
232

Algorithms for Intersecting Parametric and Algebraic Curves

Dinesh Manocha
Computer Science Division

University of California at Berkeley
Berkeley, CA 94720, USA

A bstr act

The problem of computing the intersection of parametric
and algebraic curves arises in many applications of com­
puter graphics, geometric and solid modeling. Earlier al­
gorithms are based on techniques from Elimination theory
or subdivision and iteration. The former is however, re­
stricted to low degree curves. This is mainly due to issues
of efficiency and numerical stability. In this paper we use
Elimination theory and express the resultant of the equa­
tions of intersection as a matrix determinant. The matrix
itself rather than its symbolic determinant, a polynomial ,
is used as the representation. The algorithm for inter­
section corresponds to substituting the other equation to
construct an equivalent matrix such that t he intersection
points can be extracted from the eigenvalues and eigenvec­
tors of the latter. Moreover, the algebraic and geometric
multiplicities of the eigenvalues give us information about
the intersection (multiplicity, tangential intersection etc.).
As a result we are able to accurately compute higher order
intersections. The main advantage of this approach lies in
its efficiency and robustness . Moreover, the numerical ac­
curacy of these operations is well understood. For almost
all cases we are able to compute accurate answers in 64
bit IEEE floating point arithmetic.
Keywords: Intersection, Curves, Eigenvalues , Accuracy,
Robustness .

1. Introduct ion

The problems of computing the intersection of parametric
and algebraic curves are fundamental to geometric and
solid modeling. Parametric curves, like B-splines and
Bezier curves, are extensively used in the modeling sys­
tems and algebraic plane curves are becoming popular as
well [Hof89, MM89, SP86, Sed89). Intersection is a primi­
tive operation in the computation of a boundary represen­
tation from a CSG (constructive solid geometry) model in
a CAD system. Other applications of intersection include

J ames Demmel
Computer Science Division

and Mathematics Department
University of California at Berkeley

Berkeley, CA 94720, USA

hidden curve removal for free form surfaces, [EC90) . Al­
gorithms for computing the intersection of these curves
have been extensively studied in the literature.

As far as computing the intersection of rational para­
metric curves is concerned, algorithms based on implici­
tization [Sed83) , Bezier subdivision [LR80) and interval
arithmetic [KM83) are well known. The implicitization
approach computes the implicit form of one of the curve
using result ants [Sed83). Given the implicit represen­
tation of one curve , substitute the second parametriza­
tion and obtain a univariate polynomial in its parameter .
The problem of intersection corresponds to computing the
roots of the resulting polynomial. The Bezier subdivision
relies on the convex hull property of Bezier curves and de
Casteljau algorithm for subdividing Bezier curves. The
resulting algorithm performs a linearly converging binary
search. It has been improved by more effective use of the
convex hull property [SWZ89) . The interval arithmetic
uses an idea similar to subdivision. Each curve is prepro­
cessed to determine its vertical and horizontal tangents,
and the curve is divided into 'intervals' which have vertical
or horizontal tangents only at the end points.

The relative performance and accuracy of these al­
gorithms is highlighted in [SP86). In particular , implicit­
ization based approaches are fast er as compared to other
methods for curves of degree up to four. However, their
relative performance degrades for higher degree curves.
This is mainly due to issues of numerical stability and their
effect on the choice of representation and algorithms for
root finding. For curves of degree greater than three , the
resulting univariate polynomial has degree 16 or higher .
The problem of computing real roots of such high degree
polynomials can be ill- conditiolled [Wil59) . Using exact
arithmetic or symbolic techniques to overcome the numer­
ical problems have a considerable effect on the efficiency of
the problem and therefore, subdivision based algorithms
perform better.

The algorithms for algebraic curve intersection are
analogous to those of intersecting parametric curves. Re-

G raphics Interface '92

233

suit ants can be used to eliminate one variable from the
two equations corresponding to the curves. The problem
of intersection corresponds to computing roots of the re­
sulting univariate polynomial . This approach causes nu­
merical problems for higher degree curves (greater than
four) . A robust algorithm based on subdivision has been
presented in [Sed89]. However, resultant based algorithms
are considered to be the fastest for lower degree curves.

In many applications , the intersection may be of
higher order involving tangencies and singular points.
Such instance are rather common in industrial applica­
tions [MM 89]. Most algorithms require special handling
for tangencies and thereby requiring additional compu­
tation for detecting them. In fact algorithms based on
subdivision and Newton- type techniques often fail to ac­
curately compute the intersections in such cases. Special
techniques for computing first order tangential contacts of
parametric curves are given in [MM89]. [Sed89] presents
modification of his algorithm for computing all double
points of an algebraic curve in a triangular domain. How­
ever, no efficient and accurate techniques are known for
computing higher order intersections for general cases.

