
11 

Interactive Solid Geometry 
Via Partitioning Trees 

Bruce F. Naylor 
AT &T Bell Laboratories 
Murray Hill, NJ 07974 

naylor@research.att.com 

Ab s t rac t 

The extension from interactive 2D wireframe 
geometry to interactive solid geometry has been 
f or some time one of the goals of Computer 
Graphics . Our approach to this objective is the 
utilization of a computational representation of 
geometric sets that we believe is better suited to 
geometric computation than alternatives inherited 
fr om mathematics. This representation is the 
binary space Dartitionin~ tree . Employing such a 
representation leads to simpler and faster 
algorithms and has enabled us to construct an 
elementary interactive solid geometry system 
which can execute effectively on workstations with 
no graphics acceleration hardware . Interactive 
manipulation of a collection of polyhedral objects is 
provided utilizing set operations , affine 
transformations, collision detection, picking and 
dragging , calculation of metric properties, 
rendering of transparent objects, and solid clipping 
to an arbitrary polygonal view volume. This is the 
first such system based on partitioning trees, and 
as a consequence, is the first interactive system 
that fully supports set operations , collision 
detection and transparency for arbitrary 
polyhedral objects . 

Introd u cti o n 

Real-time manipulation of 3D geometry has since 
its inception been one the objectives of computer 
graphics . But only limited success has been made 
in achieving this goal in the almost three decades 
that have passed since the creation by Ivan 
Sutherland of the 2D interactive design program 
Sketch Pad. We believe one of the crucial factors for 
thi s is the representation . Given any semantic 
domain, such as geometry, for which we wish to 
construct a computational object , the selection of 
the representation largely determines the 
algorithms required for implementing the 

operators of the domain . A good representation 
should yield simple and efficient algorithms, but 
this will happen only if the representation 
somehow captures the computational aspects of 
the semantic domain . While it is possible to invent 
new data structures optimized for each new 
problem, this approach , if used in the creation of 
an integrated software system, is quite impractical. 
It is also impractical if one is interested in 
hard ware acceleration and/or parallelization . 
Rather support of only a few important 
representations is plausible . Such is the case for 
numbers, where we have only a few integer and 
floating point representations. 

Boundary representations (b-reps) , essen­
tially inherited from mathematics, represent 
polyhedra in terms of topology : i .e . connected 
components and incidence. No where is the notion 
of a process, i.e. computation , overtly manifested , 
and the view is one of an empty space populated 
by objects. In contrast, the binary space 
partitioning tree, also bsp tree or partitioning tree, 
induces a structure on space that reflects the 
information density of the geometry in that space. 
It does this via recursive subdivision of space by 
hyperplanes which results in a hierarchy of 
convex regions. The combinatorial representation 
of this is a binary tree, which can also be 
interpreted as a computation graph or decision 
tree. Thus computation is intrinsic to the 
representation. Partitioning trees provide an 
efficient method of answering spatial relationship 
questions such as those needed for set operations 
and visibility determination; in contrast, topological 
representations have, by abstraction, removed 
this information from the representation since 
homeomorphisms do not change its structure. 

Partitioning trees originated as a method of 
pre-processing a polygonal database to facilitate 
hidden surface removal (see [Schumacker et al 69] 
and [Fuchs , Kedem and Naylor 80]). Their first use 
for interactive viewing of solids was described in 
[Fuchs , Abrams and Grant 83] . In [Thibault and 

Graphics Interface '92 



Naylor 87) partitioning trees were extended to 
provide representations of polytopes, and 
algorithms were presented for converting a CSG 
expression on b-reps into a partitioning tree and 
for performing a set operation between a 
partitioning tree and a b-rep by modifying the 
partitioning tree . This later capability was the basis 
for an interactive solid modeling program in which 
the user sculpted a work-piece with a tool; the 
work-piece was a partitioning tree and the tool was 
a convex b-rep [N aylor 90). Solid near-plane 
clipping was also incorporated. In [Chin and Feiner 
89). a partitioning tree based shadow algorithm was 
presented, and its effectiveness was demonstrated 
through an interactive program . 

