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Abstract 
A relaxation method is presented that generates a series 
of spatially distributed stochast ic samples f ollowing the 
Poisson disk distribution over a range of scales . The 
series is structured so that a prefix subsequence f orms 
a lower frequency sampling pattern that is also Poisson 
disk distributed. Un like strict dart-throwing, the relax­
ation procedure is guaranteed to terminate. The hier­
archical structure allows straightforward adaptive sam­
pling, using techniques analogous to ordered dithering. 
Also presented is an efficient method to optimize the lo­
ca tion of samples under a minimum root mean square 
quantization error criterion. 

Resume 

Une methode de relaxation es t presentee qui genere une 
serie d 'echantillons distribuee de fa<;on aleatoire selon 
une distribution de disqu e Poisson pour une gamme 
d 'echelles. La serie est const ruite de fa<; on d ce que 
les premiers echantillons co rrespondent aussi dune dis­
tribution de disque Poisson, mais d 'une fr equence plus 
basse. Contrairem ent d la methode du lance de darts, la 
methode presentee termine tourjours. La structure hier­
G/'chique permet un echantillonage adaptatif simplement 
en se servant d 'une technique semblable d celle connu 
sous le nom de ordered dithering . Une methode effi­
cace pour optimizer le placement des echantillons dans 
le sen5 du va/eur quadratique moyenne est ega/ement 
presentee. 

Keywords: ray tracing, stochastic sampling, Poisson 
disk, adaptive sampling, dithering, optimization , 
antialiasing. 

1 Introduction 
Stochastic sampling has arisen as an important tech­
nique for the estimation of multidimensional integrals 
in computer graphics [Co086b, Mit91, LRU85, Mit91] . 

Area integrals are implicit in the solution of such prob­
lems as antialiasing, soft shadows, and the simulation of 
finite camera apertures (causing depth-of-field effects). 
Integration over time is needed for motion blur. All 
these problems can be treated together, resulting in 
a large multidimensional domain of integration. Ray 
tracing in particular has benefited from this approach 
because of its inherent point sampling limitations. 

Error bounds can be derived from the variability of 
the samples: variance , contrast, etc. An approximate 
error bound on the results of stochastic sampling using 
variance is given by 

r;; 
fcxVVN' 

where N is the number of samples, 52 is the variance 
of the sum, and V is the volume of the domain of in­
tegration [LRU85 , PFTV89]. This error relationship is 
typically used in numerical applications of the Monte 
Carlo (stochastic sampling) method. Note, however , 
that it only decreases as a function of ,;N. An error 
bound based on contrast is given in [Mit87]; this should 
more closely match the psychophysical characteristics 
of the human visual system. Contrast is defined as 

c = Imax - Imin . 

Imax + Imin 

These expressions are particularly useful in adaptive 
sampling techniques, where only enough samples are 
taken to satisfy an error bound in a local region. For 
the contrast measure , supersampling can be initiated if 
the contrast is above a certain bound , indicating high 
variability. 

Research has focused on the problem of choosing sam­
ple positions so as to minimize the impact of this in­
evitable error whil e minimizing the number of samples. 
Both can be accomplished by carefully choosing the po­
sition of the random samples. 

Instead of structured artifacts such as moire patterns 
or staircasing ( "jaggies"), aliasing error due to under­
sampling appears as noise. The distribution of random 
samples shapes the frequ ency spectrum of this noise . 
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Visually, low-frequency noise is particularly objection­
able, appearing as "structure" in the image. Also, a 
low-pass reconstruction filter will typically be applied 
after the sampling, filtering out high-frequency noise; 
often this filter will just be a summation of the sam­
pled values (a box filter) . For both these reasons, the 
sampling strategy should try to concentrate the noise 
in high spatial frequencies. 

Mitchell [Mit91] has recently studied the problem of 
choosing samples across all dimensions of the rendering 
problem to optimize the spectral characteristics of the 
noise on the resulting image. This study has some re­
sults in common with his; in particular, he gives an algo­
rithm which will generate hierarchical distributions very 
close to the ones we give in Section 4, and can be used 
as an alternative to the algorithm given in that section. 
However, this paper also presents a new and very effi­
cient approach to high-quality adaptive sampling using 
these distributions, and presents an effi cient optimiza­
tion algorithm that can be applied to other problems 
such as the quantization of normals [McC91] or gener­
ation of random meshes [Tur91] . 