In this paper we present efficient and robust algo­
rithms for intersecting parametric and algebraic curves.
For parametric curves we implicitize one of the curves
and represent the implicit form as a matrix determinant.
However, we do not compute the symbolic determinant
and express the implicit formulation as a matrix. The
idea of matrix determinant has been used in [MC91] to
represent and evaluate the intersection of rational para­
metric surfaces. Given the implicit form , we substitute
the other parametrization into the matrix formulation and
use the resulting matrix to construct a numerical matrix
such that the intersection points can be computed from
its eigendecompositon. This is in contrast with expand­
ing the symbolic determinant and finding the roots of the
resulting polynomial. The advantages of this technique
lie in effici ency, robustness and numerical accuracy. The
algorithms for computing eigenvalues and eigenvectors of
a matrix are backward stable and fast implementations are
available as part of packages like EISPACK and LAPACK
[GL89, ABB+ 90]. Furthermore, we effectively use the al­
gebraic and geometric multiplicities of the eigenvalues to
determine the exact multiplicity of the intersection. The
algorithm for intersecting algebraic curves is rather simi­
lar, except the relationship between algebraic and geomet­
ric multiplicities of the eigenvalue and the multiplicity of
intersection is different.

The rest of the paper is organized in the following
manner. In section 2 we present our notation and re­
view techniques from Elimination theory for implicitizing
parametric curves. Furthermore, we show that the prob­
lems of intersecting parametric and algebraic curves can
be reduced to computing roots of polynomials expressed
as matrix determinants. In section 3, we present results
from linear algebra and numerical analysis being used in
the algorithm. Section 4 deals with reducing the prob­
lem of root finding to computing the eigendecomposition .

Given the eigenvalues and eigenvectors, we compute the
intersection points of parametric curves in the domain of
interest. We also discuss the performance and robustness
of the resulting algorithm. Section 5 deals with higher
order intersections and illustrates the technique with ex­
amples.

2. Parametric and Algebraic Curves

A rational Bezier curve is of the form [BBB87] :

O:::;t::=;l

where Pi = (Xi, Yi) are the coordinates of a control point,
Wi is the weight of the control point and Bi,n(t) corre-

sponds to the Bernstein polynomial, Bi ,n = (:) (1 -

tt-iti. Rational curves like B-splines can be converted
into a series of Bezier curves by knot insertion algo­
rithms [BBB87]. Thus, the problem of intersecting ra­
tional curves can be reduced to intersecting Bezier curves.
Each of these curves is described by its corresponding con­
trol polygon and the curve is always contained in the con­
vex hull of the control points. Therefore , the intersection
of the convex hull of two such curves is a necessary condi­
tion for the intersection of curves. One such instance has
been highlighted in Fig. 1.

Algebraic plane curves are generally expressed in
standard power basis: '

F(x , y) = r;i+J$nCijXiyj = o.

They can also be represented in Bernstein basis. The
problem of intersection corresponds to computing the
common points on such curves in a particular domain .

Fig . I
Intersection of Bezier curves

2.1. Resultants
Given two polynomials in one unknown, their resultant is
a polynomial in their coefficients. Moreover, the vanish­
ing of the resultant is a necessary and sufficient condition
for the two polynomials to have a common root . Three
methods are known in the literature for computing the
resultant, owing to Sylvester, Bezout and Cayley [SaI85].

Graphics Interface '92 ~

234

Each of them expresses the resultant as determinant of a
matrix. The order of the matrix is different for different
methods. We use Cayley's formulation as it results in a
matrix of minimum order .

Given two polynomials, F(x) and G(x) of degree In

and n , respectively. Without loss of generality we assume
that m ~ n. Let's consider the bivariate polynomial

P(x, 0') = F(x)G(O') - F(O')G(x) .
X - O'

P(x, 0') is a polynomial of degree m-I in x and also in
0'. Let us represent it as

where Pi(X) is a polynomial of degree m-I in x. The
polynomials Pi (x) can be written as follows:

PO ,l
H ,l

PTn-l ,1

Pl ,Tn-l x2 PO ,Tn-l) [)

Pm~'.m~' x:~,
Let us denote the m x m matrix by M. The determinant

of M is the resultant of F(x) and G(x) [Sal85] . Let us
assume that x = Xo is a common root of the two poly­
nomials, Therefore, P(xo,O') = 0 for all 0'. As a result
Pi (xo) = 0 for 0 ~ i < m . This condition corresponds to
the fact that M is singular and [1 Xo x6 .. . X;{,-l f is a
vector in the kernel of M.

We use Cayley's resultant formulation for implicit­
izing parametric curves and eliminating a variable from
a pair of algebraic equations representing algebraic plane
curves. More details on the properties of implicit repre­
sentation, computation and accuracy are given in [MD92].

2.2. Implicitizing Parametric Curves

from Bezier to power basis can introduce numerical er­
rors [FR87]. To circumvent this problem we perform a
reparametrization. Given

P(t)= (~i=;'OWiXiBi , n(t) , ~i:O Wi Y;Bi , n (t)) .
~i=oWiB" n (t) ~ i=ow.B"n (t)

Dividing by (1 - tt and substituting s = (I~t) results in

_ (E?oow,x, (7)" Eloow,Y; (7) ")
P(s) = , ()

~i=oWI (7) si ~i=OWi 7 s'

The rest of the algorithm proceeds by computing the
implicit representation of P(s) and computing a matrix
formulation by Cayley 's method as

(1 _ t) Tn -l

)
t(l _ t)Tn - 2
t2 (1 _ t)m-3

(2)

tm- I

The right hand side is obtained by substituting s =
(l~t) and multiplying vector by (1- t)m- l . Later on,

this relationship will be used to compute the inverse
coordinates of the intersection points .

