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A bstr act 

The problem of computing the intersection of parametric 
and algebraic curves arises in many applications of com­
puter graphics, geometric and solid modeling. Earlier al­
gorithms are based on techniques from Elimination theory 
or subdivision and iteration. The former is however, re­
stricted to low degree curves. This is mainly due to issues 
of efficiency and numerical stability. In this paper we use 
Elimination theory and express the resultant of the equa­
tions of intersection as a matrix determinant. The matrix 
itself rather than its symbolic determinant, a polynomial , 
is used as the representation. The algorithm for inter­
section corresponds to substituting the other equation to 
construct an equivalent matrix such that t he intersection 
points can be extracted from the eigenvalues and eigenvec­
tors of the latter. Moreover, the algebraic and geometric 
multiplicities of the eigenvalues give us information about 
the intersection (multiplicity, tangential intersection etc.). 
As a result we are able to accurately compute higher order 
intersections. The main advantage of this approach lies in 
its efficiency and robustness . Moreover, the numerical ac­
curacy of these operations is well understood. For almost 
all cases we are able to compute accurate answers in 64 
bit IEEE floating point arithmetic. 
Keywords: Intersection, Curves, Eigenvalues , Accuracy, 
Robustness . 

1. Introduct ion 

The problems of computing the intersection of parametric 
and algebraic curves are fundamental to geometric and 
solid modeling. Parametric curves, like B-splines and 
Bezier curves, are extensively used in the modeling sys­
tems and algebraic plane curves are becoming popular as 
well [Hof89, MM89, SP86, Sed89). Intersection is a primi­
tive operation in the computation of a boundary represen­
tation from a CSG (constructive solid geometry) model in 
a CAD system. Other applications of intersection include 
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hidden curve removal for free form surfaces, [EC90) . Al­
gorithms for computing the intersection of these curves 
have been extensively studied in the literature. 

As far as computing the intersection of rational para­
metric curves is concerned, algorithms based on implici­
tization [Sed83) , Bezier subdivision [LR80) and interval 
arithmetic [KM83) are well known. The implicitization 
approach computes the implicit form of one of the curve 
using result ants [Sed83). Given the implicit represen­
tation of one curve , substitute the second parametriza­
tion and obtain a univariate polynomial in its parameter . 
The problem of intersection corresponds to computing the 
roots of the resulting polynomial. The Bezier subdivision 
relies on the convex hull property of Bezier curves and de 
Casteljau algorithm for subdividing Bezier curves. The 
resulting algorithm performs a linearly converging binary 
search. It has been improved by more effective use of the 
convex hull property [SWZ89) . The interval arithmetic 
uses an idea similar to subdivision. Each curve is prepro­
cessed to determine its vertical and horizontal tangents, 
and the curve is divided into 'intervals' which have vertical 
or horizontal tangents only at the end points. 

The relative performance and accuracy of these al­
gorithms is highlighted in [SP86). In particular , implicit­
ization based approaches are fast er as compared to other 
methods for curves of degree up to four. However, their 
relative performance degrades for higher degree curves. 
This is mainly due to issues of numerical stability and their 
effect on the choice of representation and algorithms for 
root finding. For curves of degree greater than three , the 
resulting univariate polynomial has degree 16 or higher . 
The problem of computing real roots of such high degree 
polynomials can be ill- conditiolled [Wil59) . Using exact 
arithmetic or symbolic techniques to overcome the numer­
ical problems have a considerable effect on the efficiency of 
the problem and therefore, subdivision based algorithms 
perform better. 

The algorithms for algebraic curve intersection are 
analogous to those of intersecting parametric curves. Re-

G raphics Interface '92 



233 

suit ants can be used to eliminate one variable from the 
two equations corresponding to the curves. The problem 
of intersection corresponds to computing roots of the re­
sulting univariate polynomial . This approach causes nu­
merical problems for higher degree curves (greater than 
four) . A robust algorithm based on subdivision has been 
presented in [Sed89]. However, resultant based algorithms 
are considered to be the fastest for lower degree curves. 

In many applications , the intersection may be of 
higher order involving tangencies and singular points. 
Such instance are rather common in industrial applica­
tions [MM 89]. Most algorithms require special handling 
for tangencies and thereby requiring additional compu­
tation for detecting them. In fact algorithms based on 
subdivision and Newton- type techniques often fail to ac­
curately compute the intersections in such cases. Special 
techniques for computing first order tangential contacts of 
parametric curves are given in [MM89]. [Sed89] presents 
modification of his algorithm for computing all double 
points of an algebraic curve in a triangular domain. How­
ever, no efficient and accurate techniques are known for 
computing higher order intersections for general cases. 

