
224 

The Object Instancing Paradigm for Linear Fractal Modeling 

John C. Hart 

Electronic Visualization Lab, Univ. of Illinois at Chicago 
Natl. Ctr. for Supercomputing Applications, Univ. of Illinois at Urbana-Champaign 

Abstract 

The recurrent iterated function system and the L-system 
are two powerful linear fractal models. The main draw­
back of recurrent iterated function systems is a difficulty 
in modeling whereas the main drawback of L-systems is 
inefficient geometry specification. Iterative and recursive 
structures extend the object instancing paradigm, allow­
ing it to model linear fractals . Instancing models render 
faster and are more intuitive to the computer graphics 
community. 

A preliminary section briefly introduces the object in­
stancing paradigm and illustrates its ability to model 
linear fractals. Two main sections summarize recurrent 
iterated function systems and L-systems, and provide 
methods with examples for converting such models to 
the object instancing paradigm. Finally, a short epi­
logue describes a particular use of color in the instanc­
ing paradigm and the conclusion outlines directions for 
further research. 

Keywords: Constructive Solid Geometry, L-system, 
Linear Fractal, Object Instancing, Recurrent Iterated 
Function System. 

1 Introduction 

Linear fractals are sets posessing some sort of self-affinity, 
with detail at all levels of magnification. Many of the ex­
amples used to demonstrate the basic concepts of fractal 
geometry are linear fractals, such as those decorating the 
first part of [Mandelbrot, 1982]. Other accounts have re­
ferred to linear fractals as "self-similar/self-affine sets" 
[Mandelbrot, 1982], "recurrent sets" [Dekking, 1982] and 
"graftals" [Smith, 1984]. 

The two most common linear fractal models are the 
recurrent iterated function system (RIFS) and the Lin­

'denmeyer parallel graph grammar (L-system). 
The iterated function system (IFS) model was used to 

investigate the use of linear fractals in image synthesis 
in [Demko et al. , 1985; Barnsley et al., 1988]. Their 
rendering method used , often quite sophisticated, point 
clouds. An extension to the IFS model has been intra-

duced and examined in various forms, under the adjec­
tives "recurrent" [Dekking, 1982; Barnsley et al., 1989; 
Cabrelli et al., 1991], "Markov" [Womack, 1989], "con­
trolled" [Prusinkiewicz & Lindenmayer, 1990], "language 
restricted" [Prusinkiewicz & Hammel, 1991] and "hierar­
chical" [Peitgen et al., 1991]. Subtle differences in nomen­
clature and form have caused this heterogeneous develop­
ment. Moreover, modeling objects using the RIFS model 
is difficult, and each of the above variations on the RIFS 
theme have distinct advantages for this task. 

L-systems are parallel-graph grammars. Many have ex­
plored their applications in natural image synthesis, e.g. 
[Smith, 1984; Prusinkiewicz et al. , 1988; Prusinkiewicz 
& Lindenmayer, 1990], usually via the turtle graphics 
paradigm [Abelson & diSessa, 1982]. The L-system model 
provides a straightforward and powerful technique for 
modeling natural objects, though the geometry it pro­
duces using the turtle paradigm is not organized effi­
ciently for rendering . 

Both models, in many cases, can be simulated using 
the object instancing paradigm, which makes them more 
efficient for rendering. We begin with a review of the 
object instancing paradigm. Descriptions of the recurrent 
iterated function system and the L-system models follow, 
and each is completed with instructions for the translation 
of the model to the object instancing paradigm. 

2 The Object Instancing Paradigm 

Object instancing is a modeling technique that permits ef­
ficient internal representations of redundant objects. Of­
ten, complicated objects consist of many identical compo­
nents. Object instancing capitalizes on the redundancy of 
these identical components. A good example of an ideal 
situation is seen in the animation "Megacycles" [Ama­
natides & Mitchell, 1989]. 

The object instancing paradigm consists of two basic 
kinds of objects: primitives and instances. 

A primitive is an indivisible rendering atom . 
Boundary-representation systems use polygons or spline 
surfaces as primitives whereas solid modeling systems use 
natural quadrics, planes, tori and superquadrics as prim­
itives. 

