
201

Partitioning Tree Image Representation
and Generation from 3D Geometric Models

Bruce F. Naylor
AT&T Bell Laboratories
Murray Hill, NJ 07974

naylor@research.att.com

Abstract

While almost all research on image representation
has assumed an underlying discrete space, the
most common sources of images have the structure
of the continuum. Although employing discrete
space representations leads to simple algorithms,
among its costs are quantization errors, significant
verbosity and lack of structural information . A
neglected alternative is the use of continuous space
representations. In this paper we discuss one such
representation and algorithms for its generation
from views of 3D continuous space geometric
models. For this we use binary space partitioniM
~ for representing both the model and the
image . Our approach falls under the general rubric
of visible surface algorithms, providing an object­
space algorithm which under certain conditions
requires only sub-linear time for a partitioning
tree represented model, and in general exploits
occlusion so that the computational cost converges
toward the complexity of the image as the depth
complexity increases. Visible edges can also be
generated as a step following visible surface
determination. However, an important contextual
difference is that the resulting image trees are used
in subsequent continuous space operations. These
include affine transformations, set operations, and
metric calculations, which can be used to provide
image compositing, incremental image modification
in a sequence of frames, and facilitating matching
for computer vision/robotics. Image trees can also
be used with the hemicube and light buffer
illumination methods as a rep lacement for regular
grids, thereby providing exact rather than
approximate visibility.

Discrete vs . Continuous Space

We have come to think of images as synonymous
with a 20 array of pixels . However, this is an artifact
of the transducers we use to convert between the
physical domain and the informational domain.
Physical space at the resolution with which we are
concerned IS most effectively modeled

mathematically as being continuous, that is , as
having the structure of the Real s (or at least the
Rationals) as opposed to the structure of the
Integers. Modeling space as being defined on a
regular lattice, while simple, is verbose and induces
quantization which reduces accuracy and can
introduce visible artifacts. Using nothing other than
a lattice for the representation provides no image
dependent structure such as edges .

Consider applying to a discrete image an affine
transformation, an elementary spatial operation .
The solution for this is developed by reasoning not
merely in discrete . space but in the continuous
domain as well : samples are used to reconstruct a
"virtual" continuous function which is then
resampled. However, the quantization effects can
become rather apparent should the transform
entail a significant increase in size and a rotation by
some small angle, despite the use of high quality
filters . This is due to such factors as ringing,
blurring, aliasing, and anisotropic effects which
cannot all be simultaneously minimized (see, for
example, [Mitchell and Netravali 88]). More
importantly, discon tinuities become increasingly
smeared as one increases the size, since the
convolution assumes a band-limited signal, i.e . an
image with no edges. This has practical implications
when texture mapping is used to define the eolor of
surfaces in 30: since a texture map can be enlarged
arbitrarily, a brick texture, for example, will become
diffuse instead of exhibiting distinctly separate
bricks.

Now consider applying affine transformations to
images represented by quadtrees, a spatial
structure, developed within the context of a finite
discrete space, for reducing verbosity and inducing
structure on an image. The algorithm for
constructing the new quadtree of the transformed
image seems relatively complicated when compared
to the corresponding algorithms for continuous
space representations: it must res ample each
transformed leaf node and construct an entirely
new tree . In contrast, boundary representations,
simplical decompositions, or binary space
partitioning trees only require transforming points
and/or hyperplanes (a vector-matrix product), and

Graphics Interface '92 ~

202

no structural changes are required. An extremal
example of this difference IS the quad-tree
representation of a square occupying a quadrant,
which requires 5 nodes, but when slightly rotated
or translated the number of nodes is on the order
of the number of pixels lying on its boundary (say
about 4k for a lk x lk grid) . This rather dramatic
metamorphosis illustrates quite clearly that the
quadtree reflects the nature of a finite discrete
space, a nature differing from that of the
continuum, and that applying arbitrary affine
transformations in discrete space can affect the
structure of the representation, introducing
quantization noise and requiring more complicated
algorithms.

We are inclined to state a stronger proposition:
discrete space , as a regular lattice, supports weakly
the semantics of the continuum . Assuming this, the
difficulties with transforming pixel arrays and
quadtrees is not so unexpected . A good model for
images is one that treats them as functions mapping
a continuous 2D domain to a color space (the 2D
domain may be unbounded) . Discrete space
representations are then treated as approximations
of this function , or as evaluations achieved by
point-sampling the domain, and discrete space
operations are then constructed as approximations
to their continuous space analogs. To display the
image, conversion to a discrete representation
would still be needed, but this now becomes strictly
an issue of sampling the image function. (This
argument should not be confused with the random
vs . raster scan distinction, which is a question of
transducer technology , not of computational
technology .) With this said , we will now consider
methods of generating continuous space image
representations from 3D continuous space
geometric models .

Vis ible Surface Algorithms

The context in which continuous space image
representations are most easily produced is
synthetic image generation. Here one begins with a
3D geometric model, defined using continuous space
methods, from which a continuous space image
representation is generated. This idea appeared
very early in the development of visible surface
algorithms , and in [Sutherland, Sproull and
Schumacker 74] such algorithms were called
object -space algorithms. But the approach has been
neglected in favor of solutions utilizing quanti zed
spaces (except In the Computational Geometry
community) .

The algorithm of [Weiler and Atherton 77] is a
well known example of a continuous space method
for generating images, and since it resembles
closely our own approach, we will describe it in
some detail. The algorithm operates on a set of
polygons defined in a 3D post-perspective screen­
space; thus , all projectors are parallel to the z-axis.
Each polygon IS represented by a boundary

representation of some variety. Presumably the
polygons are the faces of a collection of polyhedra,
but this property is not relied on. The algorithm
proceeds by recursively partitioning space un til
homogeneous regions of the image are generated.
Homogeneity in this case means, in 2-space, a
region in which only one polygon is visible, or in 3-
space, a region which is entirely visible or entirely
occluded. The output of the algorithm is a set of
polygons in 2-space with disjoint interiors whose
union forms the image. These polygons are In
general non-convex and contain holes.