The system described in thi s paper is a 
successor to [Naylor 90) and represents an entirely 
new software effort based on work presented in 
[Naylor, Amanatides and Thibault 90) which 
provided set operations between arbitr ary 
polytopes via merging of partitioning trees . This 
new system allows any number of non -convex 
polyhedra each represented by a partitioning tree. 
Set operations can be performed between any pair; 
thus the restriction in [Naylor 90) to a single non­
convex work-piece operated o n by pre-defined 
convex tools is removed . In addition, arbitrary 
affine transformations can be app lied to any object 
and metric properties, such as volume and center 
of mass, can be calculated . 

The system described in this paper is the first 
interactive system using only partitioning trees for 
representing polyhedra . Two significant benefits, in 
addition to set operation s, accr ue from this : 
inexpensive collision detection and non-refractive 
transparency. We believe our system is the first 
interactive solid geometry system with such 
capabilities. 

User View 

The user is presented with a world composed of a 
set of polyhedral objects, with access to thi s world 
through a user-i nterface built up on a 3-button 
mouse and pop-up menus. Interactive control of 
objects and views for models comprised of several 
thousand faces is possible, even on workstations 
with no graphics drawing hardware. 

The geometry of any object can be modified by 
applying affine tran sformations or by performing 
set operations between it and other objects . Visual 
attributes, such as color, opacity and texture, can 
be selected as well. Measurement of any object is 
also available: this includes computing its volume, 
mass, surface area , cen ter of mass , moments of 
inertia , and axis-aligned extents. The object editing 
operations include choosing a new object from a 
pre-defined set, copying an object, deleting an 
object, reading an object from a file, and writing an 

12 

object to a file . Finally , its com binatorial 
representation can be di splayed (a binary tree) . 

There is at anyone time a single "current" 
object that is the operand of all unary operations on 
objects, and we refer to this current object as the 
tool-object. The user may at any time select any of 
the objects as the tool -object via picking (with the 
mouse). The tool-object is also one of the two 
operands to any set operation, the other operand 
being any object in which it is in contact. The tool­
object is used as a tool to modify these "in-contact" 
objects, but the tool-object itself is unaffected. A 
special sweep mode is provided in which the tool­
object is subtracted from each in-contact object as 
the user moves the tool-object. 

Set operations 

All polyhedra are represented by partitioning 
trees , and set operations are performed by merging 
trees [Naylor, Amanatides and Thibault 90). Figure 
1 gives a simple example suggesting how this could 
occur. Hyperplane normals point to the positive 
halfspace which is associated with the right-child of 
an internal node and the negative halfspace is 
associated with the left-child . At the leaf-nodes, a 1 
indicates an in-cell and a 0 an out-cell. Set 
operations are achieved by merging two trees . This 
can be thought of in terms of inserting one tree into 
the other via a recursive algorithm . At each 
internal node v , the inserted tree T is split by the 
hyperplane associated with v , and the positive and 
negative "halves" of T are inserted into the 
respective subtrees of v . Thi s continues recursively 
until a cell is reached . If the operation is, for 
example, union , then if the cell is an in-cell , the 
inserted tree is discarded; otherwise, being an out­
cell, the cell is replaced with the subset of T that has 
reached/lies-in this cell. 

Besides the traditional se t operations of union , 
intersection and difference, we have included a 
symmetric difference corresponding to the boolean 
not-equ al or exclusive-or. The result of thi s 
operation when viewed from the outside looks like 
union , but where the two objects intersect, a cavity 
is created which may be seen after subsequent set 
operations , or temporary c ut- aways, or whenever 
the result is semi-transparent. 

As suggested in Figure I, each in-cell of a 
partitioning tree has an associated set of att ri bute s 
defining the value of space within that cell (the 
polka-dots and cross-hatches) . Since we are 
modeling physical objects, we use attributes 
describing those physical properties of the material 
being modeled that are relevant to our geometric 
operations . Thus col or, opac ity , density, etc. , are 
specified for each in-cell , but not for o ut-cells . 
Polyhedra are then viewed as functions from 3-
space to an attribute space in which the domain of 

Graphics Interface '92 



13 

A union-operation using BSP Trees 
Figure 1 

the function is confined to the polyhedra. That is, 
for polyhedron P ,point X , and attributes A, we 
have the function f: X E P -t A, and for X lIE P, f is 
undefined (or maps to the NULL value). 