Graphics Interface '92 



225 

An instance consists of a pointer to another object (a 
primitive or another instance, called the "master" object) 
and an affine transformation. The instance reproduces 
the referenced object, deformed by its affine transforma­
tion. [Sutherland, 1963]. 

An object may also be a CSG set-theoretic operation 
such as a union, intersection or difference. Their operands 
are pointers to other operations, and so, they too instance 
other objects. (For the purpose of this discussion, we will 
focus on the union operation.) 

The object instancing paradigm contains another dis­
tinction: the global coordinate system where the final 
scene is assembled versus the local modeling coordinate 
systems where the canonical scene components are con­
structed. A canonical object is a shape in its default size, 
proportions and location. Canonical objects do not ap­
pear in the rendered scene. A final instancing operation 
is needed to transform the canonical objects from their 
local modeling-space coordinate systems into the global 
rendering-space coordinate system [Roth, 1982]. 

Primitives are canonical objects. The canonical sphere 
is the unit sphere centered at the origin; the canonical 
plane is the y = 0 plane intersecting the origin; the canon­
ical cylinder is the cyclinder of unit radius and height 
centered and oriented along the interval [0,1] of the y­
axis; the canonical cone is likewise defined, pointing in 
the positive y direction. One can render a canonical ob­
ject in its default state by instancing it from canonical 
space into rendering space using the identity transforma­
tion matrix. When modeling, instancing takes canoni­
cal objects to canonical objects. Upon completion of the 
modeling process, an instance operation converts the final 
canonical object into a rendered object for image synthe­
SIS . 

2.1 Examples 

Figure 1 (left) shows an approximation to Sierpinski's gas­
ket by nine triangles. Figure 1 (right) shows a possible 
CSG instancing model with a tree topology. The circles 
denote CSG union operations of three instances. 

Figure 1: An approximation of Sierpinski's gasket 
(left) modeled with a tree topology (right). 

In the absolute specification paradigm, each triangle is 
individually specified, commonly by its three end points. 
Further development of this tree-structured model of Sier-

pinski's gasket requires the specification of 3n
-

1 individ­
ual triangles, where n is the height of the tree. Hence, the 
size of an absolute specification model of a linear fractal 
grows exponentially as the detail increases. 

The subtrees of Figure 1 (right) are redundant. Us­
ing the instancing paradigm, one creates the same gasket 
approximation, Figure 2 (left), using a graph topology, 
Figure 2 (right), with fewer nodes. Here, the small circles 
denote instancing operations. 

Figure 2: An approximation of Sierpinski's gasket 
(left) modeled with a graph topology (right). 

The textual specification for such an instanced model 
might look like the following. 

canonical object level_I_Up 
triangle 

} 

scale: 0.5, 0.5 
translate: 0.0, 0.5 

canonical object level_I_left { 
triangle 

} 

scale: 0.5, 0.5 
translate: -0.433, -0.25 

canonical object level_I_right { 
triangle 

} 

scale: 0.5, 0.5 
translate: 0.433, -0.25 

canonical object level_2_up { 

} 

union: level_I_up, level_I_left, level_I_right 
scale: 0.5, 0.5 
translate: 0.0, 0.5 

canonical object level_2_left { 

} 

union: level_I_up, level_I_left, level_I_right 
scale: 0.5, 0.5 
translate: -0.433, -0.25 

canonical object level_2_right { 

} 

union: level_I_Up, level_I_left, level_I_right 
scale: 0.5, 0.5 
translate: 0.433, -0.25 

object level_top { 
union: level_2_up, level_2_left, level_2_right 

} 

Graphics Interface '92 



226 

In the previous object instancing example there is no 
difference between a level two object such as level_2_up 
and a level one object such as level_ Cup other than their 
name and the objects they instance. This is called itera­
tive instancing and the size of its model grows linearly as 
the level of detail increases. 

Instancing graphs are usually acyclic . A directed cycle 
in an instancing graph means an object has somehow in­
stanced itself, and if rendered, may appear infinitely many 
times in the scene. This is called recursive instancing. 