At each point in the recursion, a region r of
space is partitioned into two sub-regions, which we
denote as r- and r+. The partitioning set used is a
3-space polygonal cylinder determined by the
boundary of a polygon p, chosen from among those
polygons that intersect r (Figure 1). The faces of the
cylinder are orthogonal to the xy-plane, and so
con tain those projectors which go through the
boundary of p. Since p may be of any genus, the
sub-regions created by partitioning with p are not
necessarily connected and are rarely convex . All
polygons, including p , are then partitioned into
subsets lying in r- and r+, where we take r- to be
the sub-region containing p, i.e . the interior sub­
region, and r+ to be the exterior sub-region.

Weller-Atherton Algorithm
Figure 1

Whenever there is some polygon p I in r with
supporting hyperplane h such that p' = h " r, then
all polygons lying "behind" p I are occluded by p';
such a polygon was called a surrounder in the
literature on visible surface algorithms of the 70's,
taken from the analogy of a 2D window being
surrounded by a polygon. The algorithm selects
whenever possible the plane of such a polygon as
the partitioning set and then treats the "far region"
of p' as homogeneous, i.e. as being totally occluded,
and so terminates recursion in that region and
discards the occluded polygons. Note that the
cylindrical partitioning by p above results in p
being a surrounder for r- . Finally , whenever a 3-
space region is generated containing no polygons,
this region is necessarily homogeneous .

Graphics Interface '92

While the algorithm as just described is all that
is required to generate a set of polygons forming
the image, we have said nothing about which
polygon is chosen as the partition er when no
surrounder is present. A typical technique aimed at
improving the performance is to initially sort the
polygons in z using for each polygon the smallest z­
coordinate from among its vertices, and then to
maintain this ordering when polygons are
partitioned. The partltlOner in the absence of a
surrounder is then the first in this ordering among
those intersecting a region. In the presence of
multiple surrounders, the closest one is chosen.

A similar but lesser known approach was
described in an unpublished paper by Ivan
Sutherland I Sutherland 73], where he develops a
visible surface algorithm inspired by the ideas used
in the ID sorting algorithm quicksort. Its output is
the same as the above algorithm, i.e. a set of disjoint
polygons, and it differs from that algorithm
primarily in one aspect: In the absence of a
surrounder, the partitioning set is a plane through
only one edge of a polygon in r. The plane then is
orthogonal to the xy-plane, or equivalently, it
contains the edge and the center of projection
(Figure 2). Selecting which edge to use at each point
in the recursion is a heuristic process. Sutherland
tried several heuristics without reaching any firm
conclusions about what method was best. It is
interesting to note that Sutherland's paper also
contains a section discussing how this algorithm can
be used for shadow generation , transparency and
collision detection .

Partitioning tree algorithm
Figure 2

As pointed out in [Harp 86], this algorithm can
be treated as a binary space partltlOning tree
algorithm in that it uses a recursive partitioning by
arbitrary hyperplanes; however, it does not
generate a tree explicitly, a crucial distinction . This
is not surprising given the original inspiration,
quicksort. For indeed quicksort can be seen as
implicitly constructing a ID binary search tree ,

203

which in turn can be interpreted as a ID
partitioning tree. There is a somewhat subtle but
important difference however: sorting has been
developed in terms of points whereas space
partitioning is in terms of hyperplanes . In ID, and
only in ID, points and hyperplanes have the same
dimension, viz. 0, and so it is easy to confuse them.
But hyperplanes are (d-l)-dimensional not OD sets,
as are points. And they have an orientation that
distinguishes the two halfspaces induced on a d­
space, an orientation that can be used for ordering.
Points have no such orientation, nor do they
partition space, and so cannot be used to order d­
space, d> 1. This is one way to see why sorting
algorithms are not applicable in dimensions other
than ID . Indeed, if we "attach" the ordering
relationship to a ID point, we then have a ID
hyperplane.

It seems apropos before leaving this section to
discuss briefly the visible surface algorithm by John
Warnock [Warnock 69]. It was the first recursive
space partitioning, visible surface algorithm, and it
follows the general scenario outlined above, the
main difference being that the partitioning
hyperplanes are not determined by polygonal
edges (also, polygons were not explicitly
partitioned). Today we see it as using a quadtree
partitioning scheme. However, like the Sutherland
algorithm, no explicit tree representation is
generated; its output is a set of visible squares
typically drawn directly into a pixel array. It is in
effect a discrete space solution (also called a screen­
space algorithm). It was to a certain degree the
verbosity of this discrete solution that motivated
the development of the two previously described
continuous space algorithms.

Partitioning Trees

The binary space partitioning tree was originally
developed in the context of visible surface
determination. (The appendix contains a summary
for those unfamiliar with the method.) [Schumacker
et al 69] developed an incipient version that
involved manual creation of a binary tree of
vertical separating planes so that each object was
separated from all other objects in the scene. The
tree could then be used to generate a view­
dependent visibility priority ordering. In [Fuchs,
Kedem and N aylor 80] and IN aylor 81] three
advancements were made: 1) the objects
themselves were represented by the tree, 2) tree
generation was automatic, 3) a dimension
independent representation of space was
introduced along with the name "binary space
partitioning tree". As noted above, Sutherland also
developed a number of ideas using this approach
without generating a tree, the lack of which
presumably contributed to his not realizing the
connection between his work and that of
[Schumacker et al 69].

Graphics Interface '92 ~

A generalized VIew of partitioning trees sees
them not simply as representations of polytopes
but as a representation of functions whose domain
and range are continuous spaces of finite
dimensions dl and d2 respectively: f: X ESdI =}

Y E Sdz. The partitioning tree partitions the domain
into a hierarchical collection of sub-domains. Within
each sub-domain a value-continuous function fi
defines the value of f within that sub-domain
(typically, fi is defined for all of SdI as well ,
although this is not essential). All points in SdI at
which f is value-discontinuous are contained within
partitioning hyperplanes. This interpretation is
relevant to the work here since images are
functions from 2-space to some color space.