In this paper we present efficient and robust algo­
rithms for intersecting parametric and algebraic curves. 
For parametric curves we implicitize one of the curves 
and represent the implicit form as a matrix determinant. 
However, we do not compute the symbolic determinant 
and express the implicit formulation as a matrix. The 
idea of matrix determinant has been used in [MC91] to 
represent and evaluate the intersection of rational para­
metric surfaces. Given the implicit form , we substitute 
the other parametrization into the matrix formulation and 
use the resulting matrix to construct a numerical matrix 
such that the intersection points can be computed from 
its eigendecompositon. This is in contrast with expand­
ing the symbolic determinant and finding the roots of the 
resulting polynomial. The advantages of this technique 
lie in effici ency, robustness and numerical accuracy. The 
algorithms for computing eigenvalues and eigenvectors of 
a matrix are backward stable and fast implementations are 
available as part of packages like EISPACK and LAPACK 
[GL89, ABB+ 90]. Furthermore, we effectively use the al­
gebraic and geometric multiplicities of the eigenvalues to 
determine the exact multiplicity of the intersection. The 
algorithm for intersecting algebraic curves is rather simi­
lar, except the relationship between algebraic and geomet­
ric multiplicities of the eigenvalue and the multiplicity of 
intersection is different. 

The rest of the paper is organized in the following 
manner. In section 2 we present our notation and re­
view techniques from Elimination theory for implicitizing 
parametric curves. Furthermore, we show that the prob­
lems of intersecting parametric and algebraic curves can 
be reduced to computing roots of polynomials expressed 
as matrix determinants. In section 3, we present results 
from linear algebra and numerical analysis being used in 
the algorithm. Section 4 deals with reducing the prob­
lem of root finding to computing the eigendecomposition . 

Given the eigenvalues and eigenvectors, we compute the 
intersection points of parametric curves in the domain of 
interest. We also discuss the performance and robustness 
of the resulting algorithm. Section 5 deals with higher 
order intersections and illustrates the technique with ex­
amples. 

2. Parametric and Algebraic Curves 

A rational Bezier curve is of the form [BBB87] : 

O:::;t::=;l 

where Pi = (Xi, Yi) are the coordinates of a control point, 
Wi is the weight of the control point and Bi,n(t) corre-

sponds to the Bernstein polynomial, Bi ,n = ( : ) (1 -

tt-iti. Rational curves like B-splines can be converted 
into a series of Bezier curves by knot insertion algo­
rithms [BBB87]. Thus, the problem of intersecting ra­
tional curves can be reduced to intersecting Bezier curves. 
Each of these curves is described by its corresponding con­
trol polygon and the curve is always contained in the con­
vex hull of the control points. Therefore , the intersection 
of the convex hull of two such curves is a necessary condi­
tion for the intersection of curves. One such instance has 
been highlighted in Fig. 1. 

Algebraic plane curves are generally expressed in 
standard power basis: ' 

F(x , y) = r;i+J$nCijXiyj = o. 

They can also be represented in Bernstein basis. The 
problem of intersection corresponds to computing the 
common points on such curves in a particular domain . 

Fig . I 
Intersection of Bezier curves 

2.1. Resultants 
Given two polynomials in one unknown, their resultant is 
a polynomial in their coefficients. Moreover, the vanish­
ing of the resultant is a necessary and sufficient condition 
for the two polynomials to have a common root . Three 
methods are known in the literature for computing the 
resultant, owing to Sylvester, Bezout and Cayley [SaI85]. 
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Each of them expresses the resultant as determinant of a 
matrix. The order of the matrix is different for different 
methods. We use Cayley's formulation as it results in a 
matrix of minimum order . 

Given two polynomials, F(x) and G(x) of degree In 

and n , respectively. Without loss of generality we assume 
that m ~ n. Let's consider the bivariate polynomial 

P(x, 0') = F(x)G(O') - F(O')G(x) . 
X - O' 

P( x, 0') is a polynomial of degree m-I in x and also in 
0'. Let us represent it as 

where Pi(X) is a polynomial of degree m-I in x. The 
polynomials Pi (x) can be written as follows: 

PO ,l 
H ,l 

PTn-l ,1 

Pl ,Tn-l x2 PO ,Tn-l ) [ ) 

Pm~'.m~' x:~, 
Let us denote the m x m matrix by M. The determinant 

of M is the resultant of F(x) and G(x) [Sal85] . Let us 
assume that x = Xo is a common root of the two poly­
nomials, Therefore, P(xo,O') = 0 for all 0'. As a result 
Pi (xo) = 0 for 0 ~ i < m . This condition corresponds to 
the fact that M is singular and [1 Xo x6 .. . X;{,-l f is a 
vector in the kernel of M. 

We use Cayley's resultant formulation for implicit­
izing parametric curves and eliminating a variable from 
a pair of algebraic equations representing algebraic plane 
curves. More details on the properties of implicit repre­
sentation, computation and accuracy are given in [MD92]. 

