
176

Object Space Temporal Coherence for Ray Tracing

David A. Jevans
Apple Computer, Inc.

20525 Mariani Avenue
Cupertino, California, USA 95014

Uevans@apple.com)

Abstract

A method is presented for exploiting object space temporal
coherence to speed up ray tracing of animation sequences
where the camera remains static. The object space is
subdivided with a hierarchical voxel grid structure. Each
voxel keeps a list of the rays that pass through it when the
first frame of a sequence is rendered. To render a successive
frame, only rays that passed through voxels in which an
object has moved are retraced. The method speeds up ray
tracing of a test animation sequence by nearly a factor of
four.

The method is easily adapted to work with any spatial
subdivision technique . The memory requirements of the
method are low.

Keywords: Ray Tracing, Frame Coherence, Space
Subdivision.

1 Introduction

Ray tracing [Whitled 80) is an elegant technique for
synthesizing realistic images. Numerous acceleration
methods have been developed to reduce the computational
expense of ray tracing, including spatial subdivision
[Glassner 84) [Fujimoto 86], hierarchical object extents
[Rubin 80] [Kay 86], clustering and sweeping methods
[Amanatides 84) [Heckbert 84] [Shinya 87], and ray
coherence (Joy 86] . These methods are effective when
rendering a single image, but do not make use of the
temporal coherence found in animation sequences .

The traditional way to render an animation sequence is to
render each frame one at a time, ignoring any object space
temporal coherence that may exist between frames. Object
space temporal coherence manifests itself as objects. such
as floors or walls, that move slowly or remain static
throughout the course of an animation.

The aim of the research presented in this puper is to take
advantage of object space coherence to speed up ray tracing
of animation sequences . To be useful for high quality
rendering, the method must produce images that are

indistinguishable from those rendered with a traditional
one frame at a time approach.

2 Previous Work

Algorithms for exploiting temporal coherence operate
either in image space or object space . Image space
algorithms reduce the time to render an animation sequence
by rendering a subset of the pixels in a frame, and
estimating the value of the unrendered pixels. Due to their
sampling nature, image space algorithms may generate
"incorrect" frames - frames that differ from those rendered
with a traditional one frame at a time approach . Object
space algorithms use information about the 3D object
space, and how it changes between frames, to reduce the
amount of computation to render an animation sequence.

2.1 Image Space Temporal Coherence

Badt [Badt 88] proposed a method that reduces the number
of rays traced during an animation by tracing the first frame
of a sequence normally, then rendering successive frames
by retracing only a small random sampling of pixels for
each frame . If a retraced pixel's color differs from its color
in the preceding frame, a flood fill algorithm that floods
both in screen space and in time is used to correct its color.
Flooded pixels are retraced for preceding and succeeding
frames to determine their correct colors . The flood filling
reduces. but does not eliminate, the possibility of incorrect
pixel colors. This method requires that the object space
description for every frame of the animation sequence be
available at all times during the rendering .

Chapman [Chapman 90] developed another image space
algorithm that traces fewer rays than Badt's method, but is
potentially less accurate. The algorithm renders every kth
frame of a sequence, where k >= I. The pixel colors of
frame n and frame n+k are compared. If a pixel's color is
different in the two frames , then it is retraced at frame
n+kI2 . This process is repeated recursively, resulting in a
binary search that determines the frame in which the pixel's
color changed. The drawback of this algorithm is that if k
is chosen to be large. high frequency changes, such as
those caused by fast moving objects, will be lost.

Graphics Interface '92

2.2 Object Space Temporal Coherence with a
Moving Camera

Hubschman [Hubschman 82] presented a method for
exploiting object space temporal coherence when
rendering sequences where only the camera moves. The
first frame of a sequence is preprocessed to determine object
visibility, and successive frames are generated by
determining which objects have changed their visibility
status. While the technique creates "correct" images , it
does not work when objects move during the animation.

