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Abstract 

A method is presented for exploiting object space temporal 
coherence to speed up ray tracing of animation sequences 
where the camera remains static. The object space is 
subdivided with a hierarchical voxel grid structure. Each 
voxel keeps a list of the rays that pass through it when the 
first frame of a sequence is rendered. To render a successive 
frame, only rays that passed through voxels in which an 
object has moved are retraced. The method speeds up ray 
tracing of a test animation sequence by nearly a factor of 
four. 

The method is easily adapted to work with any spatial 
subdivision technique . The memory requirements of the 
method are low. 

Keywords: Ray Tracing, Frame Coherence, Space 
Subdivision. 

1 Introduction 

Ray tracing [Whitled 80) is an elegant technique for 
synthesizing realistic images. Numerous acceleration 
methods have been developed to reduce the computational 
expense of ray tracing, including spatial subdivision 
[Glassner 84) [Fujimoto 86], hierarchical object extents 
[Rubin 80] [Kay 86], clustering and sweeping methods 
[Amanatides 84) [Heckbert 84] [Shinya 87], and ray 
coherence (Joy 86] . These methods are effective when 
rendering a single image, but do not make use of the 
temporal coherence found in animation sequences . 

The traditional way to render an animation sequence is to 
render each frame one at a time, ignoring any object space 
temporal coherence that may exist between frames. Object 
space temporal coherence manifests itself as objects. such 
as floors or walls, that move slowly or remain static 
throughout the course of an animation. 

The aim of the research presented in this puper is to take 
advantage of object space coherence to speed up ray tracing 
of animation sequences . To be useful for high quality 
rendering, the method must produce images that are 

indistinguishable from those rendered with a traditional 
one frame at a time approach. 

2 Previous Work 

Algorithms for exploiting temporal coherence operate 
either in image space or object space . Image space 
algorithms reduce the time to render an animation sequence 
by rendering a subset of the pixels in a frame, and 
estimating the value of the unrendered pixels. Due to their 
sampling nature, image space algorithms may generate 
"incorrect" frames - frames that differ from those rendered 
with a traditional one frame at a time approach . Object 
space algorithms use information about the 3D object 
space, and how it changes between frames, to reduce the 
amount of computation to render an animation sequence. 

2.1 Image Space Temporal Coherence 

Badt [Badt 88] proposed a method that reduces the number 
of rays traced during an animation by tracing the first frame 
of a sequence normally, then rendering successive frames 
by retracing only a small random sampling of pixels for 
each frame . If a retraced pixel's color differs from its color 
in the preceding frame, a flood fill algorithm that floods 
both in screen space and in time is used to correct its color. 
Flooded pixels are retraced for preceding and succeeding 
frames to determine their correct colors . The flood filling 
reduces. but does not eliminate, the possibility of incorrect 
pixel colors. This method requires that the object space 
description for every frame of the animation sequence be 
available at all times during the rendering . 

Chapman [Chapman 90] developed another image space 
algorithm that traces fewer rays than Badt's method, but is 
potentially less accurate. The algorithm renders every kth 
frame of a sequence, where k >= I. The pixel colors of 
frame n and frame n+k are compared. If a pixel's color is 
different in the two frames , then it is retraced at frame 
n+kI2 . This process is repeated recursively, resulting in a 
binary search that determines the frame in which the pixel's 
color changed. The drawback of this algorithm is that if k 
is chosen to be large. high frequency changes, such as 
those caused by fast moving objects, will be lost. 
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2.2 Object Space Temporal Coherence with a 
Moving Camera 

Hubschman [Hubschman 82] presented a method for 
exploiting object space temporal coherence when 
rendering sequences where only the camera moves. The 
first frame of a sequence is preprocessed to determine object 
visibility, and successive frames are generated by 
determining which objects have changed their visibility 
status. While the technique creates "correct" images , it 
does not work when objects move during the animation. 