2.3. Intersecting Parametric Curves
Given two rational Bezier curves, P(t) and Q(u) of
degree m and n respectively, the intersection algo­
rithm proceeds by implicitizing pet) and obtaining
a m x m matrix M, whose entries are linear combi­
nations of symbolic coefficients X , Y, W. The second
parametrization Q (u) = (x(u), y(u), w(u)) is su bsti­
tuted into the matrix formulation . It results in a ma-

Given a rational Bezier curve, P(t): trix polynomial M(u) such that ea ch of its entry is a

_ (X(t) y(t)~ _ (~i=OWiXiBi ,n(t) ~i=OwiY;Bi ,n(t)~ line~r com.bination ofx(u), y(u) and w(u). The inter-
P(t) - ()' () - ~n B () , ~n B () . sectIOn pomts correspond to the roots o f

W t w t i=OW' ' ,n t i=OW' ' ,n t

To implicitize the curve we consider the following system
of equations

XW(t) - Wx(t)

Yw(t) - Wy(t)

o
o. (1)

Consider them as polynomials III t and X, Y, Ware
treated as symbolic coefficients. The implicit represen­
tation corresponds to the resultant of (1) [Sed83].

We express the resultant as a matrix determinant.
In this case the matrix has order n. Each entry of the
matrix is of the form O'oX + 0'1 Y + 0'2 W , where 0'0, 0'1 , 0'2

are scalars and functions of the control points and weights
used to represent the Bezier curve. The algorithm for com­
puting the entries of the matrix assumes that the polyno­
mial are expressed in power basis. However, converting

Determinal1t(M(u)) = O. (3)

2.4. Intersecting Algebraic Curves
In this section we consider the intersection of two
algebraic plane curves. They are represented as ze­
ros of F(x , y) and G(x, y), polynomials of degree m
and n , respectively. The polynomials may be rep­
resented in power basis or Bernstein basis . Let the
points of intersection in the domain of interest be
(xl,yd, ... , (Xk ,Yk)' To simplify the problem we
compute the projection of these p oints on the x­
axis . Algebraically projection corresponds to comput­
ing the resu ltant of F(x , y) and G(x, y) by treating
them as polynomials in y and expressing the coeffi­
cients as polynomials in x .

Graphics Interface '92

235

We compute the resultant using Cayley's formu­
lation . In case, the curves are expressed in Bernstein
basis , we use the reparametrization highlighted in the
previous section for implicitization . The resultant is
expressed as a matrix determinant and each entry of
the matrix is a polynomial in x . Let us denote the
matrix by M (x). The problem of intersection corre­
sponds to computing roots of Determinant(M(x)) =
O.

3. Matrix Computations

In this section we present techniques from linear al­
gebra and numerical analysis. We also highlight the
numerical accuracy of the problems and the algorithm
used to solve these problems in terms of their condi­
tion numbers.

3.1. Eigenvalues and Eigenvectors
Given a n x n matrix A , its eigenvalues and eigenvec­
tors are the solutions to the equation

Ax = AX,

where A is the eigenvalue and x is the eigenvec­
tor . The eigenvalues of a matrix are the roots of its
characteristic polynomial determinant(A - U) = O.
An eigenvalue, Ai , of multiplicity k corresponds to a
root of multiplicity k of the characteristic polynomial.
This multiplicity is also defined as the algebraic mul­
tiplicity of the eigenvalue. Moreover , the dimension
of the kernel of (A - Ai 1) is the geometric multiplicity
of Ai . The geometric multiplicity is bounded by the
algebraic multiplicity.

Most eigendecomposition algorithms make use of
the symmetric orthogonal transformations of the form
A' = QAQ-l, where Q is any non- singular orthogo­
nal n x n matrix . This transformation has the charac­
teristic that the eigenvalues of A and A' are identical.
Furthermore, if y is an eigenvector of A' , Q-ly is an
eigenvector of A. The running time of the eigende­
composition algorithms is O(n3). However, the con­
stant in front of n3 can be as high as 25 for computing
all the eigenvalues and eigenvectors.

3.2. Generalized Eigenvalue Problem
Given n x n matrices, A and B , the generalized eigen­
value problem corresponds to solving

Ax = ABx.

We represent this problem as eigenvalues of A - AB.
The vectors x correspond to the eigenvectors of this
equation . If B is non- singular and its condition num­
ber (defined in the next section) is low, the problem

can be reduced to an eigenvalue problem by multi­
plying both sides of the equation by B- 1 and thereby
obtaining:

B-1Ax = AX.

However, B may have a high condition number and
such a reduction can cause numerical problems. Algo­
rithms for the generalized eigenvalue problems apply
orthogonal transformations to A and B. In particu­
lar, we use the QZ algorithm for computing the eigen­
values and eigenvectors for this problem [GL89] . Its
running time is O(n3). However, the constant can be
as high as 75. Generally, it is slower by a factor of
2.5 to 3 as compared to QR algorithm for computing
eigenvalues and eigenvectors of a matrix.

3.3. Condition Numbers
The condition number of a problem measures the sen­
sitivity of a solution to small changes in the input. A
problem is ill- conditioned if its condition number is
large , and ill-posed if its condition number is infinite.
These condition numbers are used to bound errors in
computed solutions of numerical problems. More de­
tails on condition numbers are given in [GL89, WiI65].
The implementations of these condition number com­
putations are available as part of LAPACK [BDM89].