As shown in [Hart & DeFanti, 1991; Hart, 1991a], one 
can extend the object instancing paradigm to handle re­
cursive instancing by culling the instancing process when 
a predefined global bounding volume become sufficiently 
small. This requires any instancing loop to be contractive, 
otherwise the instances would not converge. 

For example, consider the limit of the shape described 
in Figures 1 and 2. Allowing recursive instancing, the 
hierarchy becomes cyclic and describes a linear fractal, 
specifically Sierpinski 's gasket, in Figure 3. 

Figure 3: Sierpinski 's gasket (left) modeled with a 
cyclic graph topology (right). 

This linear fractal is specified, more tersely than before, 
with the following commands. 

canonical object up { 

} 

union: up, left, right 
scale: 0.5, 0.5 
translate: 0.0, 0.5 

canonical object left { 

} 

union: up, left, right 
scale: 0.5, 0.5 
translate: -0.433, -0.25 

canonical object right { 

} 

union: up, left, right 
scale: 0.5, 0.5 
translate: 0.433, -0.25 

object top { 

} 
union: up, left, right 

A cyclic instancing graph represents infinitly high levels 
of detail . Hence, the size of a recursive instancing model 
remains constant as the level of detail increases . 

3 The RIFS Model 

A (hyperbolic) recurrent iterated function system 
({ w;}f:!, C) consists of a finite set of N affine contrac­
tions Wi, and an N-vertex weakly-connected digraph C . 
Each vertex of this digraph corresponds to a contrac­
tion and each edge, an allowable contraction composition. 
Here, a digraph C is denoted by an ordered pair (Cv, C e ) . 

The vertex set Cv is a set integers {I . .. N} . The edge set 
C e is a set of ordered pairs (i, j), i, j E Cv . such that the 
ordered pair (i, j) E C e represents a directed edge from 
vertex i to vertex j. 

3.1 The RIFS Attractor 

Of fundamental importance to the study of iterated func­
tion systems as well as recurrent iterated function sys­
tems is the existence of corresponding unique compact 
non-empty invariant limit sets called attractors . One may 
recall the definition of the attractor of an IFS {w;} is the 
unique solution to the recurrence equation 

A = U wi(A), (1) 
i=I. .. N 

as originally shown in [Hutchinson, 1981]. The attractor 
of an RIFS ({ Wi}, C) is the union of the solution sets Ai 
to the recurrence equation 

Aj = U wj(Ai) 
( i ,i)EG. 

as shown in [Barnsley et al. , 1989]. 

(2) 

The attractor of an RIFS ({ Wi} f:l , C) is a subset of the 
attractor of the IFS {w;}f:!. Thus, an RIFS is a restric­
tion of an IFS, which results in the elimination of certain 
sections of attractor of the IFS. One example of this is 
the following set of four contractions 

( X±1 Y±I) Wi(X,y) = -2- ' -2- (3) 

taken over all combinations of signs. If C is a complete 
digraph of four vertices then the attractor of the RIFS 
( {w;}, C) is the attractor of the IFS {Wi}, namely the 
square [-1,1] x [-1 , 1] . However, if C contains all edges 
except those of the type (i, i), then the same map may 
not be applied twice in a row. The attractor of this RIFS , 
from [Cabrelli et al., 1991], is the fractal pound sign shown 
in Figure 4. 

3.2 Modeling 

One models an object as a linear fractal by creating a 
RIFS whose attractor approximates the object within 
some degree of accuracy. Equation (1) suggests that ap­
proximating an object with an IFS is as simple as finding 
a set of contractions that take the entire object to each 

Graphics Interface ' 92 



227 

Figure 4: The fractal pound sign. 

of its components - the so-called "collage theorem" phi­
losophy of modeling [Barnsley et al. , 1986]. 

Equation (2) suggests a similar property, though for an 
RIFS model, the object is simulated by finding contrac­
tions that take parts of the object to smaller parts . In 
the previous example, the fractal pound sign consists of 
four images of three-fourths of the original pound sign. 
One can see the self-similarity of the fractal pound sign 
by comparing its first quadrant with the rest of the set. 