2.3 4D Ray Tracing 

Spacetime ray tracing [Glassner 88] accelerates ray tracing 
of animation sequences through the use of hierarchies of 4D 
bounding volumes that encompass objects as they move 
through space and time. Rather than building a hierarchy 
of 3D bounding volumes for each frame in the animation, a 
hierarchy of 4D bounding volumes is created once for the 
animation sequence. Rays are represented as a 3D direction 
vector and a fourth component, their position in time . 
Rays are traced by testing them for intersection with the 4D 
bounding volumes in the sce ne. Only objects that lie 
within the 4D bounding volumes that are intersected by a 
ray need to be tested for intersection with it. 

The main source of efficiency in this algorithm is that 
fewer bounding volumes are created for an animation 
sequence than with a traditional 3D bounding volume 
approach. This accelerates both the creation of bounding 
volumes and reduces the number of ray/volume intersection 
tests required to render a sequence. Motion blur by jiltering 
rays in time is facilitated since the entire animation 
sequence is available to the renderer at each frame . 

One drawback to this approach is that it requires an entire 
animation sequence to be resident in memory during 
rendering . The method is also not amenable to a voxel­
based spatial subdivision approach. Thirdly , it does not 
reduce the number of rays that need to be traced at each 
frame . 

Chapman, Calvert, and Dill [Chapman 91] developed a 
similar algorithm for using hierarchies of bounding 
volumes of animated objects. The difference with their 
approach is that objects inside the bounding volumes 
represent their motions as translation and rotation vectors. 
The ray/object intersection calculation is extended to 
encompass intersection with a moving object and to 
compute all intersections of a ray with a moving object. 
These intersections are sorted by time and distance along 
the ray. From this information the colors for a ray are 
calculated for the entire seq uence, and each ray is traced 
only once for a given sequence. 

Disadvantages to this technique are the complexity of 
intersection calculations and that it may not be readily 
extensible to handle motion that cannot be represented as 
simple tran slation and rotation vectors . Furthermore, the 
object bounding volumes may become large if an object 
moves significantly during the animation sequence, 
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reducing the effectiveness of the hierarchical bounding 
volume approach . 

2.4 Object Space Temporal Coherence with 
a Static Camera 

When the camera remains static during an animation 
sequence, the color of a pixel can change from one frame to 
another only if an object that is visible to the pixel has 
changed, or if an object has moved to become visible to the 
pixel. An A-buffer scan conversion renderer [Carpenter 84] 
can make use of thi s by keeping a list, throughout the 
animation, of the surface fragments that lie under each 
pixel. If an object moves between frames, it is deleted from 
the fragment lists of all pixels . The moved object is then 
rescanned into the frame buffer in its new position, and is 
added to the fragment lis ts of the pixels into which it 
scans. Pixels whose fragment lists have changed are then 
re-evaluated to determine their new color values. 

Sequin presented a ray tracing algorithm that stores the ray 
tree at every pixel so that surface attributes of visible 
objects can be changed without having to retrace the image 
[Sequin 89]. The method fails when objects change their 
positions , since it cannot determine if the visible surface 
for a ray has changed. 

Murakami and Hirota [Murakami 90] extended the 
algorithm to handle animated objects by subdividing the 
space with a voxel grid, and keeping a list of traversed 
voxels for every ray in a ray tree. To render a subsequent 
frame , all objects that move are deleted from the voxel grid, 
and are reinserted in their new positions. The ray trees are 
then examined and only rays that traversed through voxels 
in which an object has moved are retraced (Figure 1). A 
hashing scheme for representing a ray's path through the 
voxel space is used to speed up the process of determining 
which rays to retrace . 

Graphics Interface '92 



178 

The memory requirements of the Murakami and Hirota 
algorithm are large, typically on the order of tens of 
megabytes, and grow rapidly as image resolution increases. 
Computational requirements also grow as a function of 
image resolution because the ray tree of each pixel must be 
examined to determine whether the ray passed through a 
changed voxel. Their algori thm is also specific to uniform 
voxel subdivision due to its use of a voxel index hashing 
scheme. 