In our algorithm, we perform computations like
matrix inverse and computing eigenvalues and eigen­
vectors of a matrix. Therefore, we are concerned with
the numerical accuracy of these operations.

4. Reduction to Eigenvalue Problem

In this section we consider the problem of intersecting
parametric curves and reduce it computing an eigen­
decomposition of a matrix. The same reduction is ap­
plicable to the intersection of algebraic plane curves
as explained in [MD92] .

In section 2 we had reduced the problem of inter­
secting parametric curves, P(t) and Q(u) of degree m
and n, respectively, to finding roots of a matrix de­
terminant as shown in (3). Each entry of the m x m
matrix, M (u), is a linear combination of Bernstein
polynomials of degree n in u. Let us represent it as a
matrix polynomial

M(u) = Mnun + Mn_1un-1(1 - u) + .. . + Mo(1- ut,

where Mi is a matrix with numeric entries. On divid­
ing the equation by (1 - u)n we obtain a polynomial
of the form

Mn(-l u)" + Mn- 1(-1 u)"-1 + ... + Mo.
-u -u

Substitute s = l~u and the new polynomial is of the
form

Graphics Interface '92

236

In the original problem we were interested in the
roots of Determinant(M(u)) = 0 in the range [0,1].
However, after reparametrizing we want to compute
the roots of Determinant(M (s)) = 0 in the range
[0, cx::>]. This can result in overflow problems if the
original system has a root u ~ 1. In such cases Mn
is nearly singular or ill-conditioned. Our algorithm
takes care of such cases by linear transformations or
using projective coordinates.

Let us consider the case when Mn is a well­
conditioned matrix. Given M(s), we multiply the
matrix polynomial by M;; 1 . As a result we obtain

I
- n - n-l -M(s)=Ims +Mn_ls + ... +Mo,

where Im is an m x m identity matrix and Mi
M;;l Mi for all i < n. Given the matrix polynomial

I

M (s) we compute a nm x nm matrix of the form

0 Im 0 0
0 0 Im 0

c= (;), (5)

0 0 Im
-Mo -Ml -M2 -Mn - 1

such that the eigenvalues of C correspond exactly to
the roots of Det(M(s)) = O. Furthermore C is a nu­
meric matrix of order mn. The proof of this property
is given as part of Theorem 1.1 [GLR82] . The re-

I

lationship between C and M (s) is identical to that
between the characteristic polynomial of a matrix and
its equivalent companion matrix [WiI65].

I

Let A be an eigenvalue of C. As a result M (A)
is a singular matrix. Let v = [Vl V2 ... vm]T be the

vector in the kernel of M' (A) such that

_, T
M (A) (VI V2 . . . Vm) (0 0 .. . O)T. (6)

Corollary I: The eigenvector of C correspond­
ing to the eigenvalue A has the form V
[v AV A2V ... An-1vjT, where V is a mn x 1 vector.
Proof: [MD92] .

It follows that the eigenvalues of C correspond ex­
actly to the preimages of intersection points on Q(u).
However, we are only interested in the eigenvalues in
the range So E [0, cx::>] and the preimages on the curve
are obtained by substituting Uo = l~~o. This gives us
a list of all the intersection points on Q(uo) such that
Uo E [0 ,1]. However, these points on P(t) may not lie
in the range t E [0 , 1]. As a result it is important for
us to compute the preimage of the intersection point
(xo, Yo, wo) = Q(uo) with respect to P(t) . We use
the property of the linear system of equations (2) and
Corollary I.

Let us assume that (xo, Yo, wo) is a simple point
on P(t). Points of higher multiplicity are accounted
for in the next section. Substitute for (X, Y, W) =
(xo, Yo, wo) in the matrix, M as shown in (2), corre­
sponding to the implicit representation of P(t) . The
resulting matrix is singular and let us assume that
its kernel has dimension one. Kernels of higher di­
mension correspond to higher order intersection . The
vector in the kernel corresponds to v shown in (6).
Given the eigenvector of C corresponding to the eigen­
value So, use Corollary I to compute the eigenvector
v. Given v we use the structure of the linear system
to compute the preimage of the point (xo, Yo, wo) by
using the relation

(l_ to)m-l to(1_to)m-2 ... t~-I)T =k(Vl V2 ... vmf,

where k f. 0 is a constant . Thus, to = ~+ . The
VI V2

relationship between the eigenvalue So of C, elements
Vl, V2 of the eigenvector V corresponding to So and
the point of intersection (xo, Yo, wo) can be expressed
as

So V2
(XO , YO,wo) = Q(-l -) = P(--). (7) + So VI + V2

As a result we are able to compute all the points of
intersection in the domain of interest by computing
the eigendecomposition of C . •

Let us consider the case, when the matrix Mn
in (4) is ill-conditioned . One such case occurs when
the preimage of the point of intersection on P(t) is
to ~ 1. As a result, computation of M;;l and the cor­
responding reduction to the eigenvalue problem can
introduce numerical problems . The general approach
for solving such cases is the reduction to generalized
eigenvalue problem. In this case we construct com­
panion matrices of the form [GLR82, Section 7.2]

(I. ... 0

f) ,c,{
-In 0

-tJ c,= 1
In ... 0 -In

In 0 0
0 Mn Mo Ml M n- 2 Mn-

such that the eigenvalues of Cls + C2 correspond ex­
actly to the roots of Det(M(s)) = O. Furthermore, the
eigenvectors of this generalized system have a struc­
ture similar to V highlighted in Corollary I and is
used for computing the inverse image of the intersec­
tion point with respect to P(t).