Ordinarily, this partial self-similarity is quite difficult 
to see in objects. The collage theorem philosophy of mod­
eling requires a self-tiling, which can be easily visualized. 
Its recurrent form, from [Barnsley et al., 1989], requires a 
partial self-tiling which is significantly more difficult and, 
at best, non-intuitive. Hence, the recurrent collage the­
orem is a somewhat ineffective modeling tool for linear 
fractals, for which there are, unfortunately, few alterna­
tives. 

3.3 Specification via Instancing 

The recursive object instancing paradigm is one alterna­
tive modeling method to the collage theorem. The draw­
back is one must still partially self-tile an object to create 
a linear fractal model of it. The benefit is the paradigm 
incorporates tools familiar to the computer graphics com­
munity. 

Converting an RIFS to an instancing structure requires 
three simple steps. First N canonical instancing objects 
are constructed. Each affine contraction of the RIFS be­
comes the affine transformation matrix of its correspond­
ing instancing object . The control digraph of the RIFS 

dictates the masters of each instance. Finally, a rendered 
object instances the canonical instances along with an ini­
tial bounding volume into rendering space. 

For example, the 3-D pound sign can be specified by 
the following commands. The canonical object's names 
are abbreviated versions of the instance's position, from 
lower-left-rear to upper-right-front. 

canonical object llr { 

} 

union: Ilf, lrr, lrf, ulr, ulf, urr, urf 
scale: 0.5, 0.5, 0.5 
translate: -0.5, -0.5, -0.5 

canonical object Ilf { 

} 

union: llr, lrr, lrf, ulr, ulf, urr, urf 
scale: 0.5, 0.5, 0.5 
translate: -0.5, -0.5, 0.5 

canonical object urf { 

} 

union: llr, Ilf, lrr, lrf, ulr, ulf, urr 
scale: 0.5, 0.5, 0.5 
translate: 0.5, 0.5, 0.5 

object pound_sign { 
union: llr, Ilf, lrr, lrf, ulr, ulf, urr, urf 

} 

The object this instancing text models is shown in Fig­
ure 5. 

Figure 5: The 3-D fractal pound sign. 

Graphics Interface '92 



228 

4 The L-System Model to the previous one except for scale, 

Whereas the RIFS resembles the finite state automaton, A(w,l) 
an L-system is a parallel graph grammar similar in de-

!( w) F(1) [&(18.95) F(1) A( ~ , _1_)] 
v3 1.109 

sign to a context-free grammar (CFG). It consists of an 
alphabet, a set of symbols, an initial axiom and a set of 
productions. CFG productions are applied one at a time 
and one per step, usually to the leftmost symbol whereas 
L-system productions are applied in parallel - all sym-
bols are replaced simultaneosly at each step. 

4.1 Turtle Geometry 

The words of an L-system are commonly interpreted, us­
ing turtle geometry [Abelson & diSessa, 1982], as a graph­
ical object . The alphabet for turtle control contains such 
symbols as F which draws a straight line, and + and -
which turn the turtle left and right by some fixed angle. 
For example, if this fixed angle is 90°, then the word 

F+F-F-F+F-F-F+F-F-F+F-F (4) 

will draw the outline of a plus sign. In [Prusinkiewicz 
& Lindenmayer, 1990], a complete parametric language 
is used to developed a sophisticated 3-D turtle graphics 
paradigm. 

Of particular utility are the symbols [ and ]. The left 
bracket pushes the current state of the turtle on a stack 
whereas the right bracket pops this stack, restoring the 
turtle to its previous state. This simulates branching 
structures, allowing the turtle to concentrate on an in­
tricate branch without having to retrace its steps to get 
back to the base of the branch to draw the rest of the 
object. 