2.2. Implicitizing Parametric Curves 

from Bezier to power basis can introduce numerical er­
rors [FR87]. To circumvent this problem we perform a 
reparametrization. Given 

P(t)= (~i=;'OWiXiBi , n(t) , ~i:O Wi Y;Bi , n (t)) . 
~i=oWiB" n (t) ~ i=ow.B"n (t) 

Dividing by (1 - tt and substituting s = ( I~t ) results in 

_ (E?oow,x, (7)" Eloow,Y; (7) ") 
P(s) = , ( ) 

~i=oWI ( 7 ) si ~i=OWi 7 s' 

The rest of the algorithm proceeds by computing the 
implicit representation of P(s) and computing a matrix 
formulation by Cayley 's method as 

(1 _ t) Tn -l 

) 
t(l _ t)Tn - 2 
t2 (1 _ t)m-3 

(2) 

tm- I 

The right hand side is obtained by substituting s = 
( l~t) and multiplying vector by (1- t)m- l . Later on, 

this relationship will be used to compute the inverse 
coordinates of the intersection points . 

2.3. Intersecting Parametric Curves 
Given two rational Bezier curves, P(t) and Q(u) of 
degree m and n respectively, the intersection algo­
rithm proceeds by implicitizing pet) and obtaining 
a m x m matrix M, whose entries are linear combi­
nations of symbolic coefficients X , Y, W. The second 
parametrization Q (u) = (x( u), y( u), w( u)) is su bsti­
tuted into the matrix formulation . It results in a ma-

Given a rational Bezier curve, P(t): trix polynomial M(u) such that ea ch of its entry is a 

_ (X(t) y(t)~ _ (~i=OWiXiBi ,n(t) ~i=OwiY;Bi ,n(t)~ line~r com.bination ofx(u), y(u) and w(u). The inter-
P( t) - ()' () - ~n B () , ~n B () . sectIOn pomts correspond to the roots o f 

W t w t i=OW' ' ,n t i=OW' ' ,n t 

To implicitize the curve we consider the following system 
of equations 

XW(t) - Wx(t) 

Yw(t) - Wy(t) 

o 
o. (1) 

Consider them as polynomials III t and X, Y, Ware 
treated as symbolic coefficients. The implicit represen­
tation corresponds to the resultant of (1) [Sed83]. 

We express the resultant as a matrix determinant. 
In this case the matrix has order n. Each entry of the 
matrix is of the form O'oX + 0'1 Y + 0'2 W , where 0'0, 0'1 , 0'2 

are scalars and functions of the control points and weights 
used to represent the Bezier curve. The algorithm for com­
puting the entries of the matrix assumes that the polyno­
mial are expressed in power basis. However, converting 

Determinal1t(M(u)) = O. (3) 

2.4. Intersecting Algebraic Curves 
In this section we consider the intersection of two 
algebraic plane curves. They are represented as ze­
ros of F(x , y) and G(x, y), polynomials of degree m 
and n , respectively. The polynomials may be rep­
resented in power basis or Bernstein basis . Let the 
points of intersection in the domain of interest be 
(xl,yd, ... , (Xk ,Yk)' To simplify the problem we 
compute the projection of these p oints on the x­
axis . Algebraically projection corresponds to comput­
ing the resu ltant of F(x , y) and G( x, y) by treating 
them as polynomials in y and expressing the coeffi­
cients as polynomials in x . 
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We compute the resultant using Cayley's formu­
lation . In case, the curves are expressed in Bernstein 
basis , we use the reparametrization highlighted in the 
previous section for implicitization . The resultant is 
expressed as a matrix determinant and each entry of 
the matrix is a polynomial in x . Let us denote the 
matrix by M (x). The problem of intersection corre­
sponds to computing roots of Determinant(M(x)) = 
O. 

3. Matrix Computations 

In this section we present techniques from linear al­
gebra and numerical analysis. We also highlight the 
numerical accuracy of the problems and the algorithm 
used to solve these problems in terms of their condi­
tion numbers. 

3.1. Eigenvalues and Eigenvectors 
Given a n x n matrix A , its eigenvalues and eigenvec­
tors are the solutions to the equation 

Ax = AX, 

where A is the eigenvalue and x is the eigenvec­
tor . The eigenvalues of a matrix are the roots of its 
characteristic polynomial determinant(A - U) = O. 
An eigenvalue, Ai , of multiplicity k corresponds to a 
root of multiplicity k of the characteristic polynomial. 
This multiplicity is also defined as the algebraic mul­
tiplicity of the eigenvalue. Moreover , the dimension 
of the kernel of (A - Ai 1) is the geometric multiplicity 
of Ai . The geometric multiplicity is bounded by the 
algebraic multiplicity. 

Most eigendecomposition algorithms make use of 
the symmetric orthogonal transformations of the form 
A' = QAQ-l, where Q is any non- singular orthogo­
nal n x n matrix . This transformation has the charac­
teristic that the eigenvalues of A and A' are identical. 
Furthermore, if y is an eigenvector of A' , Q-ly is an 
eigenvector of A. The running time of the eigende­
composition algorithms is O(n3 ). However, the con­
stant in front of n3 can be as high as 25 for computing 
all the eigenvalues and eigenvectors. 