2.3 4D Ray Tracing

Spacetime ray tracing [Glassner 88] accelerates ray tracing
of animation sequences through the use of hierarchies of 4D
bounding volumes that encompass objects as they move
through space and time. Rather than building a hierarchy
of 3D bounding volumes for each frame in the animation, a
hierarchy of 4D bounding volumes is created once for the
animation sequence. Rays are represented as a 3D direction
vector and a fourth component, their position in time .
Rays are traced by testing them for intersection with the 4D
bounding volumes in the sce ne. Only objects that lie
within the 4D bounding volumes that are intersected by a
ray need to be tested for intersection with it.

The main source of efficiency in this algorithm is that
fewer bounding volumes are created for an animation
sequence than with a traditional 3D bounding volume
approach. This accelerates both the creation of bounding
volumes and reduces the number of ray/volume intersection
tests required to render a sequence. Motion blur by jiltering
rays in time is facilitated since the entire animation
sequence is available to the renderer at each frame .

One drawback to this approach is that it requires an entire
animation sequence to be resident in memory during
rendering . The method is also not amenable to a voxel­
based spatial subdivision approach. Thirdly , it does not
reduce the number of rays that need to be traced at each
frame .

Chapman, Calvert, and Dill [Chapman 91] developed a
similar algorithm for using hierarchies of bounding
volumes of animated objects. The difference with their
approach is that objects inside the bounding volumes
represent their motions as translation and rotation vectors.
The ray/object intersection calculation is extended to
encompass intersection with a moving object and to
compute all intersections of a ray with a moving object.
These intersections are sorted by time and distance along
the ray. From this information the colors for a ray are
calculated for the entire seq uence, and each ray is traced
only once for a given sequence.

Disadvantages to this technique are the complexity of
intersection calculations and that it may not be readily
extensible to handle motion that cannot be represented as
simple tran slation and rotation vectors . Furthermore, the
object bounding volumes may become large if an object
moves significantly during the animation sequence,

177

Frame I . Frame 2.

unchanged voxel.

changed voxel.

-~ ray is not retraced .

---II~~ ray is traced .

Figure 1.

reducing the effectiveness of the hierarchical bounding
volume approach .

2.4 Object Space Temporal Coherence with
a Static Camera

When the camera remains static during an animation
sequence, the color of a pixel can change from one frame to
another only if an object that is visible to the pixel has
changed, or if an object has moved to become visible to the
pixel. An A-buffer scan conversion renderer [Carpenter 84]
can make use of thi s by keeping a list, throughout the
animation, of the surface fragments that lie under each
pixel. If an object moves between frames, it is deleted from
the fragment lists of all pixels . The moved object is then
rescanned into the frame buffer in its new position, and is
added to the fragment lis ts of the pixels into which it
scans. Pixels whose fragment lists have changed are then
re-evaluated to determine their new color values.

Sequin presented a ray tracing algorithm that stores the ray
tree at every pixel so that surface attributes of visible
objects can be changed without having to retrace the image
[Sequin 89]. The method fails when objects change their
positions , since it cannot determine if the visible surface
for a ray has changed.

Murakami and Hirota [Murakami 90] extended the
algorithm to handle animated objects by subdividing the
space with a voxel grid, and keeping a list of traversed
voxels for every ray in a ray tree. To render a subsequent
frame , all objects that move are deleted from the voxel grid,
and are reinserted in their new positions. The ray trees are
then examined and only rays that traversed through voxels
in which an object has moved are retraced (Figure 1). A
hashing scheme for representing a ray's path through the
voxel space is used to speed up the process of determining
which rays to retrace .

Graphics Interface '92

178

The memory requirements of the Murakami and Hirota
algorithm are large, typically on the order of tens of
megabytes, and grow rapidly as image resolution increases.
Computational requirements also grow as a function of
image resolution because the ray tree of each pixel must be
examined to determine whether the ray passed through a
changed voxel. Their algori thm is also specific to uniform
voxel subdivision due to its use of a voxel index hashing
scheme.