For example, the following parametric L-system gen­
erates a ternary-branching tree, from Figure 2.8( a) in 
[Prusinkiewicz & Hammel , 1991], 

A - !( f) F(50) [&(18.95) F(50) A] 

/(94 .74) [&(18.95) F(50) A] 

/(132.63) [&(18 .95) F(50) A] (5) 

F(l) - F(1.109/) (6) 

!(w) - !(v'3w) (7) 

where !(.) alters the width of lines (radius of cylinders) by 
the given factor and F( ·) draws a line of the given length. 
The rotation symbol &(.) alters the pitch of the turtle; 
the symbol /e-) alters the roll. This L-system begins with 
the word !(1) F(50) A. 

In the previous example, the shortest length of any 
branch is 50. We can convert this L-system from "enlon­
gating nodes" to "deacreasing apices," which makes the 
longest length of any branch 50. This produces the fol­
lowing L-system, a recurrent string, which is equivalent 

/(94.74) [&(18.95) F(1) A( ~, _1_)] 
v3 1.109 

w 1 
/(132.63) [&(18.95) F(l) A( M ' -09)]· 

v 3 1.1 

(8) 

This L-system begins with the initial word 
!(1) F(50) A(0.577,45.1). 

4.2 Specification via Instancing 

Conversion from an L-system to an object instancing 
structure is more difficult than converting to an RIFS. 
In [Prusinkiewicz & Lindenmayer, 1990], steps were de­
scribed for converting an L-system model to an RIFS 
model. Hence, using this result with the last section, 
we could convert an L-system indirectly to an instancing 
structure. Instead, we will outline techniques for directly 
converting L-system models to object instancing models. 

In general, converting L-system productions to in­
stances requires thorough knowledge of the current state 
of the turtle at each step in the production. With the 
exception of the left bracket, each of the symbols on the 
right-hand side of the productions affect the state of the 
turtle. Furthermore, the line-drawing symbols cause a ge­
ometric addition to the scene as well as a change to the 
state of the turtle. 

Each line-drawing symbol, e.g. F, can be interpreted 
as an instance of some canonical 3-D line, such as a cylin­
der. The cumulative effect of the symbols preceding the 
line-drawing symbol determine that line's size, position 
and orientation. Any bracket delimited symbols can be 
ignored. The affine transformation matrix of the line­
instance is the product of the transformation matrices 
associated with the symbols preceding the current line­
drawing symbol. For example, a + corresponds to a ro­
tation and an F (preceding the current symbols) corre­
sponds to a translation . 

Symbols denoting other productions are particularly 
difficult. These symbols can be replaced by an equivalent 
sequence of symbols denoting the production's cumulative 
affect on the turtle's state. Assessment of this cumulative 
affect can be quite cumbersome, particularly when the 
production is recursive. 

Fortunately, in most botanical models, recursion is used 
to simulate branching patterns. Rather than having the 
turtle retracing its steps back to the branch root after 
drawing the branch, the branch production is bracketed. 
Hence, if a bracketed branch production symbol precedes 
the current line-drawing symbol, it can be ignored and its 
cumulatice affect on the turtle's state need not be com­
puted. 

Graphics Interface '92 



229 

The following instancing structure approximates the L­
system (8). 

canonical object trunk { 
cylinder 

} 

canonical object 1 { 

} 

union: trunk, branch_1, branch_2, branch_3 
scale: 0.902, 0.902, 0.902 
translate: 0, 1, 0 

canonical object branch_1 { 
union: trunk, 1 

} 

rotate: x,18.95 
translate: 0, 1, 0 

canonical object branch_2 { 
union: trunk, 1 

} 

rotate: x, 18.95 
rotate: y, 94.74 
translate: 0, 1, 0 

canonical object branch_3 { 
union: trunk, 1 

} 

rotate: x, 18.95 
rotate: y, 94.74 
rotate: y, 132.63 
translate: 0, 1, 0 

object tree { 
union: trunk, 1 

} 

This approximation of the L-system suffers from two 
major shortcomings. 

First, the branch width changing factor is not repre­
sented in this model; the scaling transformation in the 
object named A is uniform. One might be tempted to 
use the scaling command: "scale: 0.577, 0.902, 0.577," 
which would produce a properly proportioned branch seg­
ment, but the rest of its sub-branches would be artificially 
skewed along the original branch 's major axis. 