3.2. Generalized Eigenvalue Problem 
Given n x n matrices, A and B , the generalized eigen­
value problem corresponds to solving 

Ax = ABx. 

We represent this problem as eigenvalues of A - AB. 
The vectors x correspond to the eigenvectors of this 
equation . If B is non- singular and its condition num­
ber (defined in the next section) is low, the problem 

can be reduced to an eigenvalue problem by multi­
plying both sides of the equation by B- 1 and thereby 
obtaining: 

B-1Ax = AX. 

However, B may have a high condition number and 
such a reduction can cause numerical problems. Algo­
rithms for the generalized eigenvalue problems apply 
orthogonal transformations to A and B. In particu­
lar, we use the QZ algorithm for computing the eigen­
values and eigenvectors for this problem [GL89] . Its 
running time is O(n3 ). However, the constant can be 
as high as 75. Generally, it is slower by a factor of 
2.5 to 3 as compared to QR algorithm for computing 
eigenvalues and eigenvectors of a matrix. 

3.3. Condition Numbers 
The condition number of a problem measures the sen­
sitivity of a solution to small changes in the input. A 
problem is ill- conditioned if its condition number is 
large , and ill-posed if its condition number is infinite. 
These condition numbers are used to bound errors in 
computed solutions of numerical problems. More de­
tails on condition numbers are given in [GL89, WiI65]. 
The implementations of these condition number com­
putations are available as part of LAPACK [BDM89]. 

In our algorithm, we perform computations like 
matrix inverse and computing eigenvalues and eigen­
vectors of a matrix. Therefore, we are concerned with 
the numerical accuracy of these operations. 

4. Reduction to Eigenvalue Problem 

In this section we consider the problem of intersecting 
parametric curves and reduce it computing an eigen­
decomposition of a matrix. The same reduction is ap­
plicable to the intersection of algebraic plane curves 
as explained in [MD92] . 

In section 2 we had reduced the problem of inter­
secting parametric curves, P(t) and Q(u) of degree m 
and n, respectively, to finding roots of a matrix de­
terminant as shown in (3). Each entry of the m x m 
matrix, M (u), is a linear combination of Bernstein 
polynomials of degree n in u. Let us represent it as a 
matrix polynomial 

M(u) = Mnun + Mn_1un-1(1 - u) + .. . + Mo(1- ut, 

where Mi is a matrix with numeric entries. On divid­
ing the equation by (1 - u)n we obtain a polynomial 
of the form 

Mn(-l u )" + Mn- 1(-1 u )"-1 + ... + Mo. 
-u -u 

Substitute s = l~u and the new polynomial is of the 
form 
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In the original problem we were interested in the 
roots of Determinant(M(u)) = 0 in the range [0,1]. 
However, after reparametrizing we want to compute 
the roots of Determinant( M (s )) = 0 in the range 
[0, cx::>]. This can result in overflow problems if the 
original system has a root u ~ 1. In such cases Mn 
is nearly singular or ill-conditioned. Our algorithm 
takes care of such cases by linear transformations or 
using projective coordinates. 

Let us consider the case when Mn is a well­
conditioned matrix. Given M(s), we multiply the 
matrix polynomial by M;; 1 . As a result we obtain 

I 
- n - n-l -M(s)=Ims +Mn_ls + ... +Mo, 

where Im is an m x m identity matrix and Mi 
M;;l Mi for all i < n. Given the matrix polynomial 

I 

M (s) we compute a nm x nm matrix of the form 

0 Im 0 0 
0 0 Im 0 

c= ( ; ), (5) 

0 0 Im 
-Mo -Ml -M2 -Mn - 1 

such that the eigenvalues of C correspond exactly to 
the roots of Det(M(s)) = O. Furthermore C is a nu­
meric matrix of order mn. The proof of this property 
is given as part of Theorem 1.1 [GLR82] . The re-

I 

lationship between C and M (s) is identical to that 
between the characteristic polynomial of a matrix and 
its equivalent companion matrix [WiI65]. 

I 

Let A be an eigenvalue of C. As a result M (A) 
is a singular matrix. Let v = [Vl V2 ... vm]T be the 

vector in the kernel of M' (A) such that 

_, T 
M (A) (VI V2 . . . Vm ) (0 0 .. . O)T. (6) 

Corollary I: The eigenvector of C correspond­
ing to the eigenvalue A has the form V 
[v AV A2V ... An-1vjT, where V is a mn x 1 vector. 
Proof: [MD92] . 

It follows that the eigenvalues of C correspond ex­
actly to the preimages of intersection points on Q(u). 
However, we are only interested in the eigenvalues in 
the range So E [0, cx::>] and the preimages on the curve 
are obtained by substituting Uo = l~~o. This gives us 
a list of all the intersection points on Q( uo) such that 
Uo E [0 ,1]. However, these points on P(t) may not lie 
in the range t E [0 , 1]. As a result it is important for 
us to compute the preimage of the intersection point 
(xo, Yo, wo) = Q(uo) with respect to P(t) . We use 
the property of the linear system of equations (2) and 
Corollary I. 

