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Abstract 
This paper describes a technique for computing the in­
tersections of two parametric surfaces based on interval 
arithmetic. The algorithm, which can be stopped and 
restarted at any point, uses search techniques to refine its 
description of the intersections progressively. Interval 
arithmetic provides guaranteed points on the intersec­
tion curves to within a user-specified tolerance. These 
points are connected into polygons and used to trian­
gulate the trimmed surfaces. We provide details of an 
implementation and give examples of the algorithm's 
use. 

Resume 
Cet article decrit une technique pour calculer les inter­
sections de deux surface parametriques avec l'intervalle 
arithmetique. L'algorithme utilise des techniques de 
recherche pour augmenter la preCision des intersec­
tions, et peut etre interrompu ou redemarrer a n'importe 
quel moment. L'intervalle arithmetique nous donne des 
points garantis sur les courbes d'intersections . Nous 
creons des polygons avec les points et triangulons les 
regions interieurs. Nous exposon en detail un modele 
de mise en oeuvre et nous donnons des exemples de 
l'utilisation de I' algorithme. 
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1 Introduction 

Finding the intersection of two parametric surfaces 
is an important problem in Computer Aided Geomet­
ric Design. It is useful in many applications such as 
trimming surfaces and performing boolean operations 
on boundary representation geometric models[17] . The 
difficulty of this problem forces solutions to trade gen­
erality, robustness, and performance. 
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Here, we present a method for intersecting parametric 
surfaces based on interval arithmetic. The method is 
very general, placing few restriction on the class of sur­
faces it can handle. Nonetheless, the intersection points 
it finds are are guaranteed to be within a specified tol­
erance. Since the method continually refines its results, 
a valid estimate of the intersection is always available 
during execution. As a consequence, the algorithm can 
be stopped when tolerance criteria or time bounds are 
met and restarted if the results are unacceptable. Ad­
justing the tolerances makes it posible to trade accuracy 
or sampling rate for computation time. 

In sections two and three, we briefly review previous 
work on the intersection problem and describe the ba­
sics of interval arithmetic. Then section four describes 
the algorithm for finding intersection points, formulat­
ing the the task as a search problem. Finally, section 
five addresses the issue of linking the intersection points 
together and triangulating the bounded regions of para m­
eter space. Results from our prototype implementation 
are presented for a variety of shapes. 

2 Related Work 

Surface intersection problems have been widely stud­
ied because of their practical importance (see [16] or [12l 
for a survey). The general problem is to find the set of 
points where two surfaces coincide in space. While two 
surfaces typically intersect at a set of space curves, the 
intersection may also contain distinct points or surface 
elements in degenerate cases. 

Parametric representations define surfaces by maps 
from the plane to three-dimensional Euclidean space. 
These representations are extremely popular because of 
their convenience for a variety of modeling and ren­
dering purposes. Unfortunately, parametric surfaces are 
very difficult to intersect[16]. 

In general, exact analytical solutions for surface inter-
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section problems are unavailable or impractical, since 
even simple surfaces can meet at very complicated 
curves[II]. As a consequence practical solutions to 
the intersection problems must resort to approximating 
the solution . Following Barnhill et. al.[4], we charac­
terize these approximations by tolerances which specify 
how closely the approximation must match the actual 
intersection. 

The literature on surface intersections contains a 
wide variety of approaches. The most common are 
marching and subdivision. Marching methods (e.g. 
[3, 14, 12, 5, 4, 6]), begin with points known to be 
at the intersection of the two surfaces and use numerical 
techniques to compute successive points on the intersec­
tion curve. In addition to the numerical challenges of 
progressing around the curve, these techniques face the 
additional task of finding the initial points from which 
to begin marching. 

Subdivision is another approach to finding the inter­
section of two surfaces. The basic idea (e.g. [16, 9, 7]) 
is to divide the surface intersection problem into smaller 
pieces until each piece is a solvable problem. For exam­
ple, Houghten et. al. [9] subdivide surfaces until each 
piece is nearly planar and use the fact that intersections 
of planar elements can be calculated directly. 

One difficulty with subdivision approaches is that they 
require a way of deciding whether the subproblems are 
adequately modeled by the solvable problems, for ex­
ample deciding if a surface segment is nearly planar 
[9]. A second difficulty is that the results are often not 
guaranteed at all, or only guaranteed for a very restricted 
class of surfaces. For example, some powerful recent re­
sults (e.g. [19,18]) apply only to polynomial or rational 
functions. Even if the results can be guaranteed, many 
subdivision techniques have poor performance [19] be­
cause they need to search exhaustively for intersections. 

