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Abstract 

This paper introduces an algorithm that, given 
the geometry and surface characteristics of an object 
(the Phong highlight model is assumed), detects when 
specular or highlight aliasing is expected and indicates 
the correct sampling rate to eliminate it. This is 
accomplished by noting the geometric properties of the 
surface, the direction and distances to the eye and light 
sources, and the specular shading parameters. Also, an 
auxiliary algorithm is presented that eliminates the 
specular aliasing without increasing the sampling rate. 
It accomplishes this by clamping the specular function 
parameters to values that will not introduce significant 
high frequency components. 
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Introduction 

An area of research in computer graphics that 
continues to receive a lot of attention is anti-aliasing 
(Crow, 1977; Cook, 1986). Much work, however, 
has concentrated with the edges of the display primi
tives, noting, correctly, that the most noticeable alias
ing artifacts would occur there. Unfortunately, this 
approach has ignored another form of a1iasing, that 
introduced by the highlight or specular component of 
the shading function. For example, if we are rendering 
cylinders, the highlight down the center of the cylinder 
may be quite jagged if the surface is very shiny 
(Crow, 1981). These defects are also sometimes visi
ble when bump mapping (Blinn, 1978). The standard 
approaches of anti-aliasing in computer graphics will 
not correctly handle specular aliasing. This paper will 
first review a1iasing and then three earlier attempts to 
solve the specular aliasing problem. It then introduces 
an algorithm for detecting specular aliasing plus a new 
method of specular anti-a1iasing, along with resul ts 
produced using this new method. 

Background 

Aliasing is possible when the two dimensional 
image function J(x, y) , representing the image on the 
viewing screen, contains frequencies greater than those 
that can be faithfully reproduced on the display device. 
If we sample this function, the resulting pixel values 
will not be correct. Aliasing is manifested in the form 
of jagged edges, distortions of small objects, inconsis
tencies in areas of complicated detail and in animated 
sequences. To remove these errors, several techniques 
have been advanced (Crow, 1977). We can sample 
the image function at higher resolution. This expen
sive process can diminish the problem but will not 
eliminate it. The best approach is to filter J(x, y) 
before we sample, and there are strong theoretical rea
sons for doing this (Peatt, 1978). 
ldealy, if we perform the following convolution 

I'(x, y) = J J J(a, P) H(x - a) H(y - P) da dp 

with the appropriate sampling filter H 

sin(wou) 
H(u) = ----'--

7rU 

we can generate I'(x, y), a function that is identical to 
J(x , y) except that it contains no frequency compo
nents greater than Wo (wo would be dependent on the 
output device resolution). 

Unfortunately, this convolution is impractical; it 
is too expensive. Consequently, simplifications have 
been used in computer graphics to compute the convo
lution in reasonable time. The major simplifications 
are simpler sampling filters and capitalization of the 
coherence properties of the image function. 

Let us assume that the object is modeled with 
polygons. The image function approximation begins 
with the observation that as we sample along a poly
gon the signal will change relatively slowly. It is only 
when we cross polygon boundaries that great 
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fluctuations in intensity will occur. Thus we can 
assume that within a pixel the intensity of each poly
gon is constant. This implies we have to calculate the 
shade of each polygon within a pixel only once, a great 
saving in computation. Consequently, the area and 
position that a polygon covers within a pixel along 
with just one shade computation for that polygon is 
enough to calculate that polygon's contribution to the 
intensity function at that pixel. 