Solving a generalized eigenvalue system is more
expensive than the normal eigenvalue system (almost
a factor of 3). In many cases, we can perform a linear
transformation 011 the coordinate of the matrix poly­
nomial and reduce the resulting problem to an eigen­
value Eroblem. The basic idea involves transforming
s = ~;t~ , where a , b, c and d are random numbers .
The matrix polynomial M (s) in (4) is transformed
into

Graphics Interface '92

237

~ P(s) = PnSn + Pn_ISn- 1 + ... + PIS + Po ,

where Pi'S are computed from the Mj's . If Pn is
a well- conditioned matrix then the problem of inter­
section is reduced to an eigenvalue problem, otherwise
use a different transformation (by a different choice of
a,b,c and d) . The linear transformation is performed
up to four or five times. If all the resulting leading ma­
trices, Pn , are ill- conditioned, the intersection prob­
lem is reduced to a generalized eigenvalue problem .
There are cases when any linear transformation can
result in an ill-conditioned leading matrix. Further­
more, the domain of the eigenvalue system obtained
after transformation is [SI , S2) or [S2' sd depending
upon the signs of a, b, c and d, where SI = -~ and
S2 = - 4 . c

4.1. Implementation and Performance
The reduction to an eigenvalue or a generalized eigen­
value system involves estimating the condition num­
ber of a matrix, computing the matrix inverse and
finding the eigenvalues of a matrix. For eigenvalues
lying in the domain of interest , we compute the corre­
sponding eigenvectors. Furthermore , we also compute
the condition number of each eigenvalue in the do­
main of interest. The condition number is a function
of the left and right eigenvectors of the matrix.

We used LAPACK implementation of eigende­
composition algorithms. Some of the routines were
modified to compute the eigenvalues in the domain
of interest. Furthermore, the domain was specified as
ex + j(3, where ex > -f, 1(31 < (and j = A . (is a
small positive constant used to account for the numer­
ical errors. In particular, we make f a function of the
condition number of Mn or Pn for eigenvalue prob­
lems. To compute the inverse coordinate of the inter­
section point, the right eigenvector V corresponding
to the eigenvalue So is computed. Let

Analysis of the accuracy of eigenvector computation
indicates that each term of the eigenvector has a
similar bound on the absolute error of the compu­
tation . As a result we tend to use terms of maxi­
mum magnitude to minimize the error in the compu­
tation [MD92). In this case we compute the entries of
v = [VI V2 ... vmjT as:

[]
T {[VI,I VI,2 ... VI ,mf So :::; 1

VI V2 ... Vm = I []T
(so) n Vn,1 V n ,2 .. • vn,m So > 1

The performance of the algorithm is largely gov­
erned by the eigendecomposition routines. Roughly
80 - 85% of the time is spent in these routines. The
eigenvalue algorithms compute all the eigenvalues of
the given matrix. It is difficult to restrict them to
computing eigenvalues in the domain of interest. The
order of the matrix, say p, corresponds to the prod­
uct of the degree of the two curves and the number of
eigenvalues is equal to the order. The running time of
the algorithm is a cubic function of p. The eigenvalue
algorithms are iterative and have good convergence
properties. It is a long observed fact that the algo­
rithm requires two iterations per eigenvalue. As a re­
sult it is possible to bound the actual running time of
the eigenvalue computation by 10p3 for most cases.
Furthermore the eigendecomposition algorithms are
backward stable. We have been to able accurately
compute the intersections of curves of degree up to
ten. In practice it is possible to obtain accurate so­
lutions for matrices of order 100 or more. This is in
contrast with computing roots of high degree univari­
ate polynomials (which is an ill-conditioned problems)
or using symbolic computation for determinant com­
putation and finding the roots of the resulting poly­
nomial expressed in Bernstein basis using subdivision
and iteration (which is relatively expensive and has
slow convergence).

4.2. Example of Curve Intersection

In this section we illustrate the algorithm by
considering the intersection of two rational cu­
bic Bezier curves. The example is taken from
[Sed83) . The control points of two Bezier curves
(as shown in Fig. 11) , expressed in homogeneous
coordinates, are (4,1,1) , (5, 6, 2), (5,0,2), (6 ,4, 1) and
(7 , 4,1), (1, 2, 2) , (9 , 2, 2) , (3, 4,1). Thus,

where

P(t) = (x(t) y(t))
w(t)' w(t) ,

x(t) = 4(1 - t)3 + 30(1 - t)2t + 30(1 _ t)t2 + 6t3

y(t) = (1 - t)3 + 36(1 - t)2t + 4t3

w(t) = (1 - t)3 + 6(1 - t)2t + 6(1 _ t)t2 + t 3 .

The implicit representation has a matrix determinant
formulation given as

Given v the inverse coordinate, to , is computed using
VI, V2 or Vm-l, Vm by making use of similar numerical
properties.

(

-114W+30X-6Y 30w -6x -6y
M= 30w - 6x - 6y 1070w - 213x - 2y

-lOw + 3x - 2y)
96w - 12x - 6y .