Our approach has several advantages over typical sub­
di vision approaches. The use of interval arithmetic per­
mits us to make guarantees about finding points on the 
intersection curve without placing severe restrictions on 
the class of surfaces the algorithm can handle. The para­
metric mappings can be expressed in terms of trigono­
metric functions, for example, with no particular diffi­
culty. In addition, the subdi vision strategy we use avoids 
exhaustive search in most cases. By adjusting the toler­
ances used for stopping conditions, the tradeoffbetween 
time and accuracy can be user controlled. 

Interval arithmetic has been used for a variety of pur­
poses in computer graphics[15, 13, I, 20, 21]. Mudar 
and Koparkar [15] present the basic idea of using inter­
val arithmetic to identify surface intersections but make 
no mention of the issues involved in creating efficient 
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reliable algorithms which provide descriptions of inter­
section curves within user specified tolerances. The 
work of Yon Herzen and Barr[22] is very similar, using 
Lipschitz conditions to evaluate bounding regions for 
portions of surfaces. The Lipschitz conditions are de­
rived by hand for each new analytic surface, unlike the 
automatic interval arithmetic used here. Yon Herzen and 
Barr also do not address the issue of finding the intersec­
tions themselves, instead relying on implicit functions 
for breaking objects into pieces. 

3 Interval Arithmetic 

Interval arithmetic is a method for providing a bound 
on the output of a function given bounds on all of its 
inputs. This section provides a brief introduction to in­
terval arithmetic and its relevance to the surface/surface 
intersection problem. 

Interval arithmetic is based on the idea of extending 
ordinary scalar operations to intervals on the real line. 
If S is an interval, we can write it as (Smin, Smar) to 
denote a quantity whose value lies somewhere between 
Smin and Smar. With every ordinary scalar function, 
say 1(8, t) , we associate an interval function F(S, T), 
which provides a bound on 1(8, t) given bounds on 8 

and t . We begin by defining the interval functions corre­
sponding to primitive operations (e.g. basic arithmetic 
operations and trigonometric functions). For example, 
if 1(8, t) = 8 + t, we can define F(S, T) to be the in­
terval (Smin + Tmin , Smar + Tmar) . Clearly, if 8 and 
t are within their bounds, their sum must lie in the inter­
val F(S, T) . Similar rules can be developed for a wide 
variety of elementary functions[2]. 

Once we have defined a set of interval functions cor­
responding to primitive operations, we can create more 
complicated interval functions by composing them. The 
interval function corresponding to I(g( q, r) , h( 8 , t)), for 
example, is simply F(G(Q, R) , H(S, T)). We have au­
tomated this operation by defining a set of operations on 
intervals using the operator overloading capabilities of 
C++. 

Parametric surfaces are defined by mappings from 
(u , v) to (x , y , z). If we use interval arithmetic to rep­
resent the mapping, then we have an interval function 
which maps from (U, V) to (X, Y, Z) . The interval map­
ping provides an axis-aligned bounding box in world 
space for every rectangular region of parameter space. 
The bounding box may not be a tight bound, but we are 
guaranteed that it contains the piece of the parametric 
surface defined by the rectangular region of parameter 
space. 
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4 An Interval Approach to Surface Inter­
section 

Suppose that we have two parametric surfaces and 
their corresponding interval functions. If we pick a 
rectangle in each parameter space, the interval functions 
provide a pair of bounding boxes, one for each surface. 
We make use of the bounding boxes as follows. If 
the bounding boxes do not overlap, we know that the 
surfaces do not intersect in the corresponding parameter­
space rectangles. In that case, we need not examine 
these regions of parameter space any further. If the 
bounding boxes do overlap, the surfaces might intersect 
in the corresponding regions of parameter space, but we 
cannot be sure that they do. To learn more, we can 
subdivide the parameter space. Suppose we subdivide 
until the bounding boxe!. all have diagonals smaller than 
(/2. Then if we find a pair of intersecting bounding 
boxes from the two surfaces, we can conclude that the 
surfaces approach each other to within a distance of ( 
in the corresponding regions of parameter space. We 
refer the corresponding parameter-space regions in such 
a case as a "dot" and its "mate." Each dot gives us a point 
on the intersection curve to within the dot tolerance f. 

The problem is to find an appropriate set of dots which 
can be linked together to form the trimming curve. 