2.5 A New Algorithm 

This paper presents an algori thm for making use of object 
space coherence to speed up ray tracing of animation 
sequences in which the camera rem ains static. The 
algorithm's memory requirements are independent of image 
resolution , and it is easi ly adapted to any spati al 
subdivision scheme such as uniform voxel subdivision, 
octree subdivision, adaptive voxel subdivision, or 5D 
space subdivision [Arvo 87). 

3 The Algorithm 

Rays are tagged with their x,y pixel index in the image 
frame buffer. As rays are traced thro ugh a spa ti all y 
subdivided scene, each voxel keeps a record of the x ,y 
indices of rays that pass through it. For subsequent frames, 
when objects in side a voxel move, the voxel notifies the 
frame buffer of the pixels that will be affected. Only those 
pixels that are affected are retraced at each frame . 

3.1 The Ray Tracer 

The ray tracer used to develop this algorithm utili zes an 
adaptive voxel subdivisio n scheme [.le vans 89), although 
any object space subdivision scheme can be adapted to use 
the algori thm . The object space is subdi vided by a voxel 
grid. Each voxel maintains a list of pointers to the objects 
th at intersect or lie within it. If the number of objects 
inside a voxel is larger than some thresho ld, the voxel is 
itself subdivided with a voxe l grid. A set of heuristics, 
based on the number of objec ts in a voxel, is used to 
determine the granularity of the subdivi sion [Jevans 91). 

Space subdivision is done on the fly when a ray first enters 
a voxel. Thi s lazy evaluation tec hnique ensures th at 
computation and memory are not wasted subdividing areas 
of the object space that are not visible . To ensure th at 
voxels are only subdivided th e first time a ray enters them, 
the y are initially marked as not subdivided. When a ray 
enters a voxel, the heuri stics are used to subdivide it, and it 
is marked as subdivided . Newly created sub-voxels are 
marked as not subdivided, as they will be considered for 
subdivision only if rays pass through them . Voxe ls 
marked as subdivided are not co nsidered for subdivision 
when successive rays enter. Note that if the number of 
objects in a voxel is small , no subdivision may occur, but 
it wi ll still be marked as subdivided. 

* 
eye 

Legend 

~ light source . 

~ rays directly affected by voxel A. 

<:<j rays affected by the shadow of an object in voxel A. 

- a screen pixels directly affected by voxel A. 
_ a' screen pixels indirectly affected by voxel A. 

Figure 2. 

3.2 Rendering the First Frame 

Every pixel in the first frame of the animation sequence is 
ray traced . Rays are labeled with their originating pixel's 
x,y frame buffer index . When a ray passes through a 
voxel. a record of its pixel index is stored with the voxel. 
This information is stored for all voxels, whether they are 
empty or not, and whether they are leaf or interior nodes of 
the subdivision tree . 

Each voxel has a 16 by 16 bit-table to store the x,y pixel 
indices of the rays that pass through it. Each bit represents 

a block of pixels that occupy I1256th of the screen area. 
Thi s storage method is independent of image resolution, 
and only requires 32 bytes of memory per voxel. Higher 
resolution bit-tables can be utilized if memory usage is not 
a constrai nt. Higher resol ution bit-tables provide finer 
granul ari ty of the rays th at will be traced at each frame , 
with little increase in computational overhead . The ideal 
resolution for the bit-tables is the resolution of the image 
frame buffer. 

When a ray enters a voxel , the bit in the voxel's bit-table 
that corresponds to the ray's x,y index is se t. The voxel's 
bit-table may represen t disjoint areas of the screen . This 
occurs when an object is visible to both primary viewing 
rays and to secondary rays, suc h as shadow or reflection 
rays , in another part of the screen (Figure 2). 