A partitioning tree also provides a structure
enabling a hierarchical representation of f. As an
example, consider polytopes. At the cells of the
partitioning , each fi is a boo lean valued constant
function indicating whether or not the cell is in the
set. The polytope is the set of points P = closure({
c i I Cj is an in-cell}). Thus f is the characteristic
function fx for the set P; the algorithm for
computing f is the point classification algorithm
given in [Naylor 81] [Thibault and Naylor 87]. A
useful hierarchical representation of fx can be
obtained by associating with each region r a
constant function providing the conditional
probability of a point being in P given that it is
known to lie somewhere within r . Thus , for
example, the value at the root of the tree is the
expected value of the function. We use this idea
below to detect regions of the image plane that are
discovered to be totally occluded yet
inhomo geneous.

Partitioning Tree Visible Surface Algorithm

Consider a 3D geometric mode ling system in which
all geometric sets are represented by partitioning
trees. An explicit representation of the model can
be formed by taking the union of all the objects
comprising the model, resulting in a single tree. This
model-tree can then be used, along with a
particular view of the model , to generate a total
visibility priority ordering on the components of
the tree. This ordering can be either far-to-near
(back-to-front) or near-to-far (front-to-back).
Generating this ordering can be combined with
view volume clipping, which performs a non­
destructive intersection operation between the
model and the view volume, generally in sub-linear
time [Naylor 90b].

Regardless of the ordering, a partitioning tree
representing the image can be generated by
forming the union of the faces in priority order.
More specifically, consider a near-to-far ordering
with the initial value of the image being the empty
set.

204

1) project each face onto the 2D projection
plane and let the attributes of each face be
its color.

2) form the 2-space union of the faces in
priority order:

image = Union_Sets(image, face)
where the attributes of the image take

precedent over those of the face .

Thus faces are projected to 2D regions of the image
plane, and the effect of higher priority faces
occluding lower priority faces is achieved by letting
the attributes of the image tree take precedence
over those of the current face being "added" to the
image. If the faces are represented by partitioning
trees, then the union can be performed using tree
merging [Naylor, Amanatides and Thibault 90]
(figure 3), or if by b-reps, then by the algorithm
given in [Thibault and Naylor 87]. If the reverse
ordering is used (far-to-near), then the attributes
of the new face would take precedence over those of
the image tree. We see then that visible surface
problem can be reduced to ordered set operations
on polyhedral faces . (All of what has been said for
3D -> 2D holds for any d > I, since partitioning trees
and their algorithms are dimension independent.)

/A"
{'o/'o X

(\ 1\ o 1 0

A union operation between two faces with
attribute precedence

Figure 3

With either ordering, non-refractive
transparency can be supported by using a "merge
attributes" method that blends colors according to
their opacity (alpha values). Given two polygons PI
and p 2, in which P I has color Cl and opacity et}

and occludes P2 which has color C2 and opacity a2,
then the resulting color is c 1,2 = (Cl· a I) +
(c2*a2) * (l-al) and opacity is al,2 = al + (l-al)
* a2 [Porter and Duff 84].

In addition the set of visible edges can be
generated, if desired , by performing a closure
operation which determines for each sub­
hyperplane which subsets have a heterogeneous
neighborhood [Naylor, Amanatides and Thibault

Graphics Interface '92

90). So for example, in Figure 3 the subsets of
hyperplane A that have homogeneous neighbor­
hoods and so would not be on a discontinuity in the
image are those that separate the two polka-dotted
cells or two out-cells. This then provides a
continuous space visible edge (hidden line)
algorithm as an additional step after the visible
surface algorithm .

A 3D variant is obtained by transforming the
faces into 3D post-perspective screen-space. Then
each face is considered to define a polygonal cylin­
der as in [Weiler and Atherton 77). The union
operation is now on 3D cylinders bounded on the
near side by the plane of the face (see Figure 2). The
faces could then be added to the image tree in .!!..!lY
order, although near-to-far still has advantages as
discussed below. Note that the 3D image tree that
this produces represents In continuous space
exactly the same function represented in discrete
space by the standard {frame-buffer, z-buffer}
structure.

The algorithm can also be performed in model­
space, in which the cylinders are instead cones
whose conical-vertex is the center of projection.
This then becomes the algorithm present in [Chin
and Feiner 89) which they applied to shadow
generation, instead of image/visible-surface gen­
eration I . The resulting model-space image tree can
then be transformed by the viewing transform­
ation into screen-space. Working in model-space is
preferable numerically, as it avoids the problems
encountered as a consequence of the non-linear
perspective projection which com-presses the
depth at rate of z-2. Note that this problem can be
ameliorated somewhat by attempting to match the
distribution created by the projection to the distri­
bution of floating-point representable numbers.
Uniformly distributed points in model-space
become more compressed by the perspective pro­
jection the greater the depth. Floating-point repre­
sentable numbers become more dense the closer
the value is to O. The standard mapping of the near
plane to z=O and the far plane to z=1 results in a
mismatch: the greater the model-space depth the
further the projected depth-value is from O. This is

1 Both their ideas and our ideas on this subject occurred
independently. We first realized the potential presented
here during the period in which we were developing
the thesis that partitioning trees could provide a
representation of polytopes [Thibault and Naylor 87].
Being able to solve analytically the visible­
surface/shadow problems with partitioning trees,
analogous to [Sutherland 73], provided part of the
supporting evidence for this thesis. [Chin and Feiner 89]
extended the ideas in [Thibault and Naylor 87] to
generation of shadows. Concurrent with their work, we
developed set operations on partitioning trees [Naylor,
Amanatides and Thibault 90], which then enabled us to
implement the work described in this paper. However,
we had originally conceived of our solutions in terms of
screen-space using 2D trees , rather than the model­
space approach with 3D trees in [Chin and Feiner 89].