4_1 A Simple Interval Intersection Method 

One way to find an appropriate set of dots is to divide 
each parameter space into a uniform grid, but the cost 
of such a subdivision is prohibitive. Instead, interval 
algorithms usually divide space hierarchically, only di­
viding up regions of space which may contain solutions. 
In addition to time and space efficiency, the hierarchical 
alogithms have the advantage of progressive refinement 
approaches: at all times there is a valid approximation 
of the entire solution and the approximation improves as 
the algorithm progresses. 

To avoid having to compare every square in one pa­
rameter space against every square in the other, each leaf 
node of the tree maintains a list of the leaf nodes in the 
other tree which it overlaps. Since the bounding volume 
of a child must be completely contained within the vol­
ume of its parent, when we subdivide, we only need to 
check the new children against the boxes intersected by 
their parents. The subdivision step of our algorithm is: 
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Subdivide(node) 
if node's intersect list is not empty 

subdivide node into children 
for each i in node's intersect list 

remove node from i's intersect list 
for each child of node 

if child overlaps i 
add i to child's intersect list 
add child to i's intersect list 

The basic algorithm for finding intersections is to pick 
a leaf node from one of the trees and subdivide it. A 
list of "live" leaf nodes (Le.: ones which contain over­
laps) provides a description of the current model of the 
intersection curve as well as a "to do" queue. How the 
next node to be divided is chosen from the list of poten­
tial choices provides control over the search algorithm. 
An obvious choice is searching breadth-first by always 
choosing the node closest to the root of its tree, which 
produces an even distribution of sampling (Figure 1). 
However, we use the ability to control search to create 
algorithms which fit our needs. 

4.2 Search Strategy 

Our goal is to compute a set of points on the intersec­
tion curves, link them into a polygonal approximation 
and triangulate the region bounded by the polygon (in­
terior or exterior as appropriate) . Doing this requires 
that we be able to find a set of isolated points on the 
intersection curves (dots) with a controllable sampling 
rate. We do this with a two-part search strategy. The 
first part is a breadth-first search which ensures that each 
region of parameter space that could possibly contain an 
intersection is subdivided to a minimum degree. After 
the breadth-first subdivision, we are left with a set of 
"live" regions of parameter space which could stilI con­
tain intersections based on the interval arithmetic tests . 
Many of these live regions turn out to be false positives­
regions which in fact do not contain any intersections de­
spite overlapping bounding boxes. In the second stage 
of the algorithm, we resolve the false positives using 
depth-first subdivision. We either find a dot to witness 
the intersection, or prove that no intersection exists. Fig­
ure I illustrates the results of the second search phase. 
The algorithm has proven that many of the live regions 
of parameter space in figure 2 really do not contain any 
intersections. In each of the remaining regions, the algo­
rithm provides a dot and its mate in the other parameter 
space. 
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Figure 1: Stages in the breadth-first refinement of the intersection of a torus and a plane. On top is a display of 
the parameter space of the torus, on the bottom is the plane. All nodes are enclosed by squares. Leaf nodes with 
non-empty intersect lists are filled with grey. 

Beginning with breadth-first subdivision and contin­
uing with depth-first subdivision allows us to control 
dot spacing and dot accuracy separately. The level of 
the breadth-first subdivision controls the spacing, and 
the level of the depth-first subdivision controls the ac­
curacy. This separate control is extremely valuable in 
practical situations, and is lacking in many algorithms. 

5 Stringing and Triangulating 

The interval refinement algorithm presented in the 
preceding sections provides a bounding region on the 
curves and points on the curves. In this section, we 
consider the problem of connecting these points together 
to build a polygonal representation of the curve and 
to triangulate only a part of parameter space bounded 
by these curves, to provide a "trimming" operation of 
cutting one surface against another. 

The output of the interval refinement algorithm could 
be used to drive a marching method intersection. The 
points provide starting locations, and the bounding re­
gions could help control the search. However, we are 
interested in directly applying the found points since 
we assume the user has specified tolerances which will 
provide a sufficient number of points to be found. 

The first thing to notice about the dot connection prob­
lem is that the solution is not uniquely determined by the 
positions of the dots and their surrounding regions . Fig­
ure 3 illustrates the kinds of ambiguity which can arise. 
In order to string the dots into a chain, we must make 
further assumptions about the underlying intersection 
curve. 

In stringing the intersection points together, we as-

Figure 4: A "bump" is common case where our stringing 
assumptions fail. It is easy to create a hueristic which 
handles this special case. 

sume that the intersection curve has low curvature rela­
tive to the grid size, and that different curves ~e always 
seperated by a grid cell at all points along their length. 
If we are interested in curves which do not cross , this 
restriction is acceptable if we pick a sufficiently small 
grid size. Under these assumption, an intersection curve 
will almost always pass through a cell exactly once, en­
tering and exiting through different sides. Each grid 
cell which contains part of the intersection will be adja­
cent to exactly two others, unless it is at an edge. It is 
straightforward to connect the dots in this case. 