Let us assume that (xo, Yo, wo) is a simple point 
on P(t). Points of higher multiplicity are accounted 
for in the next section. Substitute for (X, Y, W) = 
(xo, Yo, wo) in the matrix, M as shown in (2), corre­
sponding to the implicit representation of P(t) . The 
resulting matrix is singular and let us assume that 
its kernel has dimension one. Kernels of higher di­
mension correspond to higher order intersection . The 
vector in the kernel corresponds to v shown in (6). 
Given the eigenvector of C corresponding to the eigen­
value So, use Corollary I to compute the eigenvector 
v. Given v we use the structure of the linear system 
to compute the preimage of the point (xo, Yo, wo) by 
using the relation 

(l_ to)m-l to(1_to)m-2 ... t~-I)T =k(Vl V2 ... vmf, 

where k f. 0 is a constant . Thus, to = ~+ . The 
VI V2 

relationship between the eigenvalue So of C, elements 
Vl, V2 of the eigenvector V corresponding to So and 
the point of intersection (xo, Yo, wo) can be expressed 
as 

So V2 
(XO , YO,wo) = Q(-l -) = P(--). (7) + So VI + V2 

As a result we are able to compute all the points of 
intersection in the domain of interest by computing 
the eigendecomposition of C . • 

Let us consider the case, when the matrix Mn 
in (4) is ill-conditioned . One such case occurs when 
the preimage of the point of intersection on P(t) is 
to ~ 1. As a result, computation of M;;l and the cor­
responding reduction to the eigenvalue problem can 
introduce numerical problems . The general approach 
for solving such cases is the reduction to generalized 
eigenvalue problem. In this case we construct com­
panion matrices of the form [GLR82, Section 7.2] 

(I. ... 0 

f) ,c,{ 
-In 0 

-tJ c,= 1 
In ... 0 -In 

In 0 0 
0 Mn Mo Ml M n- 2 Mn-

such that the eigenvalues of Cls + C2 correspond ex­
actly to the roots of Det(M( s)) = O. Furthermore, the 
eigenvectors of this generalized system have a struc­
ture similar to V highlighted in Corollary I and is 
used for computing the inverse image of the intersec­
tion point with respect to P(t). 

Solving a generalized eigenvalue system is more 
expensive than the normal eigenvalue system (almost 
a factor of 3). In many cases, we can perform a linear 
transformation 011 the coordinate of the matrix poly­
nomial and reduce the resulting problem to an eigen­
value Eroblem. The basic idea involves transforming 
s = ~;t~ , where a , b, c and d are random numbers . 
The matrix polynomial M (s) in (4) is transformed 
into 
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~ P(s) = PnSn + Pn_ISn- 1 + ... + PIS + Po , 

where Pi'S are computed from the Mj's . If Pn is 
a well- conditioned matrix then the problem of inter­
section is reduced to an eigenvalue problem, otherwise 
use a different transformation (by a different choice of 
a,b,c and d) . The linear transformation is performed 
up to four or five times. If all the resulting leading ma­
trices, Pn , are ill- conditioned, the intersection prob­
lem is reduced to a generalized eigenvalue problem . 
There are cases when any linear transformation can 
result in an ill-conditioned leading matrix. Further­
more, the domain of the eigenvalue system obtained 
after transformation is [SI , S2) or [S2' sd depending 
upon the signs of a, b, c and d, where SI = -~ and 
S2 = - 4 . c 

4.1. Implementation and Performance 
The reduction to an eigenvalue or a generalized eigen­
value system involves estimating the condition num­
ber of a matrix, computing the matrix inverse and 
finding the eigenvalues of a matrix. For eigenvalues 
lying in the domain of interest , we compute the corre­
sponding eigenvectors. Furthermore , we also compute 
the condition number of each eigenvalue in the do­
main of interest. The condition number is a function 
of the left and right eigenvectors of the matrix. 

We used LAPACK implementation of eigende­
composition algorithms. Some of the routines were 
modified to compute the eigenvalues in the domain 
of interest. Furthermore, the domain was specified as 
ex + j(3, where ex > -f, 1(31 < ( and j = A . ( is a 
small positive constant used to account for the numer­
ical errors. In particular, we make f a function of the 
condition number of Mn or Pn for eigenvalue prob­
lems. To compute the inverse coordinate of the inter­
section point, the right eigenvector V corresponding 
to the eigenvalue So is computed. Let 

Analysis of the accuracy of eigenvector computation 
indicates that each term of the eigenvector has a 
similar bound on the absolute error of the compu­
tation . As a result we tend to use terms of maxi­
mum magnitude to minimize the error in the compu­
tation [MD92). In this case we compute the entries of 
v = [VI V2 ... vmjT as: 