When performing union or intersection, two 
possibly different attributes are defined wherever 
the two objects intersect , but the result must 
specify only one set of attributes in any region of 
space (i .e. we want a function) . We currently have 
adoJ1ted the policy of attribute precedence: the 
resulting attribute is simply that of the operand 
with greater precedence, and we always give 
precedence to the first operand (it seems oddly 
convenient that the two operations for which this is 
an issue are commutative) . An alternative policy 
would be to construct a new attribute from the 
blending of the two operand attributes . 

We h ave also provided support for 
transparency; and by this we mean the thin-film 
variety , as with colored cellophane, that can be 
treated as an absorbing but not refracting medium . 
(This is also to be distinguished from "screen-door" 
transparency provided by some z-buffer based 
systems .) The requisite blending calculations are 
performed during polygon scan-conversion using 
an "alpha-channel" to hold the opacity of a point on 
those workstations having such capability . Since the 
in-cells of a partitioning tree may differ in their 
material attributes , and sInce reflection and 
refraction are considered to occur wherever the 
electromagnetic properties of space change 
discontinuously , visible boundaries can be present 
in the interior of a polyhedron , unlike opaque 
polyhedra . What is more , such a boundary can be 
visible from both sides, although with differing 
filtering properties , if the intervening space is 
sufficiently transparent. (The boundary between a 
red region and a green region will appear, if looking 

from the green region as red, but will appear as 
green if looking from the red region .) 

The consequence of this is the need for explicitly 
creating interior faces with the appropriate 
attributes for both sides of each face; and this we 
do, although only for rendering environments that 
can support transparency . While the creation of 
interior faces would seem to be unnecessary 
whenever both sides of a boundary are fully 
opaque impling the boundary is never visible, any 
subsequent reduction' in the opacity will reveal the 
interior boundaries . Thus we do not make this 
optimization . 

Another geometric operation of considerable 
utility that we have incorporated is collision 
detection . While the temptation is to think of 
collision detection as merely intersection, we take 
the view that unlike intersection the returned 
value is essentially symbolic rather than geometric. 
Consider two macro objects", molecules for 
instance, that are created from the union of many 
individual components , such as atoms and bonds. 
When we answer the collision question , we generate 
a list of all pairwise collisions between the 
components from the two macro objects . That is, if 
the component names (implemented, for example, 
as pointers to their representation) are considered 
to serve as the labels for nodes of a collision graph, 
then what we produce are the arcs of this graph. 
(The arcs are directed, going from a component in 
the first operand to a component in the second; 
thus the name space of the two operands need not 
be disjoint.) 

The advantage of this symbolic approach is that 
it separates the mechanism of collision detection 
from the policy of what action to take as a 
consequence of any collisions. Below in the section 
Interactive Techniques, we describe two different 
policies for two different circumstances, neither of 

Graphics Interface '92 



which is concerned with the geometry of the 
intersection. Such a separation is made affordable 
because we perform collision detection as a small 
additional overhead to any set operation, and as we 
discuss below in the section Modeling, we use union 
to create the model each time the tool -object 
moves . The cost for collision detection is small 
beca use the algorithm for any set operation 
recurses until at least one operand is reduced to a 
cell . If this is an in-cell, then the additional work is 
no more than searching the tree of the other 
operand for other in-cells (containing identifiers) 
and the appropriate collision arcs are generated . We 
gain some efficiency by maintaining an identifier at 
any internal node whose region contains only one 
identifier (a list of identifiers at internal nodes is 
another possibility). The arcs are maintained as a 
set; that is, there are no duplicates. 

Affin e Transformations 

Affine transformations are an elementary 
geometric operation whose implementation has 
customarily been treated as synonymous with 4x4 
matr ices. However, notable benefits can be gleaned 
if they are treated in a more sophi sticated way. An 
important motivation for this is the need to provide 
an interactive user with intuitive ways to modify 
an object using affine transformations . 
Traditionally , we think of transformations being 
applied in the order in which they are specified; this 
is typically achieved by maintaining a composite 
matrix so that a new transform modifies the 
composite. While this policy is indeed the right one 
in many situations , it is not ideal for interactive 
object modification. 