3.3 Subsequent Frames 

For each sub sequent frame, the object space database and 
the suhdivis ion structure need updating to reflect changes 
th at have occ urred since the previous frame . The entire 
subdivis ion tree is traversed, and every voxel is marked as 
un changed . Objects that change from the previous frame 
are reinserted into th e voxcl subdivi sio n tree, and the 
voxels th at they affect are marked as changed . 
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If an object is deleted from the scene, the voxels in which it 
lay are marked as changed, and any references to the 
object are deleted from these voxels. If an object is added 
to the scene, the voxels in which it now lies are marked as 
changed, and references to it are added to those voxels. If 
an object moved or changed shape or surface attributes, 
both the voxels in which it lay and the voxels to which it 
moved are marked as changed, and references are added and 
deleted as appropriate. When marking a leaf node voxel as 
changed, the voxels above it in the hierarchy are marked 
as touched . 

As long as the number of objects that change is fewer than 
the number of objects that remain static, the time to resort 
the changed objects into the subdivision structure is less 
than to completely rebuild the structure. This speed up is 
not significant, however, as the total subdivision time of 
adaptive subdivision algorithms is typically on the order 
of a few percent of the total rendering time [Jevans 89]. 

3.3.1 Examine the Voxel Space 

The next step is to examine the voxel space to determine 
which pixels need retracing. A 16 by 16 bit-table 
representing the frame buffer is created and every bit is 
initialized to zero . Starting at the top level of the 
subdivision tree and working down, every voxel is 
examined. If a leaf voxel is marked as changed, the frame 
buffer bit-table is or-ed with the voxel's bit table. After the 
entire voxel space has been examined, the bits that are set 
in the frame buffer bit-table indicate which pixel blocks 
must be retraced . 

All records of the rays that are about to be retraced must be 
deleted from the voxel bit-tables in case the retraced rays do 
not pass through those voxels in the next frame. This is 
accomplished by examining the voxel space a second time 
and clearing all bits in the voxel bit-tables that are set in 
the frame buffer bit-table. 

The frame can now be generated . Pixels that correspond to 
the bits that are set in the frame buffer bit-table are retraced. 
All other pixels retain their color values from the previous 
frame. 

3.3.2 Resubdivision 

If the number of objects in a voxel changes significantly 
from one frame to another, it may be advantageous to 
resubdivide it. This can be determined during the 
examination of the voxel space. If a voxel is marked 
touched or changed, and the number of objects inside it 
has changed significantly or gone to zero, its child voxels 
are recursively deleted, and it is marked as changed and 
not subdivided. It will be examined for resubdivision on 
the fly when rays are being retraced. 
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Figure 3. 

Ray Traversal Optimization 

An optimization to the traversal of viewing rays through 
the voxel grid can be made by storing the distance along 
each ray from its origin to its intersection with the visible 
surface. When a viewing ray is retraced, the voxel traversal 
algorithm can treat any non-changed voxels as empty if 
they are closer to the eye than this distance. Neither ray­
object intersection calculations nor traversal of sub-grids 
need be performed for voxels that are not marked as 
changed (Figure 3). 

4 Analysis of Animation 

Since this algorithm requires that the camera remain static 
during an animation sequence, it is of interest to know if 
such sequences constitute a significant portion of computer 
animation. Table I presents statistics for the duration of 
time that the camera remains static for several well known 
animations. The timings in Table I are approximate 
however, because they do not account for cuts in the 
camera's point of view, nor for camera holds, which can be 
rendered as a single frame and replicated during filming . 

For the films analyzed in Table I, static camera sequences 
account for a significant portion of the animation . 
Naturally there are degenerate cases, such as fly-by 
sequences, where static camera sequences are few or 
nonexistent. However, for animations that include static 
camera sequences , a method that accelerates the ray tracing 
of such sequences can have a significant impact on the 
overall rendering time. 
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Animation Running time Static camera time % static camera 

Luxo Jr 131 sec 131 sec 100% 

Red's Dream 320 sec 259 sec 81% 

Tin Toy 451 sec 418 sec 93% 

Pencil Test 253 sec 231 sec 91% 

The Audition 309 sec 240 sec 78% 

Luxo Jr, Red's Dream, Tin Toy © 1986, 1987, 1988 PIXAR. 
Pencil Test, The Audition © 1988, 1990 Apple Computer, Inc . 

Table 1. 