2.5 A New Algorithm

This paper presents an algori thm for making use of object
space coherence to speed up ray tracing of animation
sequences in which the camera rem ains static. The
algorithm's memory requirements are independent of image
resolution , and it is easi ly adapted to any spati al
subdivision scheme such as uniform voxel subdivision,
octree subdivision, adaptive voxel subdivision, or 5D
space subdivision [Arvo 87).

3 The Algorithm

Rays are tagged with their x,y pixel index in the image
frame buffer. As rays are traced thro ugh a spa ti all y
subdivided scene, each voxel keeps a record of the x ,y
indices of rays that pass through it. For subsequent frames,
when objects in side a voxel move, the voxel notifies the
frame buffer of the pixels that will be affected. Only those
pixels that are affected are retraced at each frame .

3.1 The Ray Tracer

The ray tracer used to develop this algorithm utili zes an
adaptive voxel subdivisio n scheme [.le vans 89), although
any object space subdivision scheme can be adapted to use
the algori thm . The object space is subdi vided by a voxel
grid. Each voxel maintains a list of pointers to the objects
th at intersect or lie within it. If the number of objects
inside a voxel is larger than some thresho ld, the voxel is
itself subdivided with a voxe l grid. A set of heuristics,
based on the number of objec ts in a voxel, is used to
determine the granularity of the subdivi sion [Jevans 91).

Space subdivision is done on the fly when a ray first enters
a voxel. Thi s lazy evaluation tec hnique ensures th at
computation and memory are not wasted subdividing areas
of the object space that are not visible . To ensure th at
voxels are only subdivided th e first time a ray enters them,
the y are initially marked as not subdivided. When a ray
enters a voxel, the heuri stics are used to subdivide it, and it
is marked as subdivided . Newly created sub-voxels are
marked as not subdivided, as they will be considered for
subdivision only if rays pass through them . Voxe ls
marked as subdivided are not co nsidered for subdivision
when successive rays enter. Note that if the number of
objects in a voxel is small , no subdivision may occur, but
it wi ll still be marked as subdivided.

*
eye

Legend

~ light source .

~ rays directly affected by voxel A.

<:<j rays affected by the shadow of an object in voxel A.

- a screen pixels directly affected by voxel A.
_ a' screen pixels indirectly affected by voxel A.

Figure 2.

3.2 Rendering the First Frame

Every pixel in the first frame of the animation sequence is
ray traced . Rays are labeled with their originating pixel's
x,y frame buffer index . When a ray passes through a
voxel. a record of its pixel index is stored with the voxel.
This information is stored for all voxels, whether they are
empty or not, and whether they are leaf or interior nodes of
the subdivision tree .

Each voxel has a 16 by 16 bit-table to store the x,y pixel
indices of the rays that pass through it. Each bit represents

a block of pixels that occupy I1256th of the screen area.
Thi s storage method is independent of image resolution,
and only requires 32 bytes of memory per voxel. Higher
resolution bit-tables can be utilized if memory usage is not
a constrai nt. Higher resol ution bit-tables provide finer
granul ari ty of the rays th at will be traced at each frame ,
with little increase in computational overhead . The ideal
resolution for the bit-tables is the resolution of the image
frame buffer.

When a ray enters a voxel , the bit in the voxel's bit-table
that corresponds to the ray's x,y index is se t. The voxel's
bit-table may represen t disjoint areas of the screen . This
occurs when an object is visible to both primary viewing
rays and to secondary rays, suc h as shadow or reflection
rays , in another part of the screen (Figure 2).

3.3 Subsequent Frames

For each sub sequent frame, the object space database and
the suhdivis ion structure need updating to reflect changes
th at have occ urred since the previous frame . The entire
subdivis ion tree is traversed, and every voxel is marked as
un changed . Objects that change from the previous frame
are reinserted into th e voxcl subdivi sio n tree, and the
voxels th at they affect are marked as changed .