[ ]
T {[VI,I VI,2 ... VI ,mf So :::; 1 

VI V2 ... Vm = I [ ]T 
(so) n Vn,1 V n ,2 .. • vn,m So > 1 

The performance of the algorithm is largely gov­
erned by the eigendecomposition routines. Roughly 
80 - 85% of the time is spent in these routines. The 
eigenvalue algorithms compute all the eigenvalues of 
the given matrix. It is difficult to restrict them to 
computing eigenvalues in the domain of interest. The 
order of the matrix, say p, corresponds to the prod­
uct of the degree of the two curves and the number of 
eigenvalues is equal to the order. The running time of 
the algorithm is a cubic function of p. The eigenvalue 
algorithms are iterative and have good convergence 
properties. It is a long observed fact that the algo­
rithm requires two iterations per eigenvalue. As a re­
sult it is possible to bound the actual running time of 
the eigenvalue computation by 10p3 for most cases. 
Furthermore the eigendecomposition algorithms are 
backward stable. We have been to able accurately 
compute the intersections of curves of degree up to 
ten. In practice it is possible to obtain accurate so­
lutions for matrices of order 100 or more. This is in 
contrast with computing roots of high degree univari­
ate polynomials (which is an ill-conditioned problems) 
or using symbolic computation for determinant com­
putation and finding the roots of the resulting poly­
nomial expressed in Bernstein basis using subdivision 
and iteration (which is relatively expensive and has 
slow convergence). 

4.2. Example of Curve Intersection 

In this section we illustrate the algorithm by 
considering the intersection of two rational cu­
bic Bezier curves. The example is taken from 
[Sed83) . The control points of two Bezier curves 
(as shown in Fig. 11) , expressed in homogeneous 
coordinates, are (4,1,1) , (5, 6, 2), (5,0,2), (6 ,4, 1) and 
(7 , 4,1), (1, 2, 2) , (9 , 2, 2) , (3, 4,1). Thus, 

where 

P(t) = (x(t) y(t)) 
w(t)' w(t) , 

x(t) = 4(1 - t)3 + 30(1 - t)2t + 30(1 _ t)t2 + 6t3 

y(t) = (1 - t)3 + 36(1 - t)2t + 4t3 

w(t) = (1 - t)3 + 6(1 - t)2t + 6(1 _ t)t2 + t 3 . 

The implicit representation has a matrix determinant 
formulation given as 

Given v the inverse coordinate, to , is computed using 
VI, V2 or Vm-l, Vm by making use of similar numerical 
properties. 

(

-114W+30X-6Y 30w -6x -6y 
M= 30w - 6x - 6y 1070w - 213x - 2y 

-lOw + 3x - 2y ) 
96w - 12x - 6y . 

-lOw + 3x - 2y 96w - 12x - 6y -120w + 24x - 6y 
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y 

x 
Fig. 11 

Intersection of rationa l cubic Bezier curves 

The second parametrization , Q(u) is substituted 
into the matrix formulation (after a reparametrization 
of the form s = I~J. The resulting matrix polyno­
mial has the form 

M(5) = (=~~ ~~~ ;:) 53 + (!~:6 ~5211066 -:~4) 82 

-9 36 -72 78 -144 504 

(

-576 72 -66) (72 -36 3) + 72 5118 432 5 + - 36 -429 -12 . 
-66 432 -648 3 -12 24 

The condition number of the leading matrix is 9.525 . 
Multiplying M(s) with the inverse of the lead­

ing matrix and constructing the equivalent compan­
ion matrix results in 

0 0 0 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 

c= 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 1 

1.48-1.070-11.92 4.58 0.40 17.8-8.240.40 
0.13 0.94 0 -0.53 -11.92 - .22 1.06 11.4 -0.23 
-.07 .44 .33 .30 - .53 -9.16- .61 4.74 6.83 

The eigendecomposition of C results in 9 points of 
intersection as shown in the following table. 

Intersection Eigenvalue Max. Error Parameter 
Number So Ei -1JL Uo = j:j:"sn 

1. 15 .369 2.32e-14 0.9389 
2. 11.802 2.85e-14 0.9219 
3. 5.507 2.71e-14 0.8463 
4. 1.4654 1.27e-13 0.5944 
5. 0.5361 2.32e-14 0.3490 
6. 0.1534 2.98e-14 0.133 
7. 0.0974 2.38e-14 0.0888 
8. 1.145 1.18e-13 0.534 
9. 0.0382 1.14e-14 0.0369 

eigenvectors we choose the elements VI or Vs depend­
ing upon their relative magnitudes. The error bounds 
in the third column are obtained by using the con­
dition number of the eigenvalues (as explained in 
[MD92]) and matrix norm as 

Ei = f " C " cond;, (8) 

where f = 2.2204e - 16 is the machine precision for 
64 bit IEEE floating point arithmetic and cond; is 
the condition number of the ith eigenvallle. As a re­
sult, the eigendecomposition algorithms compute the 
eigenvalues of C up to 12 digits of accuracy. The 
other sources of error arise from the computation of 
the entries of M, the matrix corresponding to the 
implicit representation , and inverting the leading ma­
trix of the matrix polynomial M(s) . In our case, this 
can account for inaccuracy of one digit (due to con­
dition number of the matrix to be inverted) . As a 
result , the intersection points are computed up to 11 
digits of accuracy. Further accuracy can be obtained 
by using one or two iterations of Newton 's method 
on the equations used for representing the problem 
of intersection . The output of the algorithm are the 
starting points for Newton's method. As a result the 
algorithm can be used to compute intersection points 
with high accuracy. 