Second, this L-system will be evaluated to the pixel 
level, producing very fine branches but no leaves. A 
more realistic model would terminate well before the limit 
structure, allowing the addition of leaves to the ends of 
the branches. 

Both of these problems are solved by duplicating the 
above instancing text several times, into levels. This is 
equivalent to the use of conditions in a parametric L­
system. The resulting instancing structure might look 
like the following, in a parametric instancing scheme. 

canonical object 1(0) { 
union: leaf 
translate: 0, 1, 0 

} 

canonical object 1(n) { 

} 

union: trunk(11-n), branch_1(n), 
branch_2(n), branch_3(n) 

scale: 0.902, 0.902, 0.902 
translate: 0, 1, 0 

canonical object branch_1(n) { 
union: trunk(11-n), 1(n-1) 
rotate: x,18.95 
translate: 0, 1, 0 

} 

canonical object branch_2(n) { 
union: trunk(11-n), 1(n-1) 
rotate: x, 18.95 
rotate: y, 94.74 
translate: 0, 1, 0 

} 

canonical object branch_3(n) { 
union: trunk(11-n), 1(n-1) 
rotate: x, 18.95 
rotate: y, 94.74 
rotate: y, 132.63 
translate: 0, 1, 0 

} 

canonical object trunk(O) { 
instance: cylinder 

} 

canonical object trunk(n) { 
instance: trunk(n-1) 
scale: 0.64, 1, 0.64 

} 

object tree { 
union: trunk(O), 1(10) 

} 

In this case, the factor 0.64 unscales the radius of each 
branch by the value 0.902, then rescales it by the proper 
value 0.577 without affecting the geometry of its sub­
branches . 

The above parametric instancing specification can be 
implemented for standard instancing interpreters by enu­
merating each object for all possible values of n, incorpo­
rating the value n into the name of the object. For exam­
ple, instead of trunk (8) instancing trunk (7) , the object 
trunk_level_8 would instance trunk_level_7. The lat­
ter is significantly more verbose, but is still much less than 
absolute specification of every branch. In fact, paramet­
ric instancing specifies in constant steps what standard 
instancing specifies in logarithimic steps - what abso­
lute specification specifies in linear steps. 

A similar L-system was used to model the tree in Fig­
ure 6 (compare the trees in [Kay & Kajiya, 1986]) . The 
branches are iteratively instanced cylinders, but the leaves 
are modeled by a recursive instancing structure derived 
from the IFS leaf model shown in [Demko et al., 1985]. 
The grass is modeled as iteratively instanced as in [Snyder 
& Barr, 1987], though the grass blades here are cones. 

Graphics Interface '92 ~ 



230 

Figure 6: Autumn - an L-system tree with IFS 
leaves on instanced grass . 

5 Incorporating Color 

Color is incorporated into the linear fractal instancing 
model by associating a color and a weight with each in­
stance. The color is specified by an RGB triple , the 
weight, by an alpha value. A current color and alpha 
value are maintained for the object during CSG hierar­
chy traversal. During rendering, when an operand is in­
stanced, the instance tints the color of its parent in the 
hierarchy by its own individual color. 

Formally, this tinting is based on the transfer functions 
from image compositing [Porter & Duff, 1984], 

C = Co + 0'.(1 - O' o )Cj, 

a = 0'0 + 0'.(1 - 0' 0 )' 

(9) 

(10) 

where c, a are the resulting color and alpha values, cp , O'p 

are those of the parent , and C" O'j are the tinting values 
of the instance. 

The eight instances used to generate Figure 5 had the 
eight associated colors: black, red , green, yellow, blue, 
magenta, cyan and white, each with an alpha value of 
one-half. This coloring scheme was also used in [Hart & 
Das, 1991; Hart, 1991b] to better clarify otherwise imper­
ceptible features of highly intricate linear fractal surfaces. 