Over the last decade there have appeared many 
papers indicating solutions to the aliasing problem that 
are similar to the approach outlined above 
(Crow, 1977; Catmull, 1978; Crow, 1981; 
Crow, 1982; Carpenter, 1984; Duff, 1989; 
Tanaka, 1990) and, in general, they work very well. 
What most researchers have ignored, however, is that 
in regions where the surface curvature of an object is 
large, another form of aliasing becomes noticeable: 
specular aliasing. Consider Plate 1. It consists of two 
cylinders, one slightly tilted, each having a very shiny 
surface. A light source behind the viewer introduces a 
narrow highlight that is visible down the center of each 
cylinder. If we rotate the cylinder slightly, we see that 
the highlight breaks up, introducing aliasing artifacts. 
The high curvature causes the specular component of 
the shading function (the component most susceptible 
to orientation) to introduce high frequencies into 
I(x, y), frequencies that cannot be represented by the 
current sampling rate. This aliasing cannot be 
removed by the traditional approaches to anti-aliasing 
because of the assumptions they make to simplify the 
low pass filtering. The problem does not occur at the 
border of the cylinder (where most algorithms expect it 
to be) but in the interior. 

Previous Work 

Solution 1 

The first solution for performing specular anti
aliasing was outlined by Frank Crow (Crow, 1982). 
He performed this anti-aliasing by computing the spec
ular component at a higher resolution in pixels where 
the surface normal changed significantly. The draw
back to this approach was that the user had to manu
ally define a "threshold curvature" which was then 
used to indicate when higher resolution highlights 
were required. As no information about the surface 
reflectance properties were included (the highlight is 
also a function of surface characteristics), this "thresh
old curvature" may not have been an accurate indicator 
of specular aliasing for a particular surface. Thus the 
user had to, at times, change the threshold and 
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recompute the specular component if the aliasing was 
still noticeable (this manual approach would be very 
inconvenient in animations). 

Solution 2 

The second solution was reported by Lance 
Williams (Williams, 1983). It involves storing a 
spherical texture map representing the illumination 
from the scene. The specular shading computation is 
replaced by a look-up in the spherical texture map. 
Local surface curvature is used to compute how much 
of the texture map to integrate. Unfortunately this 
approach requires a great deal of storage for the tex
ture map, cannot deal with varying surface shininess 
nor handle light sources that are at a finite distance. 

Solution 3 

A third, more limited solution, advocated by 
Saito, Shinya and Takahashi (Saito, 1989), for edges 
of planar surfaces, consists of developing special
purpose cylinder shaders and inserting thin cylinders 
over edges and drawing them as wire-frames. 

Detecting Specular Aliasing 

In this section we will derive a specular aliasing 
detection algorithm. The highlight function that we 
will use, 1= Kspec cosn(a), is Phong's 
(Bui T. Phong, 1975). As the parameter n increases, 
the highlight becomes more concentrated and the sur
face appears more glossy. Let us look at the Fourier 
series of this function. Recall that every even periodic 
function with a period T can be represented by the 
cosine expansion (Hwei P. Hsu, 1970) 

~ 

!(t) = t £(j + L an cos(nWot) , 
n=1 

27r 
Wo=-

T 

The cosine expansion of cosn(a) can be extracted from 
(Oberhettinger, 1973): 

21 _ -21 2 liEn cos(2na) 
COS (a)- 2 (I). L (I )1(/- )" 

n=O +n. n. 

EO = 1, En = 2, n = 1, 2, 3, . .. 

COs21+1(a) = 2-21 (21 + I)! ± cos«2n + l)a) 
n=O (l + 1 + n)!(l- n)! 

If we look at this Fourier transform of cosn(a) we see 
that the high frequency components increase as n does. 
In fact, the highest frequency is n radians. For a given 
n there is a sampling step size, Aan ( Aan = 7r/n) , 
above which aliasing is inevitable. To detect specular 
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aliasing we must detect situations during 
where we go above this sampling step size. 

Consider the geometry of shading: 

o 

Figure 1 

rendering 

Here, :N, L, E and R are unit vectors in the direction of 
the surface normal, light source, eye and reflected eye 

directions respectively. Changing any of N, L or E 
will change a, the a of Phong's highlight function. If 
any of these change within a pixel when rendering, 
specular aliasing may occur (Williams, 1983). Luck
ily, unless the light source or eye are very close to the 
surface, their effect is minimal. The surface normal, 
however, has a more pronounced effect. It can change 
Significantly within a pixel, thus noticeably affecting 
a . If the surface is shiny (a high value of n), the 
change in a (Lla) within the pixel can exceed Llan 

(which is smaller for larger values of n) and aliasing 
results. Consequently, to detect specular aliasing, we 
must, within each pixel, determine how much the sur-

face normal N changes and relate it to the maximum 

allowed by n. (Note: a change of N by Ll radians 
changes a by 2Ll radians). 