Instead , we have found from subjective 
experience that the primitIve transformations 
should be applied in the following order: scaling, 
shearing, rotation and translation . Note that the 
transforms which modify distance , i .e . scaling and 
shearing , appear before the rigid body transforms. 
Consequently , we maintain each of the four 
primitive transformations separately and multiply 
them together each time their composite value is 
demanded, replacing the previous composite 
matrix . So for instance , a rotation operation 
modifies only the rotation matrix rather than the 
composite matrix. An additional consideration is the 
fact that all linear transforms have fixed points: the 
origin plus possibly some subset of coordinate axes . 
Changing these fixed points is achieved by 
employing an additional change-of-basis matrix . 
Thus the composite matrix resulting from the 
product of the primitive transforms IS pre­
multiplied by the change-of-basis matrix and then 
post-m ultiplied by its inverse . One then has the 
freedom to choose any local coordinate sys tem for 
an object. 

14 

A second advantage of implementing an affine 
transformation class as something different from a 
matrix is the ease with which optimizations can be 
performed transparently. The greatest disparity 
among the primitive transform s is the much 
greater speed at which translation can be effected. 
Since translation appears in an interactive 
environment with considerably greater frequency 
(moving objects about), detecting when an affine 
transformation is no more than a translation is an 
effective and simple optimization. Similar 
considerations also lead to determining when 
transformed normals need re-normalization . Rigid 
body transforms do not require this and symmetric 
scaling necessitates only divisions, not the 
calculation of the length of the new normal which 
entails computing a square root (profiling 
confirmed that indiscriminate re-normalization 
resulted in significant overhead). A final 
optimization is the generation of composite and 
inverse matrices only on demand rather than after 
every change to the affine transformation . The 
routines that modify affine transformations mark 
them as not up-to-date; and routines that use 
them for transforming points, normals and 
hyperplanes first requests an up-to-date composite 
and inverse matrices, which are generated only the 
first time they are demanded (if the affine 
transformation is not utilizing the pre-defined 
ordering of primitive transforms, the composite will 
already be up-to-date, so only the inverse needs to 
be computed) . 

Pi ck in g 

A classic operation dating to the days of random ­
scan vector-refresh displays is that of picking an 
on-screen object using the current cursor posItIon 
(originally a light pen). We achieve this by ray­
casting. In screen-space the cursor position 
provides the initial x and y values of the ray origin, 
and its z-value is the screen-space position of the 
near clipping-plane (0 in our sys tem) . The ray 
direction is that of a screen-space projector whose 
length is the distance between the near and far 
clipping-planes in screen-space ([0 0 1] in our 
system). The ray, with tmin = 0 and tmax = 1, is then 
mapped to model-space by the inverse of the 
model-to-screen space transformation . We can now 
use the ray-tracing algorithm for partitioning trees 
[Naylor and Thibault 86] that finds the first 
intersection point within tmin and tmax . This 
returns the model-space intersection point, the 
surface normal, the near and far attributes, the 
classification of the ray segment from the origin to 
the intersection point (in or out), and most 
importantly the identifier. Generating an 
equi valen t "pick report " using standard methods 
usually entails clipping the entire model to a tiny 

Graphics Interface '92 



window. Our method reflects directly 
the query and is more efficient 
partitioning tree's search structure. 

Mod el in g 

the nature of 
due to the 

The representation of each user-level object entails 
three geometric sets, each represented by a 
partitioning tree. In particular, user-level objects 
are represented by an object-instance class 
containing the object definition , its value prior to 
the last set operation, an instance of the definition, 
and an affine transformation which determines the 
instance in terms of the definition (along with some 
minor state information). 

As we mentioned in the user-view section, the 
model is a set of user-level objects one of which is 
distinguished as being the tool-object; the 
remaining objects we refer to as the static-objects . 
Any time a new tool-object is selected, a union of 
the static-objects is created as a distinct geometric 
set (represented by a single partitioning tree). A 
copy of each object's instance is used for this . The 
model is then the union of two sets : a copy of the 
static-objects and a copy of the tool-object. Any 
time the tool-object is modified, say by moving it, 
the previous model is discarded and a new one 
constructed; but note that the static-objects 
representation remains the same and so is reused 
as long as this set does not change (by set 
operations or picking a new tool-object) . 