205

trivially rectified by mapping the far plane to 0, and
the near plane to -1 if in a left-handed system or to
+ 1 if in a right-handed system.

Now let us compare our algorithm, using a
near-to-far ordering, both to the Weiler and
Atherton algorithm and to the Sutherland algo­
rithm. They are of course all quite similar. They
recursively partition space using at each stage a
binary partitioning set (i.e. any (d-l)-set that
partitions a d-region into two d-regions), and the
partitioning is determined by planes containing
either a polyhedral edge and the center of
projection and/or by planes of faces. Aside from
differences arising from the availability of a priority
ordering (to be discussed below), the relationship of
our algorithm to Sutherland's is simple: the order
of "edge selection", i.e. partitioning hyperplane
selection, is pre-determined by the priority
ordering of the faces and the tree representing
each face. And of course, we explicitly construct a
tree to represent the output.

The primary difference between our method
and that of Weiler and Atherton, once again other
than the priority ordering, is the representation of
polygons: their representation is a variety of b­
reps while ours is partitioning trees. This difference
manifests both in the algorithms for set operation
(between faces), and the form of the output (a
graph vs. a tree). It is our contention that the set
operation algorithm for b-reps are more
complicated, slower, and less numerically robust
than the corresponding algorithm for partitioning
trees. Some early indication of this is suggested by
the fact that the original set operation algorithm
given in [Weiler and Atherton 77], which is based
on a kind of parity counting of intersections, fails to
handle co-incident boundaries correctly. A correct
but more involved solution was presented later in
[Weiler 80) based on Euler operations.

If in the case of partitioning trees, the boundary
is already represented by 2D partitioning trees
lying in a 3D hyperplane, as discussed in [N aylor
90a], then their representation in screen space
either as 2-space entities or as 3-space cylinders is
trivial, requiring the application of a single affine
transformation (the inverse of the viewing
transformation used for points). The tree merging
algorithm can then be used to form the image tree
as shown in Figure I above. Note that a single 2D
partitioning tree can represent multiple coplanar
connected components (faces), and a well built tree
will generally yield better performance than
operations on a list of connected components.

The second and more important difference
arises from our use of a 3D partitioning tree to
represent the model and so to generate a priority
ordering. As a consequence, the algorithm is
simplified by eliminating the code and execution
time for the initial approximating depth sort , and
everything associated with the notion of
surrounders (detection and ordering). Of greater
consequence is that the partitioning of faces by any

Graphics Interface '92 ~

occluded subset of an edge is automatically
eliminated simply by using a near-to-far ordering.
Indeed, at any point in the construction, the image
tree can be interpreted as a 2D-polytope
representing a visibility mask: interior regions
correspond to occluded regions and exterior to
unoccluded regions . Since additions are made only
to unoccluded regions , any intersection between
two occluded edges is never computed.

Exploiting the creation of occluded regions of the
image plane to reduce computation can be
enhanced further by maintaIning at internal
regions a mem bership attribute indicating opacity
within any region r . This can be either the
percentage of r that is opaque, i.e. the expected
value of a point lying in r being occluded (see Figure
4) , or simply a boolean variable indicating whether
r is fully occluded or not. Maintaining this
membership value during the insertion of a new
face amounts to the standard condensation of
homogeneous regions used in set operations, the
difference being that a region which is
homogeneous only with respect to opacity but not
color is not replaced by a leaf node. Thus, whenever
an internal region becomes fully opaque, it will
become a cell of the visibility mask even though a
subtree remains defining the image within this fully
occluded region . Consequently , this subtree is
never again accessed during subsequent processing
of lower priority faces. Moreover, when the root
region becomes occluded , rendering ceases .

Maintaining % occluded at regions
Figure 4

This captures very simply the ideas present in
other work using such masks 2 which require

2 A recent example of this is [Sharir and Overmars 92),
which is similar in many ways to our method, although
it apparently was not implemented. They assume the
existence of a visibility priority ordering, maintain a
visibility map (our image tree) and a separate mask
(our opacity attribute in the image tree) . They also rely
on merging of these. However, instead of adding one
face at a time, they construct a separate visibility map
for the next several faces, and then merge this with the
"current" map, improving the worst case performance.
This idea, if shown to be fruitful, can be easily applied
to our method, since there is no algorithmic difference
between a tree for a single face and another temporary
image tree.

206

algorithms comparable to set operations on b-reps ,
and it is the continuous space correlate of pixel
masks, be they 1-bit per pixel or many bits per
pixel masks (i .e. sub-pixel masks) [Fiume and
Fournier 83) [Carpenter 84). When combined with
view-volume clipping, an effect IS achieved
somewhat analogous to the culling methods
presented in [Teller and Sequin 91). While one
would presume that their additional preprocessing
would lead to noticeably less computation to
generate an image, our method permits a dynamic
geometric model (and of course none of the
requisite preprocessing and storage of the resulting
information) .

There is, however, a notable deficiency with our
scheme as outline above: the order in which the
image plane is partitioned is predetermined by the
visibility ordering. However, the order in which
hyperplanes are chosen affects significantly the
"goodness" of the trees, i.e. the efficiency of the
search structure provided by the tree . We have
come to realize that an efficient partitioning tree is
one that represents the set/function as something
analogous to a sequence of approximations [N aylor
92). We have implemented tree construction
methods employing expected case models for
various elementary operations and these methods
produce such trees. What we would then like is to
reflect within the image trees this effort at
constructing good trees . To achieve this, instead of
building the image tree from scratch, we modify (a
copy of) the existing model tree so that it will
become a representation in 3-space of the occluded
and unocculded regions . This can be performed
equally well in either model-space or screen-space,
with the afore mentioned caveat that screen-space
induces a numerically undesirable compression of
the depth.