We will focus on the sampling problem in two spatial 
dimensions, which applies to the subproblems of area 
light sources, antialiasing, and camera aperture simula­
tion. 

The problem of selecting a spatial sampling distri­
bution has been studied in graphics [CPC84, DW85, 
Co086b, Co086a, CPC84, Mit87], dithering [Uli87], and 
coded aperture reconstruction [BS81] . The analysis in 
this paper will follow that in [Uli87]; we will analyse 
distri bu tions empirically using frequency-domain tech­
niques. 

Totally random selection of points is not a good solu­
tion, as will be shown in Section 3.1. Other approaches 
to this problem have included jittering samples from a 
periodic grid, n-rooks, and the Poisson disk. Because of 
space restrictions, not all of these sampling approaches 
have been analyzed in this paper. The following sections 
will focus on optimizing the Poisson disk approach after 
first introducing some analysis tools. 

There are indications that the Poisson disk distribu­
tion is one of the best from a spectral point of view. 
In comparison with jittering it is difficult and expensive 
to generate and use: the following analysis assumes a 
table-based implementation . 

2 Analysis Tools 
We need a set of tools to analyse the frequency domain 
characteristics of different sampling patterns. These 
tools will reduce the response to two one-dimensional 
graphs, radial power and radial anisotropy. Radial 
power will measure power at each spatial frequency, 
regardless of orientation; anisotropy will measure the 
variabi lity of this measure about all orientations. 

An empirical analysis will be used. It is often sim­
pler to see how a sampling pattern actually behaves 
than to attempt to derive its response, since any deriva­
tion will require some simplifying assumptions that may 

95 

limit the applicability of the solution. For example, the 
sequential generation of samples using dart throwing 
(Section 3.2) is usually not modelled . 

We assume that radially symmetric responses are ap­
propriate. Alternatives are possible, i.e. high pass two­
dimensional filters with a diamond-shaped stopband. 
These should be simple extensions of the approach out­
lined here. 

A distribution of samples can be represented by a 
set of impulses in the plane. To analyse the frequency 
domain response, the periodogram of the distribution is 
evaluated and measures of power and power variance in 
a set of circles about the centre are computed. 

The periodogram is the Fourier transform of the au­
tocorrelation function. The aulocorrelalion r j of a real 
signal 1 is defined as 

Tj(Y) = I(i) * I(-i) = J l(i)/(i- YJdi 

For real signals the Fourier transform of the autocorre­
lation function is equal to the square of the magnitude 
of the Fourier transform of I (i): 

according to the complex identity zz · = JZJ2, the convo­
lution theorem, and the time-reversal theorem . Using 
the periodogram will allow the power and anisotropy 
at different frequencies to be evaluated, since we can 
compute the anisotropy at any radius . At points closer 
to the origin, energy in the periodogram corresponds to 
low-frequency energy in the autocorrelation, and there­
fore long-distance spatial correlation. Since the peri­
odogram is also the spectrum squared, low frequency 
power also corresponds to low frequency, or large-scale, 
structure in the function I(i) . 

We want to avoid low-frequency structure in our sam­
pling patterns because this structure could be erro­
neously perceived as structure arising from the source 
image. The validity of this quality measu re depends 
on the quality of the reconstruction filter, which should 
reject high frequencies. It should be noted that a box 
filter has a sinc(w,,)sinc(wy ) freq uency response, which 
allows some leakage at high freq uencies and is conse­
quently not the best choice . 

To evaluate the periodogram of a distribution, it is 
necessary to find the mean periodogram of samples 
drawn from the dis tribution. In the following analy­
sis, average periodograms are computed by summing to­
gether 100 periodograms of sample images drawn from 
each distribution . Each image has a resolution of 32 x 32 
and contains 64 impulses, a density of 1/16. Images 
are defined over the unit square . An impulse is repre­
sented by a value of 1 at the appropriate location in 
the image. Note that the following approximations and 
assumptions are made in this analysis: 

1. The impulses are finite-width. 

2. The location of the impulses are rounded to the 
nearest grid location. 
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3. A finite-resolution grid is used . 