Since we are using this in an interactive 
environment, these operations must be relatively 
quick . Two techniques are used to accelerate their 
execution . The first is the construction of good 
partitioning trees [Naylor 92) . This subject is 

After partitioning by X 

15 

somewhat complex, and so we will not address it 
here. But the essence is that we use expected case 
models to build partitioning trees that represent an 
object something like a sequence of approximations. 
An artifact of this process is the creation of a first 
level approximation that corresponds to the classic 
technique of bounding volumes. Figure 2 illustrates 
the effect of this when forming the union of two 
disjoint sets; in this case the computation is 
equivalent to forming the union of the bounding 
volumes, and so is very fast. 

The second technique is a classic one: reference 
counts . Copying a tree has the effect initially of only 
incrementing the reference count to the root of the 
tree. Actual duplication of a tree node occurs only 
when it or its subtrees are modified. During set 
operations, any subtree of one tree lying within a 
cell of the other tree does not need to be duplicated 
in order for it to be included in the result. 

Returning to figure 2 , if the two trees were 
intended to be copies, only the first three nodes of 
each tree will be duplicated, while the subtrees 
indicated by filled triangles would remain 
untouched . Thus copying and discarding can 
require only sub-linear time. Reference counts are 
used as well for copying of polygons and attributes . 
One consequence of this for attributes is that the 
same allocated attributes will be shared by the 
object definition, its instance, and the copy of the 
instance used to form the model. Thus modifying 
the attributes of the object definition also achieves 
this modification for its instance and the copies of 
the instance present in the static-objects tree and 
in the model tree without the need for any 
additional work (other than rendering the new 
image) . 

Binary trees 

After partitioning by X, Y and Z 

Union of disjoint objects 
Figure 2 

Graphics Interface '92 



Rendering 

Given a partitioning tree representation of a 
collection of sets, for any viewing position a total 
visibility priority ordering of the sets can be 
generated by a single view-dependent traversal of 
the tree [Fuchs, Kedem and Naylor 81]. Since we 
have constructed a single partitioning tree 
representation of the entire model, we can solve 
the visible surface problem by performing the 
ordering operation on this tree. 

There are several advantages to using the 
partitlOning tree for visibility instead of the 
commonly used depth-buffer algorithm. First , the 
ordering is generated in model-space as opposed to 
the discrete, post-perspective screen-space. Thus, 
no depth-buffer is needed to represent this 
discrete space and surface continuity (coherence) is 
exploited to avoid performing ordering calculations 
for each pixel. This has contributed to the ability of 
our system to provide interactive solid geometry 
on workstations with no graphics hardware per se 
and requires only the presence of 2D convex 
polygon drawing routines . In addition, the 
information loss due to the perspective division 
using floating-point is avoided. Thus, for sets which 
intersect, or nearly intersect, their ordering will 
not vary incorrectly in the neighborhood of their 
intersection when small changes in the viewing 
position are made (this is especially a problem with 
polygons that are close and almost parallel) . One 
consequence of this is that the edges of a polygon 
can be drawn "on top of" the polygon without any 
subsets of their discrete representation being 
occluded . 

A second class of advantages of a visibility 
. ordering arises from the desire to render non­
refractive transparent objects and to perform anti­
aliasing. Both of these operations can be 
implemented at the pixel level by blending the 
colors of two pixels. Given only two polygons (or 
pixels) P I and P 2 , in which P I has color Cl and 
opacity al and occludes P2 which has color C2 and 
opacity a2, then the resulting color is Cl,2 = (C} * 
al) + (C2* (2) * (1- al) and opacity is al,2 = al + 
(I-al) * a2· Anti-aliasing using a box filter can be 
treated analogously if the polygon is modeled as 
covering the entire pixel but with opacity equal to 
the area of the pixel covered by that polygon (this 
is in lieu of computing the visible surface at the 
sub-pixel level using masks) . The correct use of this 
technique requires that blending occur only 
between pixels that are consecutive in the priority 
order, which cannot be accomplished with the 
standard depth-buffer algorithm. However , a 
multi -pass two-buffer algorithm is known 
[Mammen 89] where the number of passes equals 1 
+ the maximum number of overlapping trans­
parent polygons . While transparency can be 
performed with either a far-to-near or near-to-far 
priority ordering of the partitioning tree, anti­
aliasing requires the near-to -far ordering in order 

16 

to avoid blending in occluded surfaces. Such an 
ordering is also needed for maintaining sub-pixels 
masks, if available, that are required for higher 
fidelity anti-aliasing, and for avoiding the 
calculations at fully occluded pixels (when al = 1) 
required by texture mapping or Phong shading. 