5 Results 

A sequence from the Apple Computer, Inc. animation "The 
Audition", shown at SIGGRAPH '90, was used to test the 
object space coherence algorithm. In this sequence a 
weight is dropped onto the see-saw, launching Eric the 
worm into the air. The motions of Eric, the see-saw, and 
the weight are derived from a dynamic simulation. 

The sequence is 351 frames in length . The scene consists 
of 6000 polygons and 4 light sources. All frames were 
rendered at 640 by 480 resolution , with one ray per pixel, 
on a Silicon Graphics Personal Iris 40/25 workstation. 

The sequence was rendered one frame at a time with a ray 
tracer that utilizes an adaptive voxel subdivision technique. 
The number of pixels traced and the CPU time required to 
render the sequence are listed in Table 2 under the heading 
Traditional Algorithm . The sequence was then 
rerendered with the identical ray tracer, modified to use the 
object space coherence algorithm described in this paper. 
The CPU time, number of rays , and the ratios of these 
numbers compared to the traditional frame by frame 
approach are listed in Tab le 2 under the heading 
Coherence Algorithm . 

Traditional Algorithm 

Frame # # Rays CPU Time # Rays 

0 307,200 666 sec. 307,200 

1 307,200 669 sec. 122.400 

75 307,200 684 sec. 146,400 

150 307,200 649 sec. 58,800 

200 307,200 634 sec. 9,600 

350 307,200 655 sec. 8,400 

Entire 
Sequence 107,827,200 63.32 hrs. 20,866,800 

Figure 4 shows several frames of the animation sequence 
illustrating only the pixels that were retraced by the 
coherence algorithm. Note that all the pixels of frame 0 are 
rendered by both the traditional and coherence algorithms . 

5.1 Discussion 

Examining the Entire Sequence row in Table 2 
illustrates that over the course of the animation sequence 
the coherence algorithm rendered only 19.35% of the rays 
that were traced by the traditional algorithm, and required 
on ly 26 .72% of the CPU time used by the traditional 
algorithm, yielding a speedup of nearly a factor of four . 

The discrepancy between the percentage of rays traced 
(19.35%) and percentage of CPU time (26.72%) required to 
render the sequence with the coherence algorithm is due to 
two factors. First is the overhead incurred by the coherence 
algorithm in building and maintaining bit-tables in each 
voxel and of collecting them at the beginning of each 
frame to determine the pixels that must be retraced. This 
overhead is apparent in Table 2 in the row that gives the 
statistics on the rendering of frame O. The unmodified ray 
tracer requires 666 CPU seconds to render the frame whereas 
the frame coherence algorithm increases the rendering time 

Coherence Algorithm 

Ratio to Ratio to 
Traditional CPU Time Traditional 

1.0 780 sec. l.L 71 

0.3984 418 sec. 0.6248 

0.4765 528 sec. 0 .7719 

0 .1914 209 sec. 0.3220 

0 .0312 44 sec. 0 .0694 

0 .0273 43 sec. 0 .0656 

0 .1935 16.92 hrs . 0 .2672 

Table 2 
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Frame 40 Frame 75 Frame 150 

Frame 200 Frame 350 

Figure 4 
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to 780 CPU seconds, a ratio of 1.17 . This overhead is more 
than offset by the savings in subsequent frames. 

The second source of discrepancy is due to the fact that rays 
are no t uniform in the ir rendering cos t. In thi s animation 
sequence, a complex o bject, the worm, is being retraced at 
each frame. The area around this complex ohjec t is more 
densely subdivided than the rest of the scene, requirin g 
more traversal time per ray. The worm also has a more 
complex illumination mode l than the background model. 
The rays that are not re traced at each frame are typic ally 
those that intersect the background of the scene. These 
rays travel large ly thro ugh empty voxels and intersect 
more simple objects , such as the tent model in this 
animation sequence. 