4. The distribution on the unit square is assumed to 
tile the plane periodically. 

5. A finite number of periodograms are used to esti-
mate the mean periodogram. 

Most of these approximations are made so that the dis­
crete Fourier transform, in its efficient FFT form, can 
be used to evaluate the periodograms. 

Note that the assumption that the distribution tiles 
the plane periodically is exactly the situation in many 
uses of the distribution, such as stochastic oversampling 
in ray tracing. The period of the pattern should be 
much larger than the pixel size. 

Once the average periodogram R, has been evalu­
ated, we can reduce the information to two graphs by 
computing radial statistics. We define a set of annulli 
as in Figure 1. Within each annulI us, the mean radial 
power Pi is computed as well as the variance s? This is 
the variance within an annuli us, not between the sam­
ples used to create the average periodogram : 

1 12"j"+1 Pi = ~ R,(J cos e,fsine)fdfdB 
I 0 ,. 

sf ~ . 12"j"+1 (R, (J cos e, f sin e) - p;)2 f df de 
I 0 ,. 

where Ai = 7r(Jl+1 - H) is th e area of annullus i defin ed 
by radii fi and fi+1 . In practice, the "area" is given by 
the number of samples on the discrete 32 x 32 grid that 
fall within the bounds of a given annuli us. The sam­
ple size increases approximately linearly up to the edge 
of the square, then decreases for the annulli that have 
samples only in the corners of the periodogram . For 
this analysis, 20 equally-spaced annulli from the centre 
(0 frequency, or DC) to the corner (highest possi ble fre­
quency) were used. Figure 2 shows the sample size at 
each frequency. A dotted line has been placed where 
the edge of the square is first encountered, and will be 
present on all diagrams in which it is relevant. 

Figure 1: Annulli defi ned to average the periodogram 
radialIy. Twenty annulli were used for this analysis. 
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Figure 2: Sample size as a function of radial frequency 
for estimation of radial statistics in each annuli us. 

Two graphs will be shown for each distribution anal­
ysed: the mean radial power Pr(f) and the anisotropy 
Ar (J) defined as 

Larger values of anisotropy indicate a greater uneve­
ness in the radial distribution of power. Power and 
anisotropy vary over a wide range. For this reason they 
will be plotted in decibels; a value x is expressed in 
decibels according to the relation XdB = -2010g10(X) , 
A doubling of power or anisotropy approximately cor­
responds to a 6dB change. 

The periodograms will also be displayed in three­
dimensional graphs. In these graphs, the DC peak has 
been reduced by a factor of 4 and actual power is shown, 
not decibels. These plots are for qualitative comparison 
of sampling distributions. 

3 Random Distributions 
Several random sampling patterns have been studied . 
The one most used in practice is jitter sampling, which 
moves samples off a uniform grid by a random amount . 
This technique is simple to implement, but is not spec­
trally optimal. 

This section analyses only Poisson disk sampling and 
derivatives, which have a bet ter frequency response 
than jitter (less low freq uency noise). They also have 
another advantage over jitter sampling: an arbitrary 
number of samples may be used. 

The following subsection first analyses strict random 
sampling for comparison purposes. 

3.1 Poisson 

The simplest random distribution is the so-called "Pois­
son" distribution. The coordinates of a point are se­
lected at random from a uniform distribution. Every 
point is completely independent of the others , making 
the generation of points a Poisson process. The number 
of points in an area A is Poisson-distributed with mean 
eq ual to the area times the density. For this reason, the 
distribution is often called a Poisson distribution. This 
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unfortunate terminology should not be confused with 
the univariate discrete Poisson distribution. 

A sample two-dimensional Poisson distribution is 
shown in Figure 3. The tile outlined in the centre of 
the diagram tiles the plane periodically in a square ar­
ray; parts of adjacent tiles are shown. All distributions 
in this study will be shown this way. 

The centre tile shown here would extend over sev­
eral pixels if this sampling pattern were being used for 
antialiasing. 