Another major component of the rendering 
operation that can be achieved simply and 
efficiently using partitioning trees is clippjni . View­
volume clipping is nothing more than forming the 
intersection of the view-volume with the model. 
Thus , we generate a partitioning tree 
representation of the view volume and execute the 
standard partitioning tree intersection algorithm , 
but with the following optimization . Since the 
results from clipping will not, in an interactive 
environment, be used in any subsequent set 
operations, there is no need to produce the 3D 
geometry of the in tersection explicitly . On ly the 
intersection of the model's faces with the view 
volume is required. Consequently, the operation 
does not modify the tree representing the model 
and so avoids all copying accept for those faces that 
intersect the boundary of the view volume. 

There are three advantages to partitioning tree 
clipping. First, the efficiency of set operations is 
enhanced by the expected case performance of the 
partitioning tree when thought of as a search 
structure. Roughly speaking, one might expect for n 
faces O(log n) operations instead of the O(n) of the 
standard implementation of clipping . For example, 
any object that is entirely inside or entirely outside 
the view-volume will be clipped by "visiting" only 
the top level nodes forming its bounding volume. 
Thus, culling is achieved without any explicit notion 
of culling just as there is no explicit notion of 
bounding volumes (and so no code to implement 
them); it arises from building good trees for efficient 
set operations . This contributes to the effectiveness 
of the system when used on standard workstations. 
Secondly, near-plane clipping does not reveal a 
polyhedron as an empty shell but rather maintains 
the semantics of solids . Not only are the faces of the 
view-volume lying within objects displayed , but 
they have the attributes of the region which they 
bound. (Note that b-reps do not typically have cells 
with attributes required by this .) This permits 
near-plane clipping to be used to provide cu t ­
a way s as a visualization aid. Thirdly, the 
partitioning tree clipping algorithm supports 
arbitrary polyhedral vjew volumes just as easily as 
the traditional truncated pyramid. This can be put 
to good use in an environment with mUltiple 
overlapping viewports with simultaneous 
renderings in each. Portions of a model occluded by 
another viewport can be clipped away by using the 
appropriate view-volume . 

Interacti ve Te chniqu es 

Given the above capabilities, we have chosen sev­
eral interactive techniques that enhance the usa-

Graphics Interface '92 



bility of the system. One is the use of collision detec­
tion to provide hiehliehtine via transparency. 
Forming the union of the tool-object with the 
static-objects, like any set operation, can generate a 
collision report. We can exploit this so that when­
ever the tool-object makes contact with any object 
in the scene, the contacted objects have their 
opacity reduced , and then subsequently restored 
when contact ceases. For rendering systems sup­
porting transparency, this has the effect of not only 
indicating contact, but also allowing the user to see 
the tool-object as it moves through the interior of 
the contacted objects. For rendering systems with­
out transparency, the reduction in opacity appears 
instead as a reduction in luminance , since the per­
centage of reflected light decreases with a decrease 
in opacity. In such environments, using the near­
plane clipping as a cut-away can reveal the position 
of the tool-object as it moves through the interior. 
(Note that this visualization technique requires that 
of the tool-object's attributes take precedence over 
the static-objects when forming the model.) Cut­
aways also provide a means of inspecting the 
otherwise occluded interior parts of objects . 

A second use of collision detection is for 
operand selection in the execution of a user speci­
fied set operation. The set operation is performed 
between the tool-object and only those objects with 
which it is in contact. This method is, from the 
user's perspective, simple and intuitive. Not having 
some method of selection is unacceptable since, for 
example, intersection between the tool-object and 
objects with which it is not in contact would annihi­
late those objects . 

Those objects which are modified by a set 
operation will also have their center of mass and 
principal axes recomputed, after which their object 
definition is translated and rotated so that the cen­
ter of mass and the principle axes form the object's 
local coordinate system while the instance reamains 
stationary . Thus affine transformations are always 
with respect to an objects "natural" coordinate sys­
tem . This is very important if one wishes to main­
tain an in tuitive sense of the effects of affine trans­
formations when applied to objects whose geometry 
has been significantly modified by a set operation. 