The coloring of the elm trees in the Fractal Forest [Hart 
& DeFanti, 1991; Hart, 1991a] was carefully adjusted so 
that the trunk and most of the visible branches were 
brown but the leaves (actually tiny branches) were green . 
Assigning the trunk a brown tint with a high alpha value 
and the branches a green color with a low alpha value 
achieved this goal. Thus, once a trunk instance was used, 

all of its decendents would be mostly brown whereas green 
points in the set arose from almost exclusive application 
of branch instances. 

6 Conclusion 

With a few enhancements, the standard instancing 
paradigm can be adapted to model linear fractals . This 
paper discussed methods for converting two popular lin­
ear fractal models to the instancing paradigm, for effi­
cient implementation in current computer graphics sys­
tems. Several examples were given , with modeling code 
and resulting images. Additionally, the use of color in 
linear fractal models was documented. 

6.1 Further Research 

As they become better understood, linear fractals are 
becoming more popular for their applications in natural 
modeling and image synthesis. A few problems still re­
main regarding their rendering, such as a rigorous treat­
ment of the shading properties of a fractal surface [Hart , 
1991a] . 

Currently, the most popular open problem regarding 
the modeling of linear fractals is the algorithmic solu­
tion to the inverse problem: given a shape, automatically 
determine the parameters of a linear fractal model that 
simulates the shape within a prescribed accuracy. One 
solution uses a gradient search in the RIFS parameter 
space [Vrscay & Roehrig, 1989], but this method is prone 
to local minima traps . Further enhancement using ge­
netic programming techniques appear promising [Vrscay, 
1991], but much work remains along this specific course 
of attack. 

One of the immediate applications of an au tomated so­
lution to the inverse problem is image compression. To­
ward this end , block coding methods have been developed 
to solve this particular application of the inverse problem 
(Jacquin , 1991]. Nonetheless, image compression is only 
one tiny application of what could be a very powerful 
result. The ability to automatically model intricate 3-D 
structures with linear fractals would be a major result in 
computer graphics - its research should not end with 
one simple solution geared toward an image compression 
application . 

Finally, the classic object instancing paradigm is not 
fully suited to modeling many of the subtle enhancements 
to the turtle-geometric L-system model, such as tropism 
[Prusinkiewicz & Lindenmayer , 1990] or stochastic vari­
ations [Kajiya, 1983; Bouville, 1985]. More research on 
extensions to the object instancing paradigm would allow 
more efficient modeling and rendering of more realistic 
botanical structures. 

Graphics Interface '92 



231 

6.2 Acknowledgements 

Tom DeFanti and Larry Smarr arranged the funding of 
this research, through a postdoctoral grant from the N a­
tional Science Foundation. 

The au thor performed this research on an AT &T Pixel 
Machine 964dX and a 940dX and is grateful to AT &T for 
their equipment donations. 

Finally, the author would like to thank John Ama­
natides, Don Mitchell, Daryl Hepting, Arnaud Jacquin, 
Przemyslaw Prusinkiewicz and Ed Vrscay for their com­
munication. 

References 

Abelson, H. and diSessa, A. A. Turtle Geometry. MIT 
Press, 1982. 

Amanatides, J. and Mitchell, D. P. Megacycles. SIG­
GRAPH Video Review, 51,1989. (Animation). 

Barnsley, M. F. , Ervin, V., Hardin, D., and Lancaster, J. 
Solution of an inverse problem for fractals and other 
sets. Proceedings of the National Academy of Science, 
83:1975-1977, April 1986. 

Barnsley, M. F., Jacquin, A., Mallassenet, F., Rueter, 
1., and Sloan, A. D. Harnessing chaos for image syn­
thesis. Computer Graphics, 22(4):131-140, 1988. 

Barnsley, M. F ., Elton, J . H., and Hardin, D. P. Recur­
rent iterated function systems. Constructive Approx­
imation, 5:3- 31, 1989. 

Bouville, C . Bounding ellipsoids for ray-fractal intersec­
tion. Computer Graphics, 19(3):45- 51, 1985. 

Cabrelli, C., Molter, U., and Vrscay, E. R. Recurrent 
iterated function systems: Invariant measures, a col­
lage theorem and moment relations. In Proceedings 
of the First IFIP Conference on Fractals. Elsevier, 
1991. 