The periodogram of this distribution, as well as an 
average of 100 other instances, is shown in Figure 4. 
Radial averages for these distribution are shown in Fig­
ure 5. Anisotropy is shown in Figure 6. 

• • ,. • • • • • ,. • • ••• 
• .o., • • • • o., 

• • • • • • • • • • • • • 
• • • • • • 

• # • • • ,. • • ,. 0 • • · , • • · , • • • • • • • • • • 
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0 • • l- • • 1 • • ••• •• 0 • .· 0 0 0 

2 • • ,. • • ••• ,. • .. -. 
• · .. • • • · .. • • • • • 0 • 
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• • · , • • · , • • • • • • • • • • • • • # •• • # 
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Figure 3: Uniform distribution of impulses on the unit 
square. 

Note how dumpy the spatial distribution in Figure 3 
appears; this is due to the image having significant 
power at all frequencies, as we can see in looking at 
the periodogram. The dumps arise because the low fre­
quency power in the spectrum of the distribution allows 
a variation in the local average of intensity to occur. 
However, we see that the periodogram is a reasonably 
good approximation to an impulse function. 

The distribution is seen to have an even amount of 
anisotropy over all frequencies, which is desirable for our 
application; we do not want any preferred direction in 
the noise. The dumpiness, however, will undoubtably 
give poor performance. To eliminate the dumpiness we 
will have to eliminate the low frequ encies in the spectral 
response. 
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Figure 4: Sample and Average (n = 100) periodograms 
for the Poisson distribution . The DC peak has been 
reduced by a factor of 4. 
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Figure 5: Radially averaged power for the spatial Pois­
son distribution. Top: single sample distribution; bot­
tom: average (n = 100) radial power . 
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Figure 6: Radially averaged anisotropy for the spatial 
Poisson distribution. Top: single sample distribution; 
bottom: average (n = 100) anisotropy. 

3.2 Poisson Disk 

The Poisson disk distribution is a Poisson distribution 
in which no two points are closer than a minimum 
distance! . 

In theory, to get a sample of a Poisson disk distribu­
tion one must generate Poisson distributions and eval­
uate each one according to the minimum distance re­
quirement. This is not a very practical algorithm, and 
effective approximations have been developed. 

The dart -throwing algorithm [Co086b] places points 
sequentially. Each new point is compared to points al­
ready placed; if it is too close it is discarded . The al­
gorithm terminates after a specific number of points 
have been placed, or it has proven impossible to place 
new points after a large number of attempts. A Pois­
son disk distribution in the plane, generated using dart­
throwing, is shown in Figure 7. Circles are drawn about 
each point in the centre tile at half the minimum inter­
sample spacing. A separation (disk diameter) of 0.1 
that would result in a reasonable run-time was chosen 
experimentally. Intertile interference was also checked 
so that the periodic tiling of the plane would also satisfy 
the Poisson disk criterion. 

Another class of algorithms that generate similar 
distributions are the error diffusion algorithms [FS75, 
Uli87] . These have been used in ray tracers [Mit87], but 

! the Poisson disk distribution is charac teristic o f the recep­
tors in the retina outside of the fovea [Y J 83, W C83]. where it 
prevents aliasing; the retinal image is subsampled in those re­
gions. Within the fovea , the receptors are hexagon ally packed 
at a density twice the highest frequency of the highest spatial 
frequency passed by the co rnea/le ns/iris syste m , so the Nyquist 
criterion is satisfied. 
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Figure 7: Poisson disk distribution in the plane. Center 
tile drawn with disks having the same diameter as the 
minimum intersample spacing. 

are limited to a discrete raster. It would also be possi­
ble to generate an adaptive sampling grid using an error 
diffusion algorithm on the grey-scale error image after 
the first pass of a ray tracer. However, error-diffusion 
dithering still has some artifacts, particularly in con­
stant regions [Uli87]. We will not use an error-diffusion 
algorithm, but will use another technique adapted from 
ordered dithering in Section 5 when we discuss adaptive 
sampling. 

It has been found that the Poisson disk distribution 
has desirable spectral properties, namely low energy for 
low frequencies. Sample and average periodograms for 
this distribution are shown in Figure 8. The radially­
averaged statistics for this distribution are shown in Fig­
ure 9 and Figure 10 . 