There are several ways to apply this idea; we
will describe here only the simplest. We still
traverse the tree in a near-to-far priority order.
However, after forming the 3D face-beam, instead
of performing image u face-beam we perform
model u face-beam . As a consequence, entirely
occluded faces will be removed by this union
operation, and so will not have their face-beam
constructed only to find that it is totally occluded,
as will occur with the previous method. Indeed,
every subtree of the model-tree that is found to be
totally occluded will be condensed automatically by
the union operation to a single cell before it is
encountered in the priority traversal (Figure 5).

An extremal illustration of the power of this
approach occurs when an entire object is occluded
by a single face of another object. The beam for that
face will "engulf' the object, and it will be reduced to
a single "occluded" cell. Given our tree construction
methods, the computation required in such a case is
comparable to computing the union of the beam
with a bounding volume of the object, yielding
constant time elimination of the occluded object.
Thus, under favorable conditions, the visible

Graphics Interface '92

surface can be computed in sub-linear time (and
this is in addition to the typically su b-linear clipping
of the model to the view volume) . More generally,
this approach exploits during "beam insertion" the
efficient search structures previously generated
for each object and the gains from condensing
homogeneous regions . Equally important, it retains
a desirable residue of thi s structure in the resulting
image tree, and this residue is important for
efficient execution of any subsequent spatial
operations, such as those discussed in the next
sec tion .

v v

With viewer V, subtree S Is occluded by face
F and is removed by condensation.

Figure 5

Utilizing Image Trees

Given an image tree, one can sample it for display .
There are a number of ways to do this. The simplest
but most expensive would be to use point
classification for each pixel to determine its color.
This would, however, allow one to use non-uniform
sampling techniques [Mitchell 87) for anti-aliasing.
A more reasonable alternative would be to classify
scan-lines . But since parametric representations
are ideal for scan-conversion, and b-reps are in
effect such representations, one can use the
algorithm in [Thibault and Naylor 87) to classify an
initial b-rep polygon corresponding to the viewport .
This yields a disjoint set of convex polygons each as
list of vertices, one for each cell, whose attributes
are the color of the corresponding cell. Finally, if the
faces of the polyhedra are given as b-reps, then
these can be retained in the process that constructs
the image tree, i.e. during the union operations, as
described in [Naylor, Amanatides and Thibault 90) .
Thus , by extracting these from the image tree, one
obtains an output similar to that generated by the
b-rep based algorithms, viz. a set of convex
polygons each represented by a list of vertices .

Since only the visible surfaces are scan-
converted, texture mapping and per-pixel
illumination calculations (Phong shading) will be
computed only for visible pixels . . In addition,
transparency is ca lculated between polygons
rather than repeatedly for each pixel, and so can be
provided on systems that do not have the requisite
pixel-Ievel hardware . The accuracy of anti-aliasing
can be improved significantly, since the visible

207

surface is represented at the resolution provided
by floating point , which provides a much higher
degree of accuracy than is practical with discrete
space. Polygonal edges can be filtered using either
continuous or discrete space representations of the
filter, with the results being accumulated in the
fame buffer using calculations analogous to those
described for transparency . This then provides the
continuous space version of sub-pixel mask
techniques for anti-aliasing presented in [Fiume
and Fournier 83) [Carpenter 84) and [Abram ,
Westover and Whitted 85], and no per-pixel list of
micro-polygons with an approximating depth-sort
is needed as in [Carpenter 84) . It is also a more
efficient form of the per-pixel "analytic" approach in
[Catmull 78) which relied on Sutherland's algorithm
for visible surfaces. And for line drawings on B&W
printers and displays , the visible edges can be used .

As discussed in the introduction, an immediate
advantage of continuous space representations is
th at affine transformations can be applied with
ease. Images can be scaled by (Sx, Sy , Sz)
corresponding to a model-space scaling of (Sx, Sy,
l/S z). A rotation of an image about the screen­
space z-axis by 9 is comparable to a rotation by 9
about the model-space image of this axis, which is
the axis through the center of projection and
orthogonal to the projection plane. A translation of
the image by (Tx , Ty) is equivalent to a shearing
with respect to this same model-space axis by (Shx
= Tx, Shy = Ty). If the perspective is not too severe,
then this approximates a similar translation in
model-space . For defining texture on a surface, a 2D
image tree can be affinely transformed in order to
map it into screen-space and then sampled (note
that transforming hyperplanes into screen-space
requires no "perspective division ", but only an
affine transformation) . In either case, no
quantization artifacts , such as enlarged pixels or
blurred edges, occur.

Image trees can also be used in subsequent
continuous space operations. As noted above, this
provides a continuous space version of what has
been represented in discrete space by a rgbaz
buffer. Therefore, compositing operations can be
performed on 3D images as discussed in [Duff 85) (in
that work, the space is discrete). These operations
can be interpreted as set operations with blending.
More specifically we have the following equality:

image(A <set op> B) =
image(A) <set op> image(B), <set op> E {u, I'I}

And set difference can be used for masking. Since
our 3D image trees are of the same data type as any
other of our geometric sets, the previously devel­
oped set operations can give us compositing immed­
iately . Blending is provided by the same mechanism
that provides non -refractive transparency . Using
3D instead of 2D images frees the compositing from
being simply a layering of images on top of each

Graphics Interface '92 ~

other, as in the case for traditional cell animation or
video games; i.e. visibility is not restricted to a total
order on the individual images, instead they may
be interleaved.

While compositing has not been associated with
interactive 3D graphics, consider the rather likely
situation in which a user has a model comprised of a
collection of objects. Typically, the user will engage
in modification of only one object at any given time
while the view remains stationary. Then an image
tree can be constructed for the static objects once
at the beginning of this interaction, and the image
of the model is generated by

image(model) = image(static-objects) u
image(dynamic-object)

This will yield more benefits the greater the
number of static objects, the greater the amount of
occlusion, and the greater the duration between
selecting a new dynamic object. (For those readers
familiar with random-scan display systems, each
image tree is analogous to a segment.)