Pi ck i n g provides a direct geometric method of 
tool-object selection, and implementing this with 
ray-casting makes the selection precise. Draggin g of 
the tool-object is achieved by mapping the transla­
tion vector defined in screen-space into model­
space . This requires that the screen-space vector 
have a depth, which the mouse does not provide. 
For this , we use the screen-space depth value of 
the picked surface point. As a consequence the 
picked position always tracks the cursor exactly (as 
long as the view is not changed). A similar operation 
is placine. in which the user picks a source point on 
the tool-object and then picks a target point on any 
other object , while during the interim changing the 
view if necessary to make the target point visible. 

17 

The source point is then translated to the target 
point. 

Finally, we use a variety of other minor tech ­
niques to improve usability . Tool-object translation 
and view rotation via mouse translation is always 
with respect to screen-space; so, for example, left­
right mouse motion maps to horizontal motion in a 
plane parallel to the screen. We also adjust the view 
rotation rate as a function of window size so that 
the subjective sense of the rate remains constant. 
Symmetric scaling of the tool-object increases as a 
constant percentage of the current scale factor , 
while differential scaling changes by a constant step 
size independent of the current scaling (empirically 
ascertained preference). Delta changes generated 
by holding down buttons have a slight acceleration 
and are adjusted to compensate for varying frame 
update rates; otherwise they would be too slow for 
long update times and too fast for short ones . And 
shearing preserves basis vector length rather than 
volume; otherwise surface area increases un­
boundedly even though the volume remains the 
same. 

Comparison to Buffer Algorithms 

The ability to transform and merge partitioning 
trees quickly has obviated the original restriction in 
which trees were only created during a pre­
processing phase. Since affine transformations and 
perspective projections (or more generally d+l 
dimensional linear transformations) do not change 
a tree's structure, off-line generation of good trees 
leads to efficient merging of instances of these trees, 
resulting in reasonably good new trees. Thus , we 
have only relaxed, not abandoned, the original pre­
processing context, and this is a crucial point. For 
the original idea was to exploit time-invariant prop­
erties of the geometry to reduce computation . Thus 
complex but affinely invariant objects can still have 
their trees created once as a pre-processing step . 
Interactively created objects can also have their 
trees improved by off-line reconstruction . 
However, this investment can now be reaped in a 
much less restrictive environment, since these 
trees can be transformed and merged . 

As the system described in this paper illus­
trates, the pre-computation yields efficient set 
operations, collision detection, clipping, visible sur­
face determination, transparency, anti-aliasing and 
picking. Let us compare these capabilities to the 
screen-space approaches for polyhedral objects 
which are extensions in the spirit of the z-buffer 
algorithm (as opposed to scan-line algorithms). In 
these methods, typically no pre-computation is 
utilized and each object is sampled independently. 
Screen-space evaluation of set operations requires 
a representation of the geometric model in every 
1 D sub-domain defined by the projector for each 
pixel (or sub-pixel) ; this , of course , is the same 
methodology as ray -cast evaluation of CSG models . 
Assuming retention of the scan-conversion modus 
operandi , as opposed to ray-tracing , this requires 

Graphics Interface '92 



decomposing an object into a set of segments with 
attributes and identifier (for collision detection) 
instead of simply pixels . For convex primitives , this 
is not difficult, but for arbitrary polyhedra, no effi­
cient scan-conversion type algorithm is known. The 
resulting segments must then be merged and eval­
uated as defined by the CSG tree (note that set 
operations require knowing the value of an 
operand in every projector, not just those inter­
secting the interior as would be discovered by 
scan-conversion) . This will yield an ordered list of 
segments that can, for the purposes of trans­
parency, be composited. The accuracy of this 
computation is affected not only by the sampling, 
but also by the rather considerable non-linear 
compression of the depth . This is in addition to the 
difference in accuracy of discrete screen space vs . 
continuous model space computations; a point of 
some importance in non-interactive geometric 
computation, such as interference detection and 
mass property calculations. Anti-aliasing requires 
all of this work to be performed at the sub-pixel 
level if a correct image is to be generated, adding a 
factor of 4 or 16 increase in the per pixel computa­
tion . Clipping is O(n), although this can be reduced 
by an initial culling of objects by comparing their 
bounding box to the view-volume. However, clip­
ping unculled objects is still O(n) and the view vol­
ume is restricted to being convex, so that in a 
window system, subsets of the model occluded by 
another window would not be eliminated by clip­
ping (however, solid clipping, i.e. cutaways, could be 
achieved with this proposed system). Picking has 
often been implement as an additional O(n) clipping 
step as opposed to our -O(1og n) ray-cast, although 
with this proposed schema, the necessary 
information would already be present in the buffer. 