-lOw + 3x - 2y 96w - 12x - 6y -120w + 24x - 6y

Graphics Interface '92 ~

238

y

x
Fig. 11

Intersection of rationa l cubic Bezier curves

The second parametrization , Q(u) is substituted
into the matrix formulation (after a reparametrization
of the form s = I~J. The resulting matrix polyno­
mial has the form

M(5) = (=~~ ~~~ ;:) 53 + (!~:6 ~5211066 -:~4) 82

-9 36 -72 78 -144 504

(

-576 72 -66) (72 -36 3) + 72 5118 432 5 + - 36 -429 -12 .
-66 432 -648 3 -12 24

The condition number of the leading matrix is 9.525 .
Multiplying M(s) with the inverse of the lead­

ing matrix and constructing the equivalent compan­
ion matrix results in

0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0

c= 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

1.48-1.070-11.92 4.58 0.40 17.8-8.240.40
0.13 0.94 0 -0.53 -11.92 - .22 1.06 11.4 -0.23
-.07 .44 .33 .30 - .53 -9.16- .61 4.74 6.83

The eigendecomposition of C results in 9 points of
intersection as shown in the following table.

Intersection Eigenvalue Max. Error Parameter
Number So Ei -1JL Uo = j:j:"sn

1. 15 .369 2.32e-14 0.9389
2. 11.802 2.85e-14 0.9219
3. 5.507 2.71e-14 0.8463
4. 1.4654 1.27e-13 0.5944
5. 0.5361 2.32e-14 0.3490
6. 0.1534 2.98e-14 0.133
7. 0.0974 2.38e-14 0.0888
8. 1.145 1.18e-13 0.534
9. 0.0382 1.14e-14 0.0369

eigenvectors we choose the elements VI or Vs depend­
ing upon their relative magnitudes. The error bounds
in the third column are obtained by using the con­
dition number of the eigenvalues (as explained in
[MD92]) and matrix norm as

Ei = f " C " cond;, (8)

where f = 2.2204e - 16 is the machine precision for
64 bit IEEE floating point arithmetic and cond; is
the condition number of the ith eigenvallle. As a re­
sult, the eigendecomposition algorithms compute the
eigenvalues of C up to 12 digits of accuracy. The
other sources of error arise from the computation of
the entries of M, the matrix corresponding to the
implicit representation , and inverting the leading ma­
trix of the matrix polynomial M(s) . In our case, this
can account for inaccuracy of one digit (due to con­
dition number of the matrix to be inverted) . As a
result , the intersection points are computed up to 11
digits of accuracy. Further accuracy can be obtained
by using one or two iterations of Newton 's method
on the equations used for representing the problem
of intersection . The output of the algorithm are the
starting points for Newton's method. As a result the
algorithm can be used to compute intersection points
with high accuracy.

5. Higher O r der Intersection

In the previous section , we presented an algorithm
to compute the simple intersections of parametric
curves. In this section we extend the analysis to
higher order intersections.

According to Bezout 's theorem two rational
curves of degree m and n intersect in mn points
(counted properly) [WaI50). In our case , the preim­
ages of these points correspond to the mn eigenvalues

Eigen vector 's Eigen vector's Parameter Point

a=vl lv8 f3 = v21 v9 to= A (X , Y)

0.2173 0.0472 0.1785 (4 .619 , 3.412)
0.6657 0.4432 0.3997 (4.911 , 3.289)
0.0703 1.000 0.9343 (5.688, 2.877)
0.1614 1.000 0 .8610 (5 .467,2 .321)

1.00 0.066 0.0622 (4.298 , 2.378)

1.00 0.1233 0.1099 (4.455,2 .971)
1.00 0.7277 0.4212 (4 .931,3 .218)
1.00 0.4644 0.683 (4 .174,2.290)
0179 0.00032 0.9823 (5.901 , 3.615)

Eigendecom posi t ion and intersect ion points

The intersections points are computed using the
relationship highlighted in (7) . They are: In the
columns corresponding to the components of the

of C (5) . Higher order intersections are the points
having more than one preimage. In other words,
eigenvalues of multiplicity greater than one corre-

G raphics Interface '92

239

spond to higher order intersection points. The in­
tersection multiplicity of these points corresponds to
the algebraic multiplicity of the corresponding eigen­
value. These intersections arise due to the tangential
intersection of the two curves at the point of contact
or the intersection point is a singular point on at least
one of the curves. Some higher order intersections are
highlighted in Fig. Ill. They are:

(a) Tangential intersection of two ellipses. The inter­
section multiplicity is 2.

(b) Second order intersection of a parabola with a
curve having a loop.

(c) Intersection of an ellipse and a curve with a cusp.
The intersection multiplicity is 2.

(d) Tangential intersection of a parabola with a loop.
The intersection multiplicity is 3.

(a) (b)

(c) (d)
Fig. III

Higher order intersections

An intersection point, P , has multiplicity k, if a
small perturbation in the coefficients of the curve (or
the coefficients of the control polygon) results in k
distinct intersection points in the neighborhood of P .
Given two curves that intersect with multiplicity k at
P, our algorithm computes the implicit representation
and reduces the problem to an eigenvalue problem .
The latter computation involves matrix inversion and
multiplications using floating point operations. As a
result, C in (5), corresponds to a slightly perturbed
problem and k of its eigenvalues, say ..\1 , ..\2 , ... , ..\k
are very close to ..\ , the eigenvalue corresponding to
P (assuming exact arithmetic). The eigendecomposi­
tion algorithms use floating point arithmetic and the
computed eigenvalues correspond to ..\~ , ..\~, ... , ..\~.