Additionally, it is possible to redraw into a
frame-buffer only those faces whose visibility has
changed between successive frames. To do this, one
needs to maintain in the static-object's image tree a
frame index at each node v. This will indicate the
last frame in which the subtree rooted at v was
changed by the union with the dynamic-object
image tree. The drawing process needs to traverse
only those subtrees which have changed in the
current frame or else in the immediately prior
frame so that the image of previously but no longer
occluded static-object faces can be redrawn. This
then provides a simple means of exploiting temporal
correlation (frame-to-frame coherence) in this
particular setting, i.e. static view and relatively few
moving objects.

Visibility computations are, of course, crucial in
the evaluation of all light transport equations. The
equivalence between visible surface and shadow
computations was recognized at a fairly early stage.
Thus, our model-modification method can be used
to partItIOn model space into regions that are
homogeneous in the number of lights visible from
any point in that region, which then provides a way
to classify any other set to determine its light­
source visibility and simultaneously detect
collisions. For global illumination, a well established
technique is the hemicube method [Cohen and
Greenberg 85) which for each surface element
projects the scene onto a half-cube whose surface
has been partitioned by a grid, and visibility is
approximated within each grid-cell at the midpoint.
Image trees provide an alternative to this grid. For
each face of the hemicube, one can use our methods
to represent the image. And instead of approx­
imating the form factors discretely, the transport
can be computed exactly using contour integration
[Nishita and Nakamae 85) [Campbell 91). This then
leads to a global illumination algorithm with certain
similarities to that of [Campbell 91) which is also

208

based on partitioning trees. Similarly, image trees
can be used to implement light buffers [Haines and
Greenberg 86). once again , with exact rather than
approximate visibility, yielding a significantly sim­
plified methodology.

Generating image trees from 3D models
provides a potentially important companion to our
work on a discrete-to-continuous transform In
which a pixel array representation is converted
into a corresponding partitioning tree repre­
sentation [Rahda et al 91). Currently , we can solve
no more than the segmentation problem; texture
representation remains an open issue . However,
this may be enough for certain applications .
Consider a robotics application in which the
constituents of an external environment are known
a priori and for which a geometric model has been
constructed. The problem is to maintain a cor­
relation between an internal geometric model and
the dynamic external physical state, given an initial
correlated state. One could construct two image
trees, one from the discrete image provided by a
camera, and the other from the current view of the
geometric model. These then could be correlated by
an iterative process using affine transformations,
set operations (symmetric difference) and calcu­
lation of moments, and in doing so determine how
the geometric model should be updated . It may also
be possible to use image trees in template matching.

Examples

Pictures 1-5 provide a few examples of generating
image trees . The number of faces for pictures 1-3
are given below for each of the three rendering
methods: painter 's algorithm (method I) , creating
a new image tree (method 2) , and modifying the
model tree (method 3). For the phone handset, the
difference between method 3 and the number of
front-facing polygons is due to the fact that the
polygons forming the sound transmitting holes in
the hand set are contained in fully occluded
subtrees which are condensed to a single cell (the
tree has also been clipped).

object method 1

head 705

shuttle 499

phone 432

method 2

1982

1100

353

method 3

703

523

141

In Picture 4, we have composited two 3D image
trees using a union operation. Picture 5 shows a
skewed view of this revealing the solid nature of the
images (the full boundary of the solid images has
been generated only for the purpose of illustrating
their 3D nature) .

Appendix

Binary space partitIOning trees, also called bsp trees
or partitioning trees, are defined by a generating

Graphics Interface '92

algorithm , and for this o nly one operation is
required: binary partitioning by a hyperplane of a
region in a d-dimensional continuous space, d > O.
Figure A.I illustrates this. Given a homogeneous
open region r, a hyperplane h that intersects r is
chosen using some criteria. Then h is used to induce
a binary partitioning on r that generates two new
d-dimensional regions, r+ = r r1 h+ and r - = r r1

h -, where h + and h - are the positive and negative
open halfspaces of h respectively. Also, generated is
a (d-1)-dimensional region r O = r r1 h , called a
sub-hyperplane (abbr. as shp). Thus r = r + u r - u
r O = (r r1 h+) u (r r1 h-) u (r r1 h). Any of these
new unpartitioned homogeneous regions can be
partitioned similarly , and so on recursively. When
the process is terminated, the remaining un­
partitioned regions, called cells, together with the
sub-hyperplanes forms a partitioning of the initial
region. (In figure A.1, the cells are labeled with
numbers and the sub-hyperplanes with letters.)

D 0 ~ O~ h -
Initial region and tree First binary New tree

part iti on ing

Spatial partitioning Binary t ree

Constructing a partitioning tree
Figure A.1

This process, when begun with d-space as the
initial region, induces a structure on d-space in the
form of a hierarchical decomposition . A partitioning
tree is the computational representation of this
process, and its combinatorial/syntactic form is
captured by a binary tree. This tree is simply the
directed graph of an asymmetric relation defined
on the set of regions generated by the process
where rl -> r 2 if r 2 was created directly by a
partitioning of r}. The tree also corresponds to the
graph of the partial ordering of the regions induced
by the subset relation. In addition, the tree can be
interpreted as a type of computation graph by
interpreting the arcs as intersection operations :
"moving " a set s contained in a region rand
partitioned by hyperplane h along a left arc from r
to r- can be interpreted as computing s r1 h-, and
similarly for the right arc . This interpretation
provides a set theoretic definition of any region r '
as the intersection of open halfspaces corre-

209

sponding to arcs on the path from the root to r'. In
figure A.1, cell-3 2-space r1 A - n B+ .
Consequently, if the initial region is a convex and
open set, it follows that all regions of the tree are
convex and open.