Graphics Interface '92

If an object is deleted from the scene, the voxels in which it
lay are marked as changed, and any references to the
object are deleted from these voxels. If an object is added
to the scene, the voxels in which it now lies are marked as
changed, and references to it are added to those voxels. If
an object moved or changed shape or surface attributes,
both the voxels in which it lay and the voxels to which it
moved are marked as changed, and references are added and
deleted as appropriate. When marking a leaf node voxel as
changed, the voxels above it in the hierarchy are marked
as touched .

As long as the number of objects that change is fewer than
the number of objects that remain static, the time to resort
the changed objects into the subdivision structure is less
than to completely rebuild the structure. This speed up is
not significant, however, as the total subdivision time of
adaptive subdivision algorithms is typically on the order
of a few percent of the total rendering time [Jevans 89].

3.3.1 Examine the Voxel Space

The next step is to examine the voxel space to determine
which pixels need retracing. A 16 by 16 bit-table
representing the frame buffer is created and every bit is
initialized to zero . Starting at the top level of the
subdivision tree and working down, every voxel is
examined. If a leaf voxel is marked as changed, the frame
buffer bit-table is or-ed with the voxel's bit table. After the
entire voxel space has been examined, the bits that are set
in the frame buffer bit-table indicate which pixel blocks
must be retraced .

All records of the rays that are about to be retraced must be
deleted from the voxel bit-tables in case the retraced rays do
not pass through those voxels in the next frame. This is
accomplished by examining the voxel space a second time
and clearing all bits in the voxel bit-tables that are set in
the frame buffer bit-table.

The frame can now be generated . Pixels that correspond to
the bits that are set in the frame buffer bit-table are retraced.
All other pixels retain their color values from the previous
frame.

3.3.2 Resubdivision

If the number of objects in a voxel changes significantly
from one frame to another, it may be advantageous to
resubdivide it. This can be determined during the
examination of the voxel space. If a voxel is marked
touched or changed, and the number of objects inside it
has changed significantly or gone to zero, its child voxels
are recursively deleted, and it is marked as changed and
not subdivided. It will be examined for resubdivision on
the fly when rays are being retraced.

179

3.3.3

I
I .

:0
1 screen

eye

~

D unchanged voxel.

11 changed voxel.

D skipped voxel.

--~ .. _~ ray is retraced .

Figure 3.

Ray Traversal Optimization

An optimization to the traversal of viewing rays through
the voxel grid can be made by storing the distance along
each ray from its origin to its intersection with the visible
surface. When a viewing ray is retraced, the voxel traversal
algorithm can treat any non-changed voxels as empty if
they are closer to the eye than this distance. Neither ray­
object intersection calculations nor traversal of sub-grids
need be performed for voxels that are not marked as
changed (Figure 3).

4 Analysis of Animation

Since this algorithm requires that the camera remain static
during an animation sequence, it is of interest to know if
such sequences constitute a significant portion of computer
animation. Table I presents statistics for the duration of
time that the camera remains static for several well known
animations. The timings in Table I are approximate
however, because they do not account for cuts in the
camera's point of view, nor for camera holds, which can be
rendered as a single frame and replicated during filming .

For the films analyzed in Table I, static camera sequences
account for a significant portion of the animation .
Naturally there are degenerate cases, such as fly-by
sequences, where static camera sequences are few or
nonexistent. However, for animations that include static
camera sequences , a method that accelerates the ray tracing
of such sequences can have a significant impact on the
overall rendering time.

Graphics Interface '92

180

Animation Running time Static camera time % static camera

Luxo Jr 131 sec 131 sec 100%

Red's Dream 320 sec 259 sec 81%

Tin Toy 451 sec 418 sec 93%

Pencil Test 253 sec 231 sec 91%

The Audition 309 sec 240 sec 78%

Luxo Jr, Red's Dream, Tin Toy © 1986, 1987, 1988 PIXAR.
Pencil Test, The Audition © 1988, 1990 Apple Computer, Inc .