Having done all this, the result is an image 
identical to the one generated using partitioning 
trees . However, evaluation of set operations would 
be repeated for every frame at every sub-pixel, 
even though an object created using set operations 
may be affinely invariant for an arbitrarily large 
number of frames (not just seconds, but possibly 
days or years). So let us assume that screen-space 
algorithms are not used for set operations. Then for 
collision detection and transparency, we still must 
have the ordered set of segments for each sub­
pixel , since we are effectively computing the union 
of the objects. The comparative cost of this opera­
tion suffers both from the absence of pre-process­
ing acquired temporal-correlation and from the 
non-exploitation of spatial-coherence: instead of 
determining spatial relations between volumes, the 
same relation will be repeatedly computed for 
every ray that intersects those volumes (scan-line 
algorithms, of course, can exploit coherence) . 
Parallelization of the buffer-based approaches is not 
necessarily a panacea, since partitioning tree algo­
rithms can be parallelized as wel!. Only in circum­
stances where the presupposition of affine invari­
ance over a sufficient period of time is violated , 

18 

which is commonly the case for cartoon like anima­
tions, would the buffer-based approaches be 
arguably superior for polyhedral models. 

Re ferences 

[Chin and Feiner 89] 
Norman Chin and Steve Feiner, "Near Real­
Time Shadow Generation Using BSP Trees", 
Computer Graphics Vo!. 23(3), pp. 99-106, 
(June 1980) . 

[Fuchs, Kedem, and Naylor 80] 
Henry Fuchs, Zvi Kedem and Bruce Naylor, "On 
Visible Surface Generation by a Priori Tree 
Structures," Computer Graphics Vo!. 14(3), 
pp. 124-133, (July 1980). 

[Fuchs, Abrams, and Grant 83] 
Henry Fuchs, Gregory Abrams and Eric Grant, 
"Near Real-Time Shaded Display of Rigid 
Objects", Computer Grap hics Vo!. 17(3), pp. 
65-72, (July 1983). 

[Mammen 89] 
A. Mammen, "Transparency and Antialiasing 
Algorithms implemented with the Virtual Pixel 
Maps Technique," IEEE CG&A Vo\. 9(4), pp. 
43-55, (July 1989) . 

[Naylor and Thibault 86] 
Bruce F. Naylor and William C. Thibault, 
"Application of BSP Trees to Ray-Tracing and 
CSG Evaluation, " GlT-ICS 86/03, School of 
Information and Computer Science, Georgia 
Institute of Technology, (February 1986) . 

[Naylor 90] 
Bruce F. Naylor, "SCULPT: an Interactive Solid 
Modeling Tool, " Proceeding of Graphics 
Interface , pp. 138-148 (May 1990). 

[Naylor, Amanatides and Thibault 90] 
Bruce F. Naylor, John Amanatides and William 
C. Thibault, "Merging BSP Trees Yields Polyhe­
dral Set Operations," Computer Graphics Vo\. 
24(4), pp . 115-124, (Aug. 1990). 

[Naylor 92] 
Bruce F. Naylor , "Constructing Good Parti­
tioning Trees," manuscript in preparation . 

[Schumacker et al 69] 
R. A. Schumacker, R. Brand, M. Gilliland , and W. 
Sharp, "Study for Applying Computer ­
Generated Images to Visual Sim ulation," 
AFHRL-TR-69-14, U.S. Air Force Human 
Resources Laboratory (1969 ). 

[Thibault and Naylor 87] 
W. Thibault and B. Naylor, "Set Operations On 
Polyhedra Using Binary Space Partitioning 
Trees ," Computer Graphics Vo!. 21(4), pp . 
153-162 (July 1987) . 

Graphics Interface '92 