4 Relaxation 
Following a suggestion by Robert Lansdale (docu­
mented in [Lan91), and also referenced obliquely in 
[DW85]), the minimum radius for the distribution re­
quired by dart-throwing does not have to be fixed. 

Points are placed starting with a large radius initially. 
Once no more space has been found at this radius for 
a certain (large) number of attempts, the radius is re­
duced by some fraction (which is just less than 1) . The 
final distribution will still have a minimum separation 
given by the last radius used . A magnification fraction 
is also specified to increase the number of tests as the 
number of samples already placed increases. To save 
tests, the best-fitting sample during each iteration can 
be saved. Eventually, the minimum separation of this 
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Figure 8: Sample and average (n = 100) periodograms 
for dart-throwing Poisson disk distribution . The central 
DC peak has been reduced by a factor of 4. 
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Figure 9: Radial average power for the Poisson disk 
distribution . Top: single sample distribution ; bottom : 
average (n = 100) distribution. 
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Figure 10: Anisotropy for the Poisson disk distribution. 
Top: single sample distribution; bottom: average (n = 
100) distribution . 

sample and the decaying radius will meet. In this way 
work from previous tests will not be wasted . 

Such a distribution is shown in Figure 11. The ci rcl es 
surrounding each point in the centre tile indicate the 
radius in use when that point was placed. Visually, the 
distribution generated is similar to that generated by a 
fixed radius. 

A similar approach was taken by [Mit91J, but was 
not exploited for its adaptive sampling potential. Our 
algorithm relaxes the radius condition only when nec­
essary, obtaining the best possible fit for the number of 
samples considered. Unfortunately, thi s may result. in a 
longer running time. We will show empi rically that the 
spectrum retains the desirable properties of the original 
Poisson disk distribution, at least over a limited range 
of scales . The algorithm differs from Mitchell's in two 
ways: a hard radius const raint is used; and the radii 
are guaranteed to be strictly decreasing (the last point 
co uld be addressed by sorting the samples generated by 
Mitchell's algorithm) . 

The new algorithm has many advantages. First, it 
will always terminate with a position for any desired 
number of samples, since the rad ius should eventually 
get small enough to allow everyone to be placed. It 
is very possible that a dart-throwing algorithm with a 
fixed radius will not allow all samples to be placed, and 
will therefore fail to produce a di stribution . 

Second, this algorithm is less sensitive to its initial 
choice of parameters than strict dart-throwing. A la rger 
th reshold of trials or a large r decay fraction will inc rease 
running time and (hopefully) increase the "tightness" 
of the distribution , but will not cause the algorithm 
to fail totally. T here might, however , be some regions 
which are more densely packed than others. This can 
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Figure 11: Approximation to a Poisson disk distribu­
tion generated by relaxation dart-throwing. The circles 
about points on the left indicate half the minimum in­
tersample separation in use at the time the point was 
placed. 

happen if the radius decay is too steep or the number 
of tests per iteration too few. Since the algorithm is 
adaptive, the same set of parameters can be used to 
generate distributions for a wide range of ci rcumstances. 

Finally, and probably most importantly, the resulting 
list of samples has a pyramidal property. Only one high­
resolution sample distribution has to be generated for 
a wide range of sampling densities ; if a lower sampling 
density is required, then only the initial points from 
the sample list are selected . These points will satisfy a 
larger minimum distance criterion than the full set. 

In ray tracing, a common problem when using 
stochastic sampling is how to adaptively improve the 
sampling density. In the past, jitter sampling has been 
used rather than Poisson disk sampling because of the 
expense of generating each distribution . In [Mit.91]' 
Mitchell suggests scaling down the sample grid and 
replicating it; this, however, will introduce some un­
wanted periodicity which may compromise the effecti ve­
ness of the random grid and reintroduce coherent noise. 
This will only be a problem if a short period is used. 
With this algorithm, a single long list can be used and 
the required number of samples chosen, resul ting in a 
consistent long period. 