5. Higher O r der Intersection 

In the previous section , we presented an algorithm 
to compute the simple intersections of parametric 
curves. In this section we extend the analysis to 
higher order intersections. 

According to Bezout 's theorem two rational 
curves of degree m and n intersect in mn points 
(counted properly) [WaI50). In our case , the preim­
ages of these points correspond to the mn eigenvalues 

Eigen vector 's Eigen vector's Parameter Point 

a=vl lv8 f3 = v21 v9 to= A (X , Y) 

0.2173 0.0472 0.1785 (4 .619 , 3.412) 
0.6657 0.4432 0.3997 (4.911 , 3.289) 
0.0703 1.000 0.9343 (5.688, 2.877) 
0.1614 1.000 0 .8610 (5 .467,2 .321) 

1.00 0.066 0.0622 (4.298 , 2.378) 

1.00 0.1233 0.1099 (4.455,2 .971) 
1.00 0.7277 0.4212 (4 .931,3 .218) 
1.00 0.4644 0.683 (4 .174,2.290) 
0179 0.00032 0.9823 (5.901 , 3.615) 

Eigendecom posi t ion and intersect ion points 

The intersections points are computed using the 
relationship highlighted in (7) . They are: In the 
columns corresponding to the components of the 

of C (5) . Higher order intersections are the points 
having more than one preimage. In other words, 
eigenvalues of multiplicity greater than one corre-
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spond to higher order intersection points. The in­
tersection multiplicity of these points corresponds to 
the algebraic multiplicity of the corresponding eigen­
value. These intersections arise due to the tangential 
intersection of the two curves at the point of contact 
or the intersection point is a singular point on at least 
one of the curves. Some higher order intersections are 
highlighted in Fig. Ill. They are: 

(a) Tangential intersection of two ellipses. The inter­
section multiplicity is 2. 

(b) Second order intersection of a parabola with a 
curve having a loop. 

(c) Intersection of an ellipse and a curve with a cusp. 
The intersection multiplicity is 2. 

(d) Tangential intersection of a parabola with a loop. 
The intersection multiplicity is 3. 

(a) (b) 

(c) (d) 
Fig. III 

Higher order intersections 

An intersection point, P , has multiplicity k, if a 
small perturbation in the coefficients of the curve (or 
the coefficients of the control polygon) results in k 
distinct intersection points in the neighborhood of P . 
Given two curves that intersect with multiplicity k at 
P, our algorithm computes the implicit representation 
and reduces the problem to an eigenvalue problem . 
The latter computation involves matrix inversion and 
multiplications using floating point operations. As a 
result, C in (5), corresponds to a slightly perturbed 
problem and k of its eigenvalues, say ..\1 , ..\2 , ... , ..\k 
are very close to ..\ , the eigenvalue corresponding to 
P (assuming exact arithmetic). The eigendecomposi­
tion algorithms use floating point arithmetic and the 
computed eigenvalues correspond to ..\~ , ..\~, ... , ..\~. 

However the problem of computing eigenvalues of 
multiplicity greater than one can be ill- conditioned 
[GL89, WiI65]. As a result ..\; may agree with ..\ up 
to a few digits of accuracy. This can be determined 
from the condition number of ..\;. In such cases the 
mean of "\; 's given by 

).' = ).~ + ).; + ... + ).~ 
k 

is much better conditioned. This can be verified by 
computing the condition number of a cluster of eigen­
values [BDM89] . As a result ..\ ' is very close to ..\ , the 
eigenvalue of multiplicity k. The number k corre­
sponds to the number of ill-conditioned eigenvalues, 
..\;, located in the small neighborhood of each other. 
We illustrate this technique using the following exam­
ple. 
Example: Consider the intersection of cubic curve, 
P (t) = (x(t), y(t)) = (t 2 - 1, t3 - t) with the parabola 
Q(u) = (x(u), y(u)) = (u 2 + u, u2 

- u) (as shown in 
Fig . IV) . The cubic curve has a loop at the origin. We 
are interesting in computing all the intersection points 
corresponding to the domain t x u = [-2,2] x [-1 , 1]. 