However the problem of computing eigenvalues of
multiplicity greater than one can be ill- conditioned
[GL89, WiI65]. As a result ..\; may agree with ..\ up
to a few digits of accuracy. This can be determined
from the condition number of ..\;. In such cases the
mean of "\; 's given by

).' =).~ +).; + ... +).~
k

is much better conditioned. This can be verified by
computing the condition number of a cluster of eigen­
values [BDM89] . As a result ..\ ' is very close to ..\ , the
eigenvalue of multiplicity k. The number k corre­
sponds to the number of ill-conditioned eigenvalues,
..\;, located in the small neighborhood of each other.
We illustrate this technique using the following exam­
ple.
Example: Consider the intersection of cubic curve,
P (t) = (x(t), y(t)) = (t 2 - 1, t3 - t) with the parabola
Q(u) = (x(u), y(u)) = (u 2 + u, u2

- u) (as shown in
Fig . IV) . The cubic curve has a loop at the origin. We
are interesting in computing all the intersection points
corresponding to the domain t x u = [-2,2] x [-1 , 1].

y

x

Fig . V
Higher order intersection of a cubic curve and a

parabola

The implicit representation of P (t) is a matrix
determinant of the form

(

-w-x
M= -y

w+x

-y
x
o

w+X) o .
-w

After substituting and reducing the problem to an
eigenvalue problem we obtain a 6 x 6 matrix

0 0 0 1 0
0 0 0 0 1

c = (0
0 0 0 0

-1 0 1 -1 0
-1 0 1 -2 -1
-1 0 -2 -2

I).
-1

Graphics Interface '92 ~

240

The relevant eigenvalues of this matrix and their con­
dition numbers are:

Intersection Eigenvalue Cond. Number ,
Number Ai Condi

1. 0.0 1.2171
2. -0 .00000001296346 4.86e09
3. 0.00000001296346 4.86e09

Elgenvalues corresponding to higher order
intersections

Thus, the second and third eigenvalues have a high
condition number. Taking their average we obtain
>.' = 0.0, and it has a low condition number. As a
result, we conclude that >.' = 0.0 is an eigenvalue of
multiplicity 3 and the curves have a triple intersection
at Q(O.O) = (0 .0,0 .0).

Q.E.D.
The procedure highlighted above is used for com­

puting the intersection multiplicity of the point. How­
ever, the intersection can arise from tangential inter­
section, singular points or their combinations. The
rest of the analysis deals with determining the nature
of intersection.

Given an eigenvalue, >., of algebraic multiplicity
k, its geometric multiplicity corresponds to the di­
mension of the kernel of (C - >'1). After accurately
computing the algebraic multiplicity of the eigen­
value, we compute its geometric multiplicity. further­
more, the algorithm computes a basis of the vectors
spanning the kernel. Depending upon the nature of
intersection the geometric multiplicity is less than or
equal to algebraic multiplicity. The exact relationship
between the multiplicities and nature of intersection
has been described in [MD92]. Here we highlight the
relationship for the examples in Fig. III and IV. We
assume that the curves drawn in dark font are be­
ing implicitized. The curves highlighted in light font
are substituted into the implicit representation. The
choice of curve for implicitization has an impact on
the geometric multiplicities of the matrix, although
the algebraic multiplicities are unaffected [MD92] .

Example Algebraic Geometric
Figure Multiplicity Multiplicity

III (a) 2 1
III(b) 2 2
III(c) 2 2
III(d) 3 2

IV 3 2

Algebraic and geometric multiplicities of
eigenvalues corresponding to Figs. III and IV

In case the geometric multiplicity is 1, the computa­
tion of the preimage corresponds exactly to the pro­
cedure described in the previous section . If the ge-

ometric multiplicity is greater than 1, the algorithm
for preimage computation involves equation solving.
Let us illustrate for Fig. V.

In the example corresponding to Fig . V, the
intersection multiplicity is 3. If we implicitize the
parabola and substitute the cubic curve into the im­
plicit form, the eigenvalue corresponding to the origin
has algebraic multiplicity 3 and geometric multiplic­
ity l. This is due to the fact that the parabola is
intersecting the cubic curve tangentially at the loop,
corresponding to the origin. The fact that the inter­
section point is a loop implies that P(t) has two dis­
tinct preimages tl = 1 and t2 = -l. As a result both
the vectors VI = [1 tl trf and V 2 = [1 t2 t~]T lie in the
kernel of M after we substitute x = 0, y = 0, w = l.
Since these vectors are linearly independent they con­
stitute the basis of the eigenvectors corresponding to
>. = O. However, the eigendecomposition algorithm
can return any two linearly independent vectors of
the form V I = al VI + a2v 2 and V 2 = {3I VI + {32v2,

where a; 's and {3j'S are scalars. The rest of the al­
gorithm involves computing VI and V2 from V I and
V 2. This corresponds to computing the scalars and
can be achieved by equation solving [MD92].