We need to analyze this distribution quantitatively. 
It will be shown that, empirically, its spectral properties 
closely match those of the fixed-radius dart-throwing al­
gorithm . The distribution in Figure 11 was generated 
with an initial minimum spacing of 0.3 (disk radius of 
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0.15). The radius was multiplied by 0.99 after 1000 sam­
ples were tried without any success in placing a new 
point. Its periodogram is shown in Figure 12, along 
with an average periodogram of 100 other distributions 
generated with the same parameters. The radially­
averaged statistics for this distribution are shown III 

Figure 13 and Figure 14. 

Figure 12: Periodograms for Poisson disk distributions 
generated by relaxation. Top: single sample distribu­
tion; bottom: average (n = 100) periodogram . The 
central DC peak has been reduced by a factor of 4. 

The sequence of radii for the samples is given in Fig­
ure 15, as well as the average over the 100 tested distri­
butions. Note that only the final samples approach the 
radius limit of 0.05 used for the basic dart-throwing in 
Section 3.2 . 

5 Adaptive Sampling 

5.1 Continuously Variable Sampling 
Density 

In many cases, it is desirable to locally modify the 
sampling density. For example, in the Introduction a 
formula was given for estimating the error, which de­
pended on the variance of the samples collected. Se­
lective supersampling corresponds to discrete levels of 
sample density, and can be triggered by a set of con­
trast thresholds. Using the pyramidal property of the 
relaxation-generated sequence, as many samples can be 
taken as needed, until an error criterion is satisfied. Ev­
ery new sample will fit into a Poisson di sk distribution, 
at ever-decreasing minimum spacing. 
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Figure 13: Radial average power for the Poisson disk 
distribution generated by relaxation. Top: single sam­
ple distribution; bottom: average (n = 100) distribu­
tion. 
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Figure 14: Anisotropy for the Poisson disk distribution 
generated by relaxation. Top: single sample distribu­
tion; bottom: average (n = 100) distribution. 
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Figure 15: Sample Radii for the Poisson disk distribu­
tion generated by relaxation. Top: single sample distri­
bution ; bottom: average (n = 100) distribution. 

A set of subsequences can be extracted and stored; 
each subsequence has samples that fall into predeter­
mined partitions. The refinement can then be localized 
to only the partitions whose error estimates exceed a 
bound. The ultimate extension of this approach is im­
portance sampling. 

5. 2 Im portance Sampling 

If the approximate shape or some fac tor of the function 
to be integrated is known , then the number of sam­
ples should be increased in areas in which the function 
has a high value. The sampling density then replaces a 
weighting factor. Many examples of this occur in com­
puter graphics. 

For example, consider the ray tracing simulation of 
a glossy surface. The energy reflected towards the eye 
is actually an integration over the hemisphere of the 
incoming energy, multiplied by the reflectance function . 
The reflectance function is known; the incoming energy 
is not . The integral can be performed using stratified 
Monte Carlo sampling. Random samples are shot in a 
distribution of orientations , but more samples should 
be shot in directions from which incoming energy will 
be strongly reflected. 

For another example, it may be possible to replace 
a complex reconstruction filter with a simple box fil­
ter (mean of samples in a pixel) but to use importance 
sample according to the weight given by a higher-quality 
filter . This would have the effect of concentrating more 
samples in the center of the pixel. 

Importance sampling can be trivially solved using an 
approach from ordered binary dithering . In ordered 
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Figure 16: Adaptive Poisson disk sampling; density 
weighted by exp( _5(x 2 + y2». 

dithering, a mask is used which is an array of thresh­
olds, one per pixel. A full mask is usually generated by 
repeating some basic pattern . At any point, if the pixel 
in the source image is greater than the threshold at that 
point in the mask, then the pixel is turned on. 

A similar idea can be used if we have previously gen­
erated a large Poisson disk distribution with uniform 
density using relaxation. We know that the more sam­
ples chosen from the list and displayed, the denser the 
samples will be, although they will all follow a Poisson 
disk distribution at some scale. Therefore, select the 
samples according to the following algorithm: 

1. For each sample si, compute its rank as r(si) = 
i/n, 1 ~ i ~ n. 

2. Let 
x(S) = !(Si) - min(f) 

, max(J) - min(J) ' 

where! is the known importance fun ction . In the 
first example above, this would be the value of the 
reflectance function; in th e second, it would be the 
weight of the reconstruction filt er. 

