detected the occurrence of specular
aliasing. We thus have derived a simple, analytic algo
rithm to detect specular aliasing on surfaces using the
Phong highlight function. The only prerequisite is a
good indicator of Lla. Instead of using the normals at
the corners of the pixel, another possibility would be to
use the curvature of the surface and the size of

88

intersection to compute Lla.

The above approach of finding the how much
the surface normal changes within a pixel has to be
modified slightly when bump mapping is used. In this
case, one can compute the change in normal when the
bump map normal is generated and use this value
instead.

The algorithm described above is conservative.
Most of the energy in the power spectrum of cosn(a) is
in the lower frequencies with very little near the high
end. Consider the following figure:

100

80

60
Cutoff

frequency
40

20

...

99.99%

,,'<J9.9%
"
... {)1)%

O~---.--~---.----.--.

o 200 400 600 800 1000
Maximum frequency

Figure 2

It is a frequency-frequency plot for several power lev
els. The abscissa indicates the maximum frequency in
the power spectrum of cosn(a) (recall that the maxi
mum frequency is n radians) while the ordinate repre
sents the cutoff frequency below which a given per
centage of the power of cosn(a) resides. For example,
if n is 500, the maximum frequency in the power spec
trum is 500 radians while 99.9 percent of the power is
below 52 radians. Our table of minimum dot products
could be computed more aggressively so that we don't
have to perform specular anti-aliasing as frequently.

Once we have detected that specular aliasing is
occurring we must be able to suggest a sampling rate
that eliminates it. To do this we take the arc-cosine of
the normal-pair dot product, dot&;, (for efficiency we
could perform a table lookup for the arc-cosine) to get
Lla&;. We compare this with Llan and use the resultant
ratio to indicate the oversampling rate.

Eliminating Specular Aliasing

We have just derived an algorithm for the detec
tion of specular aliasing. Now we have to decide what

~~ Graphics Interface '92

to do about it. Crow's standard solution for removing
this aliasing can be used but it is unsatisfactory in that
multiple shading computations per pixel per polygon
are required; these are expensive. We will now derive
an alternate solution that requires only one shading
computation per pixel, a much more frugal approach.

The purpose of anti-aliasing is to remove the
high frequencies in a signal that cannot be represented
by the current sampling rate. If we do not want to
change this sampling rate we must somehow change
the signal so that the unrepresentable frequencies are
absent. One way of accomplishing this low pass filter
is described by Norton, Rockwood and Skolmoski in
the work they did on texture mapping (Norton, 1982).
Their original signal was constructed with a series of
sine waves, each baving a different frequency and
phase angle. Their method of anti-aliasing was to
clamp out the sine waves that were too high to be rep
resented and only use the low frequency sine wave
components. This approach inspired the specular anti
aliasing algorithm described below.

A different method to perform specular anti
aliasing involves clamping n to values that will not
introduce aliasing. By replacing n by a smaller value,
we guarantee that the new highlight function has no
offending high frequencies. The new value of n, n',
depends on the sampling rate £\aN. What we are in
fact doing is replacing the user specified highlight
function with a duller one, one guaranteed not to alias.
We only do this, however, in problem pixels so that in
regions where no aliasing is occurring we use the orig
inal function.

The simple replacement of n' for n needs a little
enhancement before it becomes the complete anti

aliasing algorithm. Replacing cosn
' (a) for cosn(a)

removes the high frequencies from the original signal
but in the process it also boosts the lower frequencies,
making the surface appear brighter than before. Some
sort of normalization is in order. This normalization is
encorporated in the algorithm if we multiply the new

highlight function, cosn' (a), by the ratio of Maxi
mum[n] to Maximum[n'] . Maximum[] is an array that
stores the value of the first (and largest) component in
the signal cosn(a) for various values of n. By per
forming the above normalization we try to make sure
that the overall level of the clamped signal is the same
as the original signal. The effects of normalization is
illustrated in Figure 6-3. It plots the ratio of the cosine
components of the clamped signal to those in the origi
nal signal, cos1 60(a), for various values of n', starting
at 20 and going to 140 in step sizes of 20. We see that

89

in the low frequencies the original and clamped com
ponents are identical but as we go higher up in the fre
quency spectrum the cosine components in the
clamped function quickly fall off.

1

0.8

0.6
Ratio

0.4

0.2

o

o 50 100 150
Frequency

Figure 3

The resulting specular anti-aliasing algorithm is sum
marized in the code fragment below:

if(dott;N >= MinDot[n]) {
/* no aliasing */
n'= n;
K specular' = K specular;

} else {
£\aN= 2* ArcCosine(dott;N);

sampleFrequency= Jr/£\aN;

n'= MaxnAllowed[sampleFrequency];
Kspecula,'= Kspecular *Maximum(n]lMaximum(n'];

Kspecular indicates the fraction of the light that the
specular component contributes. The array MaxnAI
lowed[] is required only if we are performing aggres
sive specular anti-aliasing. Otherwise, n' is assigned
the value of sampleFrequency.