The most straightforward way to compute how 
much the surface normal changes is to compute the 
normal at the corners of the pixel and find the pair 
which diverge the most (by computing the six dot 
products of the various pairs of normals and finding 
the minimum). The smallest of these six dot products, 
dot&;, is compared to the smallest dot product allowed 
for the current value of n, dot/la. (via a lookup on n 
into a pre-computed table). If it is greater than the 
value in the table, then no aliasing can occur. Other
wise, we have detected the occurrence of specular 
aliasing. We thus have derived a simple, analytic algo
rithm to detect specular aliasing on surfaces using the 
Phong highlight function. The only prerequisite is a 
good indicator of Lla. Instead of using the normals at 
the corners of the pixel, another possibility would be to 
use the curvature of the surface and the size of 
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intersection to compute Lla. 

The above approach of finding the how much 
the surface normal changes within a pixel has to be 
modified slightly when bump mapping is used. In this 
case, one can compute the change in normal when the 
bump map normal is generated and use this value 
instead. 

The algorithm described above is conservative. 
Most of the energy in the power spectrum of cosn(a) is 
in the lower frequencies with very little near the high 
end. Consider the following figure: 
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Figure 2 

It is a frequency-frequency plot for several power lev
els. The abscissa indicates the maximum frequency in 
the power spectrum of cosn(a) (recall that the maxi
mum frequency is n radians) while the ordinate repre
sents the cutoff frequency below which a given per
centage of the power of cosn(a) resides. For example, 
if n is 500, the maximum frequency in the power spec
trum is 500 radians while 99.9 percent of the power is 
below 52 radians. Our table of minimum dot products 
could be computed more aggressively so that we don't 
have to perform specular anti-aliasing as frequently. 

Once we have detected that specular aliasing is 
occurring we must be able to suggest a sampling rate 
that eliminates it. To do this we take the arc-cosine of 
the normal-pair dot product, dot&;, (for efficiency we 
could perform a table lookup for the arc-cosine) to get 
Lla&;. We compare this with Llan and use the resultant 
ratio to indicate the oversampling rate. 

Eliminating Specular Aliasing 

We have just derived an algorithm for the detec
tion of specular aliasing. Now we have to decide what 
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to do about it. Crow's standard solution for removing 
this aliasing can be used but it is unsatisfactory in that 
multiple shading computations per pixel per polygon 
are required; these are expensive. We will now derive 
an alternate solution that requires only one shading 
computation per pixel, a much more frugal approach. 

The purpose of anti-aliasing is to remove the 
high frequencies in a signal that cannot be represented 
by the current sampling rate. If we do not want to 
change this sampling rate we must somehow change 
the signal so that the unrepresentable frequencies are 
absent. One way of accomplishing this low pass filter 
is described by Norton, Rockwood and Skolmoski in 
the work they did on texture mapping (Norton, 1982). 
Their original signal was constructed with a series of 
sine waves, each baving a different frequency and 
phase angle. Their method of anti-aliasing was to 
clamp out the sine waves that were too high to be rep
resented and only use the low frequency sine wave 
components. This approach inspired the specular anti
aliasing algorithm described below. 

A different method to perform specular anti
aliasing involves clamping n to values that will not 
introduce aliasing. By replacing n by a smaller value, 
we guarantee that the new highlight function has no 
offending high frequencies. The new value of n, n', 
depends on the sampling rate £\aN. What we are in 
fact doing is replacing the user specified highlight 
function with a duller one, one guaranteed not to alias. 
We only do this, however, in problem pixels so that in 
regions where no aliasing is occurring we use the orig
inal function. 