3. If r(si) ~ X(Si), choose Si as an evaluation sample 
point; otherwise, discard it. If a sample is chosen, 
it is part of the pattern needed to represent the 
density x. 

This is very efficient, since the same table of samples 
can be used over and over for a variety of importance 
functions, as long as care is taken to not allow overly 
periodic use of the same sampling pattern. 

An example of a set of samples whose densi ty is 
weighted by exp( -5( X2 + y2» over [-0.5,0 .5]2 is shown 
in Figure 16 . A subsequence of 227 samples were se­
lected out of 512. 

Once a subsequence has been generated, it can still 
be used in the manner described in Section 5.1, since it 
will still satisfy the increasing density criteria. Only as 
many sample points are taken as are needed. 

6 Optimization 
Although a Poisson disk distribution has some lllce 
qualities, it is possible to generate a better one from 
a quantization viewpoint. 
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We would like the distance from every point on the 
plane to the nearest sample point to be as small as pos­
sible. If the function to be estimated varies smoothly, 
then this strategy will result in the minimum root mean 
square (RMS) error. It will also mean that no large 
"gaps" will be left in the sampling structure. 

We know the optimal solution to this problem, at 
least on the plane: a periodic distribu tion of samples in 
a hexagonal grid. However, we want to avoid periodic­
ity. This should not be a problem, since optimization 
procedures that can find global optimums are rare. In 
this case, we actually want an optimization procedure 
t hat will return a somewhat suboptimal solution close 
to our initial configuration . We can then initialize with 
a l'oisson disk distribution and hopefully derive a result 
which still retains most of its useful properties. 

The Generalized Lloyd Algorithm (GLA) described 
furth er in [Ll082, JS86, For88] is based on a minimiza­
tion of the (root) mean square error in quantizing each 
position in a multidimensional met ric space to the near­
est sample point. It is a strictly descending method and 
as such is unlikely to find global optimums in complex 
sit uations. 

Given x distributed according to probability den­
sity fun ction p(x) over a space with distance metric 
d(xJ, X2)' the mean square error is: 

where Vi is the domain of Xi: the set of all points that 
map to Xi. Note that both probability and error are 
accounted for in this met ric . This met ric more heav­
ily weights extremes of error, whil e not neglecting the 
mean error rate . The mean square metric is convenient 
analytically because many useful results can be proven 
using it. 

Two results that are useful in the design of quantiz­
ers give necessary (but not sufficient) conditions for an 
optimal MSE quantizer. In an optimal MSE quantizer, 

1. Borders between two domains will be equidistant 
from th e respec tive quanta und er the distance met­
ric d. 

2. Quanta will be placed at the mass centres of their 
domains, where the mass centre of a domain is de­
fin ed as 

Iv, xp(x) dx 

Iv, p(i) di 

In other words, the quanta shou ld be the average 
value of their domain . 

These conditions are easily proven. 
Cond ition 1: Every point x with a non-zero prob­

ability should be mapped to the quantum which it is 
closest to under th e distance measure d. Obviously, if 
it was not, the error would be higher and the mean 
square error metric la rger. The boundaries are there­
fore eq uidistant under d, si nce points on the boundary 
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can choose either quanta with no penalty in th e error 
metric . If this was not true of the boundary, then the 
points on this boundary could be moved to the lower 
error domain and the metric reduced . 

Condition 2: The value Iv. p(x)d2 (x , Xi) dx is th e mo­
m ent of inertia of p(V.) around the point Xi; it obtains 
its minimum when Xi is Xi , the mass centre of p(Vi) . 

The same results hold if the distance measure is angle 
on the surface of a sphere, with appropriate lIIodifica.­
tions to definitions (the edges of the domain ~ will be 
great circles, for example). 

The GLA alternates attempting to satisfy the above 
conditions . First, a set of illitial quanta are chosen. 
Boundaries between domains are set using condition 1, 
and then the mass centres of each domain are computed. 
The quanta are moved to th e mass centres to sati s fy 
condition 2, which of course changes the boundaries and 
invalidates condition 1. The process is repeated until no 
more changes are necessary, assuming th e Xi converge. 