A partitioning tree can provide the basis of a
computational object for the semantic domain of
geometric sets. These are subsets of continuous
spaces of finite dimension for which each point has
an associated set of attributes (e .g. color) . The
partitioning tree provides an isomorphism between
certain geometric entitles and a combinatorial
structure manipulated by algorithms; in other
words , the binary tree is a syntactic entity whose
intended interpretation, or model (as in Model
Theory) , is a geometric set. In particular, a
polytope, or collection of polytopes, can be
represented by associating with each cell a
membership attribute = { in, ou t }, dividing the cells
into in-cells and out-cells. The polytope may be of
any topology, including multiple connected com­
ponents, and have a boundary that is non-manifold
and/or unbounded . All possible trees represent
some topologic ally valid polytope, although if a tree
is chosen at random, certain subtrees may
correspond to the empty set or to a homogeneous
region . This means that every syntactically valid
tree, i.e. any binary tree with hyperplanes at
internal nodes and membership attributes at leaf
nodes, represents a semantically valid polytope.

For any point in d-space, its e-neighborhood
with respect to the polytope can be discovered by
following the paths in the tree to any cell whose
closure contains the point. This is just the standard
method of inserting a point into a search tree, with
the simple extension that whenever a point is found
to lie on a partitioning hyperplane, both subtrees
are visited. The cells reached by the traversal are
exactly those lying in the point's e-neighborhood
[Thibault and Naylor 87) .

Any central projection using linear projectors
(rays) determines a partial ordering, called a
visibility p riority ordering, on the regions of any
partitioning tree. This ordering depends only upon
the center of projection. The total priority ordering
induced by any single rayon the subset of the
regions it intersects is consistent with this "global"
partial ordering. The ordering is possible because
for a ray t and hyperplane h, their intersection is a
single point, unless t lies in h . This intersection
point partitions t into ill<Y., Q.!l and far subsets . This
implies that any set in the near-halfspace of h has
priority over any sets lying in h which in turn has
priority of any sets in the far-halfspace. Given a
partitioning tree representation of polyhedra ,
discovering that the viewing position is in say the
positive halfspace of a partitioning hyperplane h at
node v means that all sets represented by the
positive subtree of v have priority over any sets
lying in h which then have priority over those sets
represented by the negative subtree. One can apply
this local ordering recursively to generate a total

Graphics Interface '92 ~.

priority ordering of all sets represented by the
tree . (See [Schumacker et al 69] or [Sutherland,
Sproull and Schumacker 74], and [Fuchs , Kedem
and Naylor 80] or [Naylor 81]).

Along similar lines, efficient ray-tracing
algorithms have been devised [N aylor and Thibault
86] which exploit both the convex decomposition
and the inherent hierarchical search structure.
Calculation of shadows due to point light sources is
addressed in [Chin and Feiner 89] and due to area
light sources in [Chin and Feiner 92] and [Campbell
91] . Use of partitioning trees for global illumination
calculations can be found in [Fussell and Camp bell
90] [Campbell 91]. Algorithms for set operations are
presented in [Thibault and Naylor 87] and [Naylor,
Amanatides and Thibault 90].

In [Naylor 81], it was shown that partitioning
trees could represent arrangements of hyper­
planes, and the complexity of the arrangements
was used to give a bound of e (od) on the size of
the largest possible partitioning tree formed using
o hyperplanes in d-space. It was also shown that a
set of disjoint (d-I)-faces could result in a tree of
size n(od-l). In [Paterson and Yao 90] algorithms
are given for converting a set of non-intersecting
faces to a partitioning tree of size e(od-I) in time
O(od + 1), d > 3, which is reduced to e (0 2) and
O(n3) for 3D. In 2D, the tree size and run time are
both O(0 log 0). A convex n-gon can be repre­
sented by a tree of size e (n) and depth e (log 0)

and two such trees can be merged in O(0 log 0)

[Naylor 92]. Two arbitrary trees each of size n can
be merged in e (nd) for d = 2, 3 or 4 [Naylor ,
Thibault and Amanatides 90]. However, empirical
results in [Naylor 81] and much subsequent
experience indicate that polygonal models of real
objects result in trees much closer to O(0 log n).

Partitioning trees are the same computational
structure as linear decision trees [Rabin 72], which
have been used to prove lower bounds on various
problem, e.g. that sorting is n (0 log 0). Another
application of this structure, concerned primarily
with representing a finite set of points is called
polygon trees [Wi\lard 82] or partition trees.

Re ferences

[Abram , Westover and Whitted 85]
Greg Abram, Lee Westover and Turner
Whitted, "Efficient Alias-free Rendering using
Bit-masks and Look-up Tables" , Computer
Graphics Vol. 19(3), pp. 53-59, (July 1985) .

[Carpenter 84]
Loren Carpenter , "The A-buffer, an
Antialiased Hidden Surface Method ",
Computer Graphics Vol. 18(3), pp. 103-108
(July 1984).

210

[Catmull 78]
Edwin Catmull , "A Hidden Surface Algorithm
with Anti-Aliasing" , Computer Graphics Vo\.
12(3), pp. 6-10 (July 1978).

[Campbell and Fusse\l 90]
A.T. Campbell and Don Fussell, "Adaptive Mesh
Generation for Global Diffuse Illumination ",
Computer Graphics Vol. 24(4), pp . 155-
164, (August 1990) .

[Campbell 91]
A.T. Campbell "Modeling Global Diffuse for
Image Synthesis", Ph .D. Dissertation,
Department of Computer Science, University
of Texas at Austin, (1991).

[Chin and Feiner 89]
Norman Chin and Steve Feiner, "Near Real­
Time Shadow Generation Using BSP Trees",
Computer Graphics Vol. 23(3), pp. 99-106,
(July 1989).

[Chin and Feiner 92]
Norman Chin and Steve Feiner , "Fast Object­
Precision Shadow Generation for Area Light
Sources Using BSP Trees" , Symp. on 3D
10 teractive Graphics , (March 1992).

[Cohen and Greenberg 85]
Michael F. Cohen and Donald P. Greenberg ,
"The Hemi-Cube: A Radiosity Solution for
Complex Environments" , Computer Graphics
Vol. 19(3), pp. 31-40, (July 1985).