6 Future Work 

6.1 Inactive Voxel Collection 

Adaptive spatia l subdivisio n algorithms ca n reduce the 
amoun t of memory they require by taking advantage of ray 
co herence . Whe n rendering an im age , parts of th e 
subdivi sion structure can be dele ted if rays are no longer 
passing through them. This is common when rendering 
scanlin es from top to bottom, as rays origin a ting from 
scan lines near the bottom of the screen rarely pass th ro ugh 
the same voxels as rays from higher scanlines. Voxcls that 
are no longer active ca n be identificd periodically during 
the rendering , and ca n be col lec ted . This en tail s deleting 
the voxe)'s grid s tructure. and marking the voxel as not 
subdi vided . If th e ass umption proves incorrect, and a ray 
passes through the voxel at a latcr tim e, the voxel will be 
resubdivided. 

This idea can be ex tended to the tempo ral cohe re nce 
algori thm by co llec tin g areas of space th a t rema in 
unchanged and untraverscd for a number of fr ames . If an 
object inside a co llected voxel changes , or a ray traverscs 
the voxel, then it will be resubdivided . 

6.2 Light Sources 

When animating a li ght so urce, a ll ra ys that pass through 
the voxels in which it lies must be retraced. Since most ray 
tracers treat light sources as invisible if viewed directly, it 
is desirable to avo id retr acing vicwing rays that pass 
through a voxel in which a light so urce has moved (Figure 
5) . If a separate pixel index bit table fo r shadow rays is 
maintained in each voxel, then o nly ray trees th at are 
affec ted by a moved light so urce are retr acCC:. 
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Figure 5. 

6.3 Moving Camera 

The algorithm presented in thi s paper may be extensible to 
sequcnces where the camera is moving, through the use of 
the reprojec tion technique proposed by Badt [Badt 88]. The 
3D interscctio n points of the direc tly visible surfaces are 
projected onto the screen when the camera moves. If the 
camera moves o nly slightly, then the samples will not 
change in dens ity, and a new im age can be reconstructed 
from them. If the density of the samples changes, then the 
pixels wi ll have to he retraced to avoid erro neo us hidden 
surfacc results. 

6.4 Backwards Ray Tracing 

Thc object space coherence algorithm is useful, even with a 
mo vin g camera, to acce lerate backwards ray tracing 
tcchniques . Heckbert uses bidirectional ray traci ng to 
calcul ate global illumination [Heckbert 90], and Watt uses 
backward s beam tracing to calculate light-water interaction 
[Watt 90]. Both methods could reduce the number of view 
independent rays required to render an animation sequence 
with non-movin g light sources. 

7 Conclusion 

An algorithm has becn presented for making use of object 
space tempora l co here nce whe n ray tracing animatio n 
sequences whcrc the camera remains s tatic. Only rays that 
pass through voxels in which o bjec ts have changed are 
traced at each frame. Memory use is indepcnden t of image 
rcsol uti on, and thc a lgorithm is eas il y adap ted to any 
spatia l subdivi sion scheme. 

Graphics Interface '92 



183 

8 Acknowledgements 

Thanks to Gavin Miller for his help with the preparation of 
this manuscript and for the worm animation, George 
Drettakis and Michael Kass for their editorial help, Doug 
Turner for the ray tracer, and Steve Rubin for the circus tent. 
Many thanks to the entire Advanced Technology Group at 
Apple, without whom this work would not have been 
possible . 

9 References 

[Amanatides 84] J. Amanatides, "Ray tracing with 
cones," Computer Graphics, vol. 18, no. 3, 
pp . 129-135, July 1984. 

[Arvo 87] J . Arvo and D. Kirk, "Fast ray tracing by ray 
classification", Computer Graphics, vol. 21, no . 4 , 
pp. 55-64, July 1987. 

[Badt 88] Sig Badt .Tr., "Two algorithms for taking 
advantage of temporal coherence in ray tracing," 
The Visual Computer, no. 4, pp. 123-132, 1988. 

[Carpenter 84] Loren Carpenter, "The A-buffer, an 
antialiased hidden surface method," Computer 
Graphics, vol. 18, no . 3, pp. 103-108, .Tuly 1984. 