Table 1.

5 Results

A sequence from the Apple Computer, Inc. animation "The
Audition", shown at SIGGRAPH '90, was used to test the
object space coherence algorithm. In this sequence a
weight is dropped onto the see-saw, launching Eric the
worm into the air. The motions of Eric, the see-saw, and
the weight are derived from a dynamic simulation.

The sequence is 351 frames in length . The scene consists
of 6000 polygons and 4 light sources. All frames were
rendered at 640 by 480 resolution , with one ray per pixel,
on a Silicon Graphics Personal Iris 40/25 workstation.

The sequence was rendered one frame at a time with a ray
tracer that utilizes an adaptive voxel subdivision technique.
The number of pixels traced and the CPU time required to
render the sequence are listed in Table 2 under the heading
Traditional Algorithm . The sequence was then
rerendered with the identical ray tracer, modified to use the
object space coherence algorithm described in this paper.
The CPU time, number of rays , and the ratios of these
numbers compared to the traditional frame by frame
approach are listed in Tab le 2 under the heading
Coherence Algorithm .

Traditional Algorithm

Frame # # Rays CPU Time # Rays

0 307,200 666 sec. 307,200

1 307,200 669 sec. 122.400

75 307,200 684 sec. 146,400

150 307,200 649 sec. 58,800

200 307,200 634 sec. 9,600

350 307,200 655 sec. 8,400

Entire
Sequence 107,827,200 63.32 hrs. 20,866,800

Figure 4 shows several frames of the animation sequence
illustrating only the pixels that were retraced by the
coherence algorithm. Note that all the pixels of frame 0 are
rendered by both the traditional and coherence algorithms .

5.1 Discussion

Examining the Entire Sequence row in Table 2
illustrates that over the course of the animation sequence
the coherence algorithm rendered only 19.35% of the rays
that were traced by the traditional algorithm, and required
on ly 26 .72% of the CPU time used by the traditional
algorithm, yielding a speedup of nearly a factor of four .

The discrepancy between the percentage of rays traced
(19.35%) and percentage of CPU time (26.72%) required to
render the sequence with the coherence algorithm is due to
two factors. First is the overhead incurred by the coherence
algorithm in building and maintaining bit-tables in each
voxel and of collecting them at the beginning of each
frame to determine the pixels that must be retraced. This
overhead is apparent in Table 2 in the row that gives the
statistics on the rendering of frame O. The unmodified ray
tracer requires 666 CPU seconds to render the frame whereas
the frame coherence algorithm increases the rendering time

Coherence Algorithm

Ratio to Ratio to
Traditional CPU Time Traditional

1.0 780 sec. l.L 71

0.3984 418 sec. 0.6248

0.4765 528 sec. 0 .7719

0 .1914 209 sec. 0.3220

0 .0312 44 sec. 0 .0694

0 .0273 43 sec. 0 .0656

0 .1935 16.92 hrs . 0 .2672

Table 2

Graphics Interface '92

181

Frame 0

Frame 1 Frame 15 Frame 35

Frame 40 Frame 75 Frame 150

Frame 200 Frame 350

Figure 4

Graphics Interface '92 ~

to 780 CPU seconds, a ratio of 1.17 . This overhead is more
than offset by the savings in subsequent frames.

The second source of discrepancy is due to the fact that rays
are no t uniform in the ir rendering cos t. In thi s animation
sequence, a complex o bject, the worm, is being retraced at
each frame. The area around this complex ohjec t is more
densely subdivided than the rest of the scene, requirin g
more traversal time per ray. The worm also has a more
complex illumination mode l than the background model.
The rays that are not re traced at each frame are typic ally
those that intersect the background of the scene. These
rays travel large ly thro ugh empty voxels and intersect
more simple objects , such as the tent model in this
animation sequence.