Dekking, F . M. Recurrent sets. Advances in Mathemat­
ics, 44:78- 104, 1982. 

Demko, S., Hodges, L., and Naylor, B. Construction of 
fractal objects with iterated function systems. Com­
puter Graphics , 19(3):271-278, 1985. 

Hart, J. C. and Das, S. Sierpinski blows his gasket. 
SIGGRAPH Video Review, 61, 1991. (Animation). 

Hart , J . C . and DeFanti, T. A. Efficient antialiased 
rendering of 3-D linear fractals . Computer Graphics, 
25(3), 1991. 

Hart, J. C. Computer Display of Linear Fractal Sur­
faces. PhD thesis, EECS Dept., University of Illinois 
at Chicago, Sept. 1991. 

Hart, J. C. unNatural Phenomena. SIGGRAPH Video 
Review, 71 , 1991. (Animation). 

Hutchinson, J . Fractals and self-similarity. Indiana Uni­
versity Mathematics Journal, 30(5):713- 747,1981. 

Jacquin, A. E. Image coding based on a fractal theory of 
iterated contractive image transformations. In Hart, 
J. C. and Musgrave, F. K., editors, Fractal Models in 
3-D Computer Graphics and Imaging, pages 245-270. 
ACM SIGGRAPH '91 (Course #14 Notes), 1991. 

Kajiya, J. T. New techniques for ray tracing procedu­
rally defined objects. ACM Transactions on Graph­
ics, 2(3):161-181, 1983. Also appeared in Computer 
Graphics 17, 3 (1983), 91-102. 

Kay, T. L. and Kajiya, J. T. Ray tracing complex scenes. 
Computer Graphics, 20(4):269-278, 1986. 

Mandelbrot, B. B. The Fractal Geometry of Nature. 
W.H. Freeman, San Francisco, 2nd edition, 1982. 

Peitgen, H.-O., Jurgens, H., and Saupe, D. Fractals for 
the Classroom. Springer-Verlag, New York, 1991. 

Porter, T. and Duff, T. Compositing digital images. 
Computer Graphics, 18(3):253-259, 1984. 

Prusinkiewicz, P. and Hammel, M. Automata, languages 
and iterated function systems. In Hart, J. C. and 
Musgrave, F. K., editors, Fractal Models in 3-D Com­
puter Graphics and Imaging, pages 115-143. ACM 
SIGGRAPH '91 (Course #14 Notes), 1991. 

Prusinkiewicz, P. and Lindenmayer, A. The Algorithmic 
Beauty of Plants . Springer-Verlag, New York, 1990. 

Prusinkiewicz, P., Lindenmayer, A., and Hanan, J. 
Developmental models of herbaceous plants for 
computer imagery purposes. Computer Graphics, 
22(4):141-150, August 1988. 

Roth, S. D. Ray casting for modeling solids. Com­
puter Graphics and Image Processing, 18(2):109-144, 
February 1982. 

Smith, A. R. Plants, fractals, and formal languages. 
Computer Graphics, 18(3):1-10, July 1984. 

Snyder, J. M. and Barr, A. H. Ray tracing complex mod­
els containing surface tessellations. Computer Graph­
ics, 21(4):119-128, 1987. 

Sutherland, I. E. Sketchpad: A man-machine graphi­
cal communication system. Proceedings of the Spring 
Joint Computer Conference, 1963. 

Vrscay, E. R. and Roehrig, C. J. Iterated function sys­
tems and the inverse problem of fractal construction 
using moments. In Kaltofen, E. and Watt, S. M., ed­
itors, Computers and Mathematics, pages 250-259, 
New York, 1989. Springer-Verlag. 

Vrscay, E. R. Iterated function systems: Theory, appli­
cations and the inverse problem. In Lectures of the 
NATO Advanced Study Institute on Fractal Geometry 
and Analysis, Montreal, 1991. Kluwer. 

Womack, T. E. Linear and markov iterated function 
systems in fractal geometry. Master's thesis, Virginia 
Polytechnic Institute, May 1989. 

Graphics Interface '92 ~$ 