The optimization procedure can be used to genera te 
a non-uni form distri bu tion ; sim ply vary th e 1)( x) term 
when computing th e centroid . The probability distri­
bution p(x) should be smooth or th e optimi za t ion may 
ge t wedged into a local minimum . 

This technique will co nverge faster if th e initial di stri­
bution is nonuniform . Such a di stribution can be ge n­
erated by the algorithm in Section 5. Altern atively, 
relaxation can be used directly, but th e radius modified 
by th e weightin g fun cti on. 

The posi tions of th e qu anta and th e domain boulId­
a ri es may not converge and may in fact go to infinity, 
de pendin g on the sha pe of th e proba bility dis tribu tio n. 
This problem is avoided in th e current problem by op­
timi zing on a finit e domain ; the sides of th e rectangle 
wrap around and so th e optimiza tion effectively takes 
pl ace on the surface of a toroid . 

Each itera ti on can be implemented by constru cting 
a Voron oi d iagra m and finding th e centre of mass of 
each cell. Construction of each di ag ram takes O(n log n) 
time, although in a sophisticated optimization proce­
dure th e di agram co uld be bui lt incrementally ; only 
small changes are required for each new itera tion. 

To generate the res ults shown here , th e Monte Carlo 
meth od was used to estim a te th e ce ntroid of each cell. 
This is an ineffi cient meth od compared to th e Voronoi 
approach, but is simple to implement . 

In other uses of thi s optimization scheme , a gl obally 
optimal solution may be important . Even if th e posi­
ti ons of th e qu a nta do converge, there is no guarantee 
th at th e qu anti zer thus derived will be globally optimal. 
In fact it is unlikely in complex situations , since th e 
method is descending. If an optimal solut.i on is desired , 
decaying noi se can be add ed to simu late annealin g. This 
will not be too expensive because th e underlyin g opti­
mi za t ion procedure is acc ura te. 

A di stribution optimized using a uniform pro ba bility 
distribution is shown in Figure 17. Ten iterati ons we re 
used . As with the rand om distributi ons, 100 of th ese 
di s tri but ions were a nalysed and th e res ults ap pear in 
Figures 18, 19 and 20. The average spectra shown in 
Figure 18 di spl ays peaks corres ponding to the hori zo ll-
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tal and vertical directions . The danger of using this 
technique is that the opt imization may actually find a 
global optimum and regain periodicity. An optimized 
di stribution might be combined with jitter to avoid this 
problem. 
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Figure 17: Optimi zati on of a uniform distribution gen­
era ted by dart-throwing. The circles about points on 
th e central tile indicate half th e minimum intersample 
separation in use at th e time the point was placed . 

7 Conclusions 

A number of refin ements in th e gene ration and use of 
th e Poisson disk stochas ti c sampling strategy have been 
presented and analysed empirically. It has been shown 
that by using relaxation, a sequence of samples can be 
generated such that prefix subsequ ences are also Poisson 
di sk distributed. Sequences with this property can be 
used in both adaptive and importance sampling in a 
ve ry effi cient manner. 

Unfortunately, to use th ese distributions in practice 
still requires large lookup tahles, since the distributions 
were generated using a refin ement of dart-throwing; 
the generation process is sti ll relatively expensive and 
shou ld not be included within th e rend ering loop. 

An optimization technique has bee n presented which 
has uses in sampling and quanti zati on. It will al so be 
use ful in other areas wh ere points have to be placed 
unifo rmly within a finite domain , s uch as mesh gen­
era ti on over arbitrary smooth shapes . It can optimize 
sample positions to fit a n arbitra ry density distribution , 
although a smooth di stribution has more chance of s uc­
cess. 
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Figure 18: Periodograms for optimized distributions. 
Top: single sample distribution; bottom: average (n = 
100) periodogram. The central DC peak has been re­
duced by a factor of 4. 
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Figure 19: Radial average power for t he optimized dis­
tributions. Top: single sample distribution ; bottom: 
average (n = 100) distribution. 
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Figure 20: Anisotropy for the optimized distributions. 
Top: single sample distribution; bottom: average (n = 
100) distribution. 
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