6 Future Work

6.1 Inactive Voxel Collection

Adaptive spatia l subdivisio n algorithms ca n reduce the
amoun t of memory they require by taking advantage of ray
co herence . Whe n rendering an im age , parts of th e
subdivi sion structure can be dele ted if rays are no longer
passing through them. This is common when rendering
scanlin es from top to bottom, as rays origin a ting from
scan lines near the bottom of the screen rarely pass th ro ugh
the same voxels as rays from higher scanlines. Voxcls that
are no longer active ca n be identificd periodically during
the rendering , and ca n be col lec ted . This en tail s deleting
the voxe)'s grid s tructure. and marking the voxel as not
subdi vided . If th e ass umption proves incorrect, and a ray
passes through the voxel at a latcr tim e, the voxel will be
resubdivided.

This idea can be ex tended to the tempo ral cohe re nce
algori thm by co llec tin g areas of space th a t rema in
unchanged and untraverscd for a number of fr ames . If an
object inside a co llected voxel changes , or a ray traverscs
the voxel, then it will be resubdivided .

6.2 Light Sources

When animating a li ght so urce, a ll ra ys that pass through
the voxels in which it lies must be retraced. Since most ray
tracers treat light sources as invisible if viewed directly, it
is desirable to avo id retr acing vicwing rays that pass
through a voxel in which a light so urce has moved (Figure
5) . If a separate pixel index bit table fo r shadow rays is
maintained in each voxel, then o nly ray trees th at are
affec ted by a moved light so urce are retr acCC:.

182

D
CJ

unchanged voxel.

changed voxel.

screen

------
•

viewing ray is erroneously retraced .

ray is retraced.

--*- light source that has bccn moved .
/Y'

Figure 5.

6.3 Moving Camera

The algorithm presented in thi s paper may be extensible to
sequcnces where the camera is moving, through the use of
the reprojec tion technique proposed by Badt [Badt 88]. The
3D interscctio n points of the direc tly visible surfaces are
projected onto the screen when the camera moves. If the
camera moves o nly slightly, then the samples will not
change in dens ity, and a new im age can be reconstructed
from them. If the density of the samples changes, then the
pixels wi ll have to he retraced to avoid erro neo us hidden
surfacc results.

6.4 Backwards Ray Tracing

Thc object space coherence algorithm is useful, even with a
mo vin g camera, to acce lerate backwards ray tracing
tcchniques . Heckbert uses bidirectional ray traci ng to
calcul ate global illumination [Heckbert 90], and Watt uses
backward s beam tracing to calculate light-water interaction
[Watt 90]. Both methods could reduce the number of view
independent rays required to render an animation sequence
with non-movin g light sources.

7 Conclusion

An algorithm has becn presented for making use of object
space tempora l co here nce whe n ray tracing animatio n
sequences whcrc the camera remains s tatic. Only rays that
pass through voxels in which o bjec ts have changed are
traced at each frame. Memory use is indepcnden t of image
rcsol uti on, and thc a lgorithm is eas il y adap ted to any
spatia l subdivi sion scheme.

Graphics Interface '92

183

8 Acknowledgements

Thanks to Gavin Miller for his help with the preparation of
this manuscript and for the worm animation, George
Drettakis and Michael Kass for their editorial help, Doug
Turner for the ray tracer, and Steve Rubin for the circus tent.
Many thanks to the entire Advanced Technology Group at
Apple, without whom this work would not have been
possible .

9 References

[Amanatides 84] J. Amanatides, "Ray tracing with
cones," Computer Graphics, vol. 18, no. 3,
pp . 129-135, July 1984.

[Arvo 87] J . Arvo and D. Kirk, "Fast ray tracing by ray
classification", Computer Graphics, vol. 21, no . 4 ,
pp. 55-64, July 1987.

[Badt 88] Sig Badt .Tr., "Two algorithms for taking
advantage of temporal coherence in ray tracing,"
The Visual Computer, no. 4, pp. 123-132, 1988.

[Carpenter 84] Loren Carpenter, "The A-buffer, an
antialiased hidden surface method," Computer
Graphics, vol. 18, no . 3, pp. 103-108, .Tuly 1984.