[Duff 85]
Tom Duff, "Compositing 3-D Rendered Images",
Computer Graphics Vol. 19(3), pp. 41-44,
(July 1985) .

[Fiume and Fournier 83]
Eugene Fiume and Alain Fournier, "A Parallel
Scan Conversion Algorithm with Anti -Aliasing
for a General -Purpose Ultracomputer ",
Computer Graphics Vol. 17(3) , pp. 141-
150, (July 1983).

[Fuchs, Kedem , and Naylor 80]
H. Fuchs , Z. Kedem , and B. Naylor, "On Visible
Surface Generation by a Priori Tree
Structures," Computer Graphics Vo\. 14(3),
pp. 124-133, (June 1980).

[Harp 86]
Keith Harp, "An Empirical Study of Visible
Surface Algorithms" , Masters Thesis, School of
Information and Computer Science , Georgia
Institute of Technology, (Sept. 1986).

[Haines and Greenberg 86]
Eric A. Haines and Donald P. Greenberg, "The
Light Buffer: a Shadow-Testing Accelerator" ,
IEEE Computer Graphics aod Applications
Vo\. 6(9), pp. 6-16, (Sept . 1986).

Graphics Interface '92

[Mitchell 87]
Don P. Mitchell , "Generating Antialiased Images
at Low Sampling Den si ties" Co m put e r
Graphics, Vol. 21(4), pp. 65-72, (July 1987).

[Mitchell and Netravali 88]
Don P . Mitchell and Arun N. Netravali,
"Reconstruction Filters in Computer Graphics "
Computer Graphics, Vol. 22(4), pp. 221-
228, (August 1988).

[Naylor 81]

211

Bruce F. Naylor, "A Priori Based Techniques for
Determining Visibility Priority for 3-D
Scenes ," Ph.D. Thesis, University of Texas at
Dallas (May 1981).

[Naylor and Thibault 86]
Bruce F . Naylor and William C. Thibault ,
"Application of BSP Trees to Ray-Tracing and
CSG Evaluation" , Technical Report GIT-ICS
86/03, School of Information and Computer
Science, Georgia Institute of Technology,
Atlanta, Georgia 30332 (February 1986) .

[Naylor 90a]
Bruce F. Naylor , "Binary Space Partitioning
Trees as an Alternative Representation of
Polytopes," Computer Aided Design , Vol.
22(4), (May 1990).

[Naylor 90b]
Bruce F. Naylor, "SCULPT: an Interactive Solid
Modeling Tool ," Proceeding of Graphics
Interface (May 1990) .

[N aylor, Amanatides and Thibault 90]
Bruce F. Naylor, John Amanatides and William
C. Thibault, "Merging BSP Trees Yields
Polyhedral Set Operations", Co m put er
Graphics Vol. 24(4), pp. 115-124, (August
1990).

[Naylor 92]
Bruce F. N aylor, "Co nstructing Good
Partitioning Trees," manuscript in preparation .

[Nishita and Nakamae 85]
Tomoyuki Nishita and Eihachiro Nakamae ,
"Continuous Tone Representation of Three­
Dimensional Objects Taking Account of
Shadows and Interreflection ", Co m put e r
Graphics Vol. 19(3), pp. 23-30, (July 1985).

[Porter and Duff 84]
Thomas Porter and Tom Duff, "Corn positing
Digital Images ", Computer Graphics Vol.
18(3), pp. 253-259, (July 1984) .

[Rabin 72]
Michael O. Rabin , "Provi ng Simultaneous
Positivity of Linear Forms ", Journal of
Computer and Systems Science , Vol. 6, pp.
639-650 (1972) .

[Rahda et al 91]
Hayder Rahda , Riccardo Leonardi, Martin
Vetterli and Bruce Naylor, "Binary Space
Partitioning Tree Representation of Images",
Visual Communications and Image
Representation, Vo!. 2(3), pp. 201-221, (
Sept. 1991).

[Schumacker et al 69]
R. A. Schumacker, R. Brand, M. Gilliland, and W.
Sharp, "Study for Applying Computer­
Generated Images to Visual Simulation ,"
AFHRL-TR-69-14, U.S. Air Force Human
Resources Laboratory (1969).

[Sharir and Overmars 92]
Micha Sharir and Mark H. Overmars, "A Simple
Output-Sensitive Algorithm for Hidden
Surface Removal," ACM Transactions on
Graphics Vo!. 11(1), (1992) .

[Sutherland, Sproull and Schumacker 74]
I.E . Sutherland , R.F . Sproull and R . A.
Schumacker, "A Characterization of Ten
hidden Surface Algorithms, " A C M
Computing Surveys Vol. 6(1), (1974).

[Teller and Sequin 92]
Seth J. Teller and Carlo H. Sequin, "Visibility
Preprocessing For Interactive Walkthroughs ",
Computer Graphics Vol. 25(4), pp . 61-69,
(July 1991) .

[Thibault and Naylor 87]
W. Thibault and B. Naylor , "Set Operations On
Polyhedra Using Binary Space Partitioning
Trees," Computer Graphics Vol. 21(4), pp.
153-162, (July 1987).

[Warnock 69]
John E. Warnock, "A Hidden-Surface Algorithm
for Computer Generated Halftone Pictures" ,
Computer Science Department, University of
Utah, TR 4-15, (June 1969).

[Weiler 80]
Kevin Weiler, "Polygon Comparison Using a
Graph Representation ", Computer Graphics
Vol. 14(3), pp. 10-18 (July 1980).

[Weiler and Atherton 77]
Kevin Weiler and P. Atherton, "Hidden Surface
Removal Using Polygon Area Sorting",
Computer Graphics Vo!. 11(3), pp . 103-108
(July 1984).

[Willard 82]
Dan E. Willard, "Polygon Retrieval", S I A M
Journal of Computing , Vo!. 11(1) , pp. 149-
165 (Feb. 1982).

Graphics Interface '92 ~

212

1 2

3

4 5

Graphics Interface '92