Results

The above algorithms for detecting and eliminat
ing specular aliasing were implemented in a z-buffer
rendering system. The z-buffer visible surface algo
rithm was chosen because it would guarantee that any
anti-aliasing observed would have to come from the
clamping algorithm. Adding the clamping algorithm
to the z-buffer renderer was straightforward. The
biggest implementation hurdle encountered was
changing the tiler to have it compute dott;N . The three

Graphics Interface '92 ~

arrays, MinDot[), Maximum[) and MaxnAllowedD,
were pre-computed for efficiency. Plate 2 shows four
cylinders, each with identical surface properties but
different sizes and orientations computed to a resolu
tion of 256 by 256 pixels. The large central cylinder
and the one on the lower right exhibit severe specular
aliasing. The cylinder on the upper left is also exhibit
ing specular aliasing even though none is visible at
present. For if it is moved slightly, aliased highlights
will appear on its surface. This is also true of the
cylinder in the upper right. Plate 3 shows the same
scene rendered using the highlight clamping algorithm.
The highlight down the central and lower right cylin
ders are now smooth with no jaggies present. A high
light is faintly visible on the cylinder in the upper lefL
Now, even if the cylinder is moved, no highlight will
flicker on and off. The cylinder on the upper right has
no highlight visible as it is too faint. There is so much
curvature in this cylinder that any visible highlight
would cause aliasing due to the severe undersampling.
Plate 4 shows the same scene rendered with more
aggressive clamping (99.9 percent power). The high
lights are brighter and not as spread out and aliasing is
not noticeable. Plate 5 shows a scene with two cones
with the one on the right being highlight anti-aliased.
The cone shape is useful in that it illustrates a continu
ous transition from low curvature to high. As can be
seen, the transition into the high curvature region is
smooth when anti-aliased.

Conclusion

We have introduced a simple analytic algorithm
that, given the change of a within the pixel, detects
when specular aliasing is present and indicates a sam
pling rate to overcome it. We have also introduced a
very fast and simple algorithm that removes specular
aliasing without increasing the sampling rate.

I would like to thank Xerox PARC, and espe
cially Frank Crow, for providing the facilities and sup
port for much of this research project. Also, thanks to
NSERC for their continuing support.

References

Blinn, 1978.
I .F. Blinn, "Simulation of Wrinkled Surfaces," Com
puter Graphics, 12(3), pp. 286-292 (August 1978).

Bui T. Pbong, 1975.
Bui T. Pbong, "Illwnination for Computer Gener
ated Pictures," Comm. of the A CM, 18(6), pp.
311-317 (June 1975).

90

Carpenter, 1984.
L. Carpenter, "The A-buffer, an Antialiased Hidden
Surface Method," Computer Graphics, 18(3), pp.
103-108 (July 1984).

Catmull, 1978.
E. Catmull, "A Hidden-Surface Algorithm with Anti
Aliasing," Computer Graphics, 12(3), pp. 6-10
(August 1978).

Cook, 1986.
R.L. Cook, "Stocbastic Sampling in Computer
Grapbics," Trans. on Graphics, 5(1), pp. 51-72 (Jan
uary 1986).

Crow, 1977.
F.e. Crow, "The Aliasing Problem in Computer
Generated Sbaded Images," Comm. of the A CM,
20(11), pp. 799-805 (November 1977).

Crow, 1981.
F.e. Crow, "A Comparison of Antialiasing Tecb
niques," IEEE Computer Graphics and Applications,
1(1), pp. 40-48 (January 1981).

Crow, 1982.
F.C. Crow, "Computational Issues in Rendering Anti
Aliased Detail," IEEE 1982 Spring COMPCON, pp.
238-244 (1982).

Duff, 1989.
T. Duff, "Polygon scan conversion by exact convolu
tion," in Raster Imaging and Digital Typography,
Edited by J . Andre, R. Hirsh, Cambridge Univ. Press;
Proceedings of RIDT89 Intl. Con! , Lausanne,
Switzerland, pp. 154-168 (October 1989).

Hwei P. Hsu, 1970.
Hwei P. Hsu, "Fourier Analysis," Simon and Scbus
ter, N.Y. (1970).

Norton, 1982.
A. Norton, A.P. Rockwood, and P.T. Skoimoski,
"Clamping: A Metbod of Antialiasing Textured Sur
faces by Bandwidtb Limiting in Object Space," Com
puterGraphics, 16(3), pp. 1-8 (July 1982).

Oberbettinger, 1973.
F. Oberhettinger, "FOURIER EXPANSIONS: a col
lection of formulas ," Academic Press, N.Y. (1973).

Pratt, 1978.
w.K. Pratt, "Digital Image Processing," Wiley
Interscience (1978).

Saito, 1989.
T. Saito, M. Shinya, and T. Takahashi, "Highlighting
Rounded Edges," CG International '89 (1989).

Tanaka, 1990.
T. Tanaka and T. Takabasbi, "Cross Scanline Algo
rithm," Eurographics '90, pp. 63-74 (1990).

Williams, 1983.
L. Williams, "Pyramidal Parametrics," Computer
Graphics, 17(3),pp. 1-11 (July 1983).

Graphics Interface '92

91

Plate 1

I

Plate 2

~ Graphic s Interface '92

92

I

Plate 3

I

Plate 4

~ Graphics Interface '92

93

Plate 5

Graphics Interface '92 ~