[Chapman 90] J. Chapman, T . W. Calvert, and .T. Dill,
"Exploiting temporal coherence in ray tracing,"
Proceedings of Graphics Interface '90, pp. 196-204,
1990.

[Chapman 91] J. Chapman, T . W. Calvert, and .T . Dill,
"Spatia-temporal coherence in ray tracing,"
Proceedings of Graphics Intelface '91, pp. 101-108,
.Tune 1991 .

[Chmilar 89] M. Chmilar and B. Wyvill , "A software
architecture for integrated modelling and animation,"
New Advances in CompUTer Graphics (Proceedings of
Computer Graphics International '89), pp. 257-276,
.Tune 1989 .

[Fujimoto 86] A. Fujimoto, "ARTS : accelerated ray
tracing system," IEEE CG&A, vol. (l, no. 4,
pp. 16-26, April 1986.

[Glassner 84] A. S. Glassner, "Space subdivision for fast
ray tracing, "IEEE CG&A, vol. 4, no. 10, pp. 15-22,
Qct. 1984.

[Glassner 88] A. Glassner, "Spacetime ray tracing for
animation," IEEE CG&A, vol. 8, no. 2, pp. 60-70,
March 1988 .

[Heckbert 84] P. S. Heckbert and P. Hanrahan , "Beam
tracing polygonal objects," Computer Graphics,
vol. 18, no . 3, pp. 119-128, .Tuly 1984.

[Heckbert 90] P. S. Heckbert, "Adaptive radiosity

textures for bidirectional ray tracing, " Computer
Graphics, vol. 24, no. 4, pp. 145-154, August 1990.

[Hubschman 82] H. Hubschman and S. W . Zucker, "Frame
to frame coherence and the hidden surface
computation: constraints for a convex world," ACM
TOG , vol. I , no . 2, pp. 129-162, April 1982.

[.Tevans 89] D. Jevans and B . Wyvill, "Adaptive voxel
subdivision for ray tracing," Proceedings of Graphics
Inteiface '89, pp. 164-172, .Tune 1989.

[.Tevans 91] D. Jevans, Adaptive Voxel Subdivision for
Ray Tracing , Master's Thesis, University of Calgary,
1991.

(.Toy 86] K. I. Joy and M. N. Bhetanabhotla, "Ray
tracing parametric surface patches utilizing numerical
techniques and ray coherence," Computer Graphics,
vol. 20, no. 4, pp. 279-285, Aug . 1986.

[Kay 86] T. L. Kay and .T . T. Kajiya, "Ray tracing
complex surfaces," Computer Graphics, vo!. 20,
no. 4, pp. 269-278, Aug. 1986.

[Murakami 90] K. Murakami and K. Hirota, "Incremental
Ray Tracing," Eurographics Workshop on
Photosimuiation, Realism, and Physics in Computer
Graphics, pp. 15-29, June 1990.

[Rubin 80] S. M. Rubin and T. Whitted, "A 3-
dimensional representation for fast rendering of
complex scenes," Computer Graphics, vol. 14, no . 3,
pp. 110-116, July 1980.

[Sequin 89] C. H. Sequin and E. K. Smyr, "Parameterized
ray tracing, " Computer Graphics, vol. 23, no. 3,
pp. 307-314, July 1989 .

[Shinya 87] M. Shinya, T. Takahashi, and S. Naito,
"Principles and applications of pencil tracing,"
COJllputer Graphics, vol. 21, no . 4, pp. 45-54,
.Tuly 1987.

[Watt 90] M. Watt, "Light-water interaction using
backward beam tracing, " Computer Graphics, vol. 24,
no . 4, pp . 377-385, August 1990.

[Whitted 80] T. Whitted, "An improved illumination
model for shaded display," CA CM, vol. 23, no . 6,
pp. 343-349, .Tune 1980.

Graphics Interface '92 ~