y 

x 

Fig . V 
Higher order intersection of a cubic curve and a 

parabola 

The implicit representation of P (t) is a matrix 
determinant of the form 

( 

-w-x 
M= -y 

w+x 

-y 
x 
o 

w+X ) o . 
-w 

After substituting and reducing the problem to an 
eigenvalue problem we obtain a 6 x 6 matrix 

0 0 0 1 0 
0 0 0 0 1 

c = ( 0 
0 0 0 0 

-1 0 1 -1 0 
-1 0 1 -2 -1 
-1 0 -2 -2 

I ). 
-1 
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The relevant eigenvalues of this matrix and their con­
dition numbers are: 

Intersection Eigenvalue Cond. Number , 
Number Ai Condi 

1. 0.0 1.2171 
2. -0 .00000001296346 4.86e09 
3. 0.00000001296346 4.86e09 

Elgenvalues corresponding to higher order 
intersections 

Thus, the second and third eigenvalues have a high 
condition number. Taking their average we obtain 
>.' = 0.0, and it has a low condition number. As a 
result, we conclude that >.' = 0.0 is an eigenvalue of 
multiplicity 3 and the curves have a triple intersection 
at Q(O.O) = (0 .0,0 .0). 

Q.E.D. 
The procedure highlighted above is used for com­

puting the intersection multiplicity of the point. How­
ever, the intersection can arise from tangential inter­
section, singular points or their combinations. The 
rest of the analysis deals with determining the nature 
of intersection. 

Given an eigenvalue, >., of algebraic multiplicity 
k, its geometric multiplicity corresponds to the di­
mension of the kernel of (C - >'1). After accurately 
computing the algebraic multiplicity of the eigen­
value, we compute its geometric multiplicity. further­
more, the algorithm computes a basis of the vectors 
spanning the kernel. Depending upon the nature of 
intersection the geometric multiplicity is less than or 
equal to algebraic multiplicity. The exact relationship 
between the multiplicities and nature of intersection 
has been described in [MD92]. Here we highlight the 
relationship for the examples in Fig. III and IV. We 
assume that the curves drawn in dark font are be­
ing implicitized. The curves highlighted in light font 
are substituted into the implicit representation. The 
choice of curve for implicitization has an impact on 
the geometric multiplicities of the matrix, although 
the algebraic multiplicities are unaffected [MD92] . 

Example Algebraic Geometric 
Figure Multiplicity Multiplicity 

III ( a) 2 1 
III(b) 2 2 
III( c) 2 2 
III(d) 3 2 

IV 3 2 

Algebraic and geometric multiplicities of 
eigenvalues corresponding to Figs. III and IV 

In case the geometric multiplicity is 1, the computa­
tion of the preimage corresponds exactly to the pro­
cedure described in the previous section . If the ge-

ometric multiplicity is greater than 1, the algorithm 
for preimage computation involves equation solving. 
Let us illustrate for Fig. V. 

In the example corresponding to Fig . V, the 
intersection multiplicity is 3. If we implicitize the 
parabola and substitute the cubic curve into the im­
plicit form, the eigenvalue corresponding to the origin 
has algebraic multiplicity 3 and geometric multiplic­
ity l. This is due to the fact that the parabola is 
intersecting the cubic curve tangentially at the loop, 
corresponding to the origin. The fact that the inter­
section point is a loop implies that P(t) has two dis­
tinct preimages tl = 1 and t2 = -l. As a result both 
the vectors VI = [1 tl trf and V 2 = [1 t2 t~]T lie in the 
kernel of M after we substitute x = 0, y = 0, w = l. 
Since these vectors are linearly independent they con­
stitute the basis of the eigenvectors corresponding to 
>. = O. However, the eigendecomposition algorithm 
can return any two linearly independent vectors of 
the form V I = al VI + a2v 2 and V 2 = {3I VI + {32v2, 

where a; 's and {3j'S are scalars. The rest of the al­
gorithm involves computing VI and V2 from V I and 
V 2. This corresponds to computing the scalars and 
can be achieved by equation solving [MD92]. 

6. Conclusion 

In this paper we have highlighted a new technique 
for computing the intersection of parametric and al­
gebraic curves. The algorithm involves use of re­
sultants to represent the implicit representation of a 
parametric curve as a matrix determinant . The in­
tersection problem is being reduced to an eigenvalue 
problem. The algorithm is very robust and can ac­
curately compute the intersection points. There is a 
nice relationship between the algebraic and geomet­
ric multiplicities of the eigenvalues and the order of 
intersection. We used this relationship in accurately 
computing such intersections . Efficient implementa­
tions of eigenvalue routines are available as part of 
linear algebra packages and we used them in our im­
plementations. 

The approach highlighted here is also useful for 
intersecting curves and surfaces. In particular , the 
implicit representation of a parametric surface can be 
represented as a matrix determinant [MC91]. The 
parametric space curve is substituted into the im­
plicit formulation and the problem can therefore, be 
reduced to an eigenvalue problem. This can be di­
rectly used for ray tracing parametric patches, as a 
ray corresponds to degree one parametric curve. 
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