[Chapman 90] J. Chapman, T . W. Calvert, and .T. Dill, 
"Exploiting temporal coherence in ray tracing," 
Proceedings of Graphics Interface '90, pp. 196-204, 
1990. 

[Chapman 91] J. Chapman, T . W. Calvert, and .T . Dill, 
"Spatia-temporal coherence in ray tracing," 
Proceedings of Graphics Intelface '91, pp. 101-108, 
.Tune 1991 . 

[Chmilar 89] M. Chmilar and B. Wyvill , "A software 
architecture for integrated modelling and animation," 
New Advances in CompUTer Graphics (Proceedings of 
Computer Graphics International '89), pp. 257-276, 
.Tune 1989 . 

[Fujimoto 86] A. Fujimoto, "ARTS : accelerated ray 
tracing system," IEEE CG&A, vol. (l, no. 4, 
pp. 16-26, April 1986. 

[Glassner 84] A. S. Glassner, "Space subdivision for fast 
ray tracing, "IEEE CG&A, vol. 4, no. 10, pp. 15-22, 
Qct. 1984. 

[Glassner 88] A. Glassner, "Spacetime ray tracing for 
animation," IEEE CG&A, vol. 8, no. 2, pp. 60-70, 
March 1988 . 

[Heckbert 84] P. S. Heckbert and P. Hanrahan , "Beam 
tracing polygonal objects," Computer Graphics, 
vol. 18, no . 3, pp. 119-128, .Tuly 1984. 

[Heckbert 90] P. S. Heckbert, "Adaptive radiosity 

textures for bidirectional ray tracing, " Computer 
Graphics, vol. 24, no. 4, pp. 145-154, August 1990. 

[Hubschman 82] H. Hubschman and S. W . Zucker, "Frame 
to frame coherence and the hidden surface 
computation: constraints for a convex world," ACM 
TOG , vol. I , no . 2, pp. 129-162, April 1982. 

[.Tevans 89] D. Jevans and B . Wyvill, "Adaptive voxel 
subdivision for ray tracing," Proceedings of Graphics 
Inteiface '89, pp. 164-172, .Tune 1989. 

[.Tevans 91] D. Jevans, Adaptive Voxel Subdivision for 
Ray Tracing , Master's Thesis, University of Calgary, 
1991. 

(.Toy 86] K. I. Joy and M. N. Bhetanabhotla, "Ray 
tracing parametric surface patches utilizing numerical 
techniques and ray coherence," Computer Graphics, 
vol. 20, no. 4, pp. 279-285, Aug . 1986. 

[Kay 86] T. L. Kay and .T . T. Kajiya, "Ray tracing 
complex surfaces," Computer Graphics, vo!. 20, 
no. 4, pp. 269-278, Aug. 1986. 

[Murakami 90] K. Murakami and K. Hirota, "Incremental 
Ray Tracing," Eurographics Workshop on 
Photosimuiation, Realism, and Physics in Computer 
Graphics, pp. 15-29, June 1990. 

[Rubin 80] S. M. Rubin and T. Whitted, "A 3-
dimensional representation for fast rendering of 
complex scenes," Computer Graphics, vol. 14, no . 3, 
pp. 110-116, July 1980. 

[Sequin 89] C. H. Sequin and E. K. Smyr, "Parameterized 
ray tracing, " Computer Graphics, vol. 23, no. 3, 
pp. 307-314, July 1989 . 

[Shinya 87] M. Shinya, T. Takahashi, and S. Naito, 
"Principles and applications of pencil tracing," 
COJllputer Graphics, vol. 21, no . 4, pp. 45-54, 
.Tuly 1987. 

[Watt 90] M. Watt, "Light-water interaction using 
backward beam tracing, " Computer Graphics, vol. 24, 
no . 4, pp . 377-385, August 1990. 

[Whitted 80] T. Whitted, "An improved illumination 
model for shaded display," CA CM, vol. 23, no . 6, 
pp. 343-349, .Tune 1980. 

Graphics Interface '92 ~ 