6. Conclusion

In this paper we have highlighted a new technique
for computing the intersection of parametric and al­
gebraic curves. The algorithm involves use of re­
sultants to represent the implicit representation of a
parametric curve as a matrix determinant . The in­
tersection problem is being reduced to an eigenvalue
problem. The algorithm is very robust and can ac­
curately compute the intersection points. There is a
nice relationship between the algebraic and geomet­
ric multiplicities of the eigenvalues and the order of
intersection. We used this relationship in accurately
computing such intersections . Efficient implementa­
tions of eigenvalue routines are available as part of
linear algebra packages and we used them in our im­
plementations.

The approach highlighted here is also useful for
intersecting curves and surfaces. In particular , the
implicit representation of a parametric surface can be
represented as a matrix determinant [MC91]. The
parametric space curve is substituted into the im­
plicit formulation and the problem can therefore, be
reduced to an eigenvalue problem. This can be di­
rectly used for ray tracing parametric patches, as a
ray corresponds to degree one parametric curve.

Acknowledgement: Dinesh Manocha is supported
in part by IBM Graduate Fellowship, David and Lu-

Graphics Interface '92

241

cile Packard Fellowship and National Science Founda­
tion grant ASC-9005933 . James Demmel is supported
in part by National Science Foundation grants DCR-
8552474, ASC-8715728 and ASC-9005933.

References

[ABB+90] E . Anderson, Z. Bai, C. Bischof, J. Dem­
mel, J . Dongarra, J . Du Croz, A. Green­
baum, S. Hammarling, and D. Sorensen.
Lapack: A portable linear algebra library.
Computer Science Technical Report CS-
90-105 , University of Tennessee, 1990 .

[BBB87] R .H. Bartels, J.C. Beatty, and B.A.
Barsky. An Introduction to Splines for
use in Computer Graphics fj Geometric
Modeling. Morgan Kaufmann , San Mateo ,
California, 1987.

[BDM89] Z. Bai, J . Demmel, and A. McKenney.
On the conditioning of the nonsymmet­
ric eigenproblem: Theory and software.
Computer Science Dept . Technical Report
469, Courant Institute, New York, NY,
October 1989. (LAPACK Working Note
#13) .

[EC90] G . Elber and E . Cohen. Hidden curve re­
moval for free form surfaces. Computer
Graphics, 24(4):95- 104, 1990.

[FR87] R.T. Farouki and V.T . Rajan. On the nu­
merical condition of polynomials in Bern­
stein form . Computer Aided Geometric
Design, 4:191- 216 , 1987.

[GL89] G.H. Golub and C.F. Van Loan. Matrix
Computations. John Hopkins Press, Bal­
timore, 1989.

[GLR82] I. Gohberg, P. Lancaster, and L. Rod­
man . Matrix Polynomials. Academic
Press, New York, 1982.

[Hof89] C.M . Hoffmann . Geometric and Solid
Modeling. Morgan Kaufmann, San Mateo,
California, 1989.

[KM83] P.A. Koparkar and S. P. Mudur . A new
class of algorithms for the processing of
parametric curves. Computer-Aided De­
sign, 15(1):41-45,1983.

[LR80] J .M. Lane and R.F. Riesenfeld . A theo­
retical development for the computer gen­
eration and display of piecewise polyno­
mial surfaces. IEEE Transactions on Pat­
tern A nalysis and Ma chine Int elligence,

[MC91]
2(1) :150- 159,1980.
D. Manocha and J .F. Canny. A new
approach for surface intersection . In

[MD92]

[MM89]

[SaI85]

[Sed83]

[Sed89]

[SP86]

[SWZ89]

[WaI50]

[Wi159]

[Wi165]

First ACM Symposium on Solid Model­
ing Foundations and CAD/CAM Applica­
tions, pages 209-220, 1991. Revised ver­
sion to appear in International Journal
of Computational Geometry and Applica­
tions.
D. Manocha and J . Demmel. Algorithms
for intersecting parametric and algebraic
curves. Technical report, Computer Sci­
ence Division, UC Berkeley, 1992.
R.P. Markot and R. L. Magedson . So­
lutions of tangential surface and curve
intersections. Computer-Aided Design,
21(7):421-427 , 1989.
G. Salmon. Lessons Introductory to the
Modern Higher Algebra. G.E. Stechert &
Co., New York, 1885.
T .W . Sederberg. Implicit and Parametric
Curves and Surfaces. PhD thesis, Purdue
University, 1983.
T .W . Sederberg. Algorithms for algebraic
curve intersection . Computer-Aided De­
sign, 21(9) :547-555, 1989.
T.W. Sederberg and S.R. Parry. Compar­
ison of three curve
intersection algorithms. Computer-Aided
Design, 18(1):58- 63 , 1986.
T .W. Sederberg, S. White, and A. Zundel.
Fat arcs: A bounding region with cubic
convergence. Computer Aided Geometric
Design, 6:205- 218, 1989.
R.J . Walker. Algebraic Curves. Princeton
University Press, New Jersey, 1950.
J .H. Wilkinson. The evaluation of the ze­
ros of ill-conditioned polynomials. parts i
and ii. Numer. Math., 1:150-166 and 167-
180, 1959.
J .H. Wilkinson . The algebraic eigenvalue
problem. Oxford University Press, Oxford,
1965.

Graphics Interface '92 ~