The simple replacement of n' for n needs a little 
enhancement before it becomes the complete anti

aliasing algorithm. Replacing cosn
' (a) for cosn(a) 

removes the high frequencies from the original signal 
but in the process it also boosts the lower frequencies, 
making the surface appear brighter than before. Some 
sort of normalization is in order. This normalization is 
encorporated in the algorithm if we multiply the new 

highlight function, cosn' (a), by the ratio of Maxi
mum[n] to Maximum[n'] . Maximum[] is an array that 
stores the value of the first (and largest) component in 
the signal cosn(a) for various values of n. By per
forming the above normalization we try to make sure 
that the overall level of the clamped signal is the same 
as the original signal. The effects of normalization is 
illustrated in Figure 6-3. It plots the ratio of the cosine 
components of the clamped signal to those in the origi
nal signal, cos1 60(a), for various values of n', starting 
at 20 and going to 140 in step sizes of 20. We see that 
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in the low frequencies the original and clamped com
ponents are identical but as we go higher up in the fre
quency spectrum the cosine components in the 
clamped function quickly fall off. 
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Figure 3 

The resulting specular anti-aliasing algorithm is sum
marized in the code fragment below: 

if(dott;N >= MinDot[n]) { 
/* no aliasing */ 
n'= n; 
K specular' = K specular; 

} else { 
£\aN= 2* ArcCosine(dott;N); 

sampleFrequency= Jr/£\aN; 

n'= MaxnAllowed[sampleFrequency]; 
Kspecula,'= Kspecular *Maximum(n]lMaximum(n']; 

Kspecular indicates the fraction of the light that the 
specular component contributes. The array MaxnAI
lowed[] is required only if we are performing aggres
sive specular anti-aliasing. Otherwise, n' is assigned 
the value of sampleFrequency. 

Results 

The above algorithms for detecting and eliminat
ing specular aliasing were implemented in a z-buffer 
rendering system. The z-buffer visible surface algo
rithm was chosen because it would guarantee that any 
anti-aliasing observed would have to come from the 
clamping algorithm. Adding the clamping algorithm 
to the z-buffer renderer was straightforward. The 
biggest implementation hurdle encountered was 
changing the tiler to have it compute dott;N . The three 
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arrays, MinDot[), Maximum[) and MaxnAllowedD, 
were pre-computed for efficiency. Plate 2 shows four 
cylinders, each with identical surface properties but 
different sizes and orientations computed to a resolu
tion of 256 by 256 pixels. The large central cylinder 
and the one on the lower right exhibit severe specular 
aliasing. The cylinder on the upper left is also exhibit
ing specular aliasing even though none is visible at 
present. For if it is moved slightly, aliased highlights 
will appear on its surface. This is also true of the 
cylinder in the upper right. Plate 3 shows the same 
scene rendered using the highlight clamping algorithm. 
The highlight down the central and lower right cylin
ders are now smooth with no jaggies present. A high
light is faintly visible on the cylinder in the upper lefL 
Now, even if the cylinder is moved, no highlight will 
flicker on and off. The cylinder on the upper right has 
no highlight visible as it is too faint. There is so much 
curvature in this cylinder that any visible highlight 
would cause aliasing due to the severe undersampling. 
Plate 4 shows the same scene rendered with more 
aggressive clamping (99.9 percent power). The high
lights are brighter and not as spread out and aliasing is 
not noticeable. Plate 5 shows a scene with two cones 
with the one on the right being highlight anti-aliased. 
The cone shape is useful in that it illustrates a continu
ous transition from low curvature to high. As can be 
seen, the transition into the high curvature region is 
smooth when anti-aliased. 

Conclusion 

We have introduced a simple analytic algorithm 
that, given the change of a within the pixel, detects 
when specular aliasing is present and indicates a sam
pling rate to overcome it. We have also introduced a 
very fast and simple algorithm that removes specular 
aliasing without increasing the sampling rate. 

I would like to thank Xerox PARC, and espe
cially Frank Crow, for providing the facilities and sup
port for much of this research project. Also, thanks to 
NSERC for their continuing support. 
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