Even if the intersection curve is well-behaved, quan­
tization errors can cause the two neighbor assumption to 
be violated at any grid resolution. An example of such 
an error is the "bump" shown in Figure 4. Fortunately, 
this type of situation is not too difficult to deal with. If 
we remove the top-most dot in figure 4, the two-neighbor 
condition is restored and it is easy to connect the dots. 
Our stringer identifies such situations and removes dots 
to resolve the ambiguity. 

Although we are unable to provide strong guarantees 
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Figure 2: Dot finding is applied to the example of Figure 1. The white circles represent dots. For each gray square 
in Figure 1, a search for a dot was executed . If no dot was found, the square is rejected, and is not shaded. 

Figure 3: Although the stringing order for a set of dots may seem obvious, the curve may actually do something 
else. Without making further assumptions, points and bounding regions cannot uniquely determine a stringing order. 
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about the robustness of our stringer, it has performed 
well in our limited tests. Obviously, if the intersection 
is not a curve, but rather some degenerate case such as 
a surface region, stringing will not succeed in building 
a curve. Curves which intersect, or meet with tangency, 
violate the two neighbor criteria. By delaying decisions 
about ambiguous cases, other parts of the curves can be 
built correctly, typically providing enough information 
to make the stringing decisions, or at least satisfy the 
user. In cases that remain ambiguous, our prototype 
implementation uses further depth-first subdivision to 
verify the dot positions. We continue to explore other 
ways to resolve ambiguous situations with additional 
subdivision 
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Once the dots on each surface are connected, corre­
sponding chains on each surface can be merged. This 
is important since we want to have one description of 
the curve which has the property that it includes a dot in 
each grid cell of both parameter spaces through which it 
passes. 

5.1 Triangulating Trimmed Surfaces 

One of our motivations for performing intersection 
calculations is to create trimmed surfaces which can be 
sewn together. In such cases it is crucial that the pieces 
can be assembled and mate together without "cracking" 
at the seams. In order for surfaces to fit together without 
cracks, their edges (as space curves) must be identical. 

Our intersection method provides us with chains of 
dots in the parameter space of each surface which form 
piecewise linear approximations to the edges of the 
trimmed surface. If we triangulate two regions of differ­
ent parameter spaces bounded by the same chains, the 
triangles will match without cracking, as shown in figure 
5. 

In our prototype implementation, we use a flood fill 
to place triangles in each grid square bounded by the in­
tersection curves and then march around the intersection 
curve to fill in small triangles around the edge. This sim­
ple strategy has the disadvantage that it is not adaptive. 
To get sufficient detail around complicated intersections, 
we must also create large numbers of triangles in other 
areas of the surfaces. Techniques for doing adaptive 
subdivision could easily be added to our triangulation 
scheme, and in fact can employ information provided 
by the interval evaluations. 

6 Status and Directions 

We have implementeJ interval arithmetic as part of 
our mathematical tool kit in C++[8] . The algorithm de­
scribed in this paper has been implemented and incorpo-

rated in an interactive scene composition program (used 
to create figures 5,6, and 7) and in a mathematical mod­
eling system [10]. 

Figures 5, 6, and 7 show results of our algorithm. 
In figure 5, the intersection curve is used to cut the 
sphere and cone to create a boundary representation of 
the boolean subtraction. The front row shows the results 
for three different levels of initial breadth-first search. 
Note that since dot size is controlled independently of 
spacing, even coarse tesselations with few points on 
the intersection curve still yield objects without cracks. 
The boolean union is rendered in the rear center. On 
each side, the separate objects are rendered with textures 
showing their parameterizations. The red curve on the 
texture is the trimming curve found by the algorithm. 
We have rotated the sphere so that its trimming curve is 
visible. The checkerboard pattern shows the cells that 
would be created by a uniform subdivision of parameter 
space to the level used in the breadth-first search of the 
front-center subtraction. Note that the actual breadth­
first subdivision is not uniform. The blue squares are 
breadth-first subdivisions through which the trimming 
curve passes. 

In figure 6, a sphere whose radius is modulated with 
a sinusoid is intersected with a torus. Figure 7 shows 
the intersection of a sin( r) / (r + f) height field with 
a sphere. In both cases, the objects have been texture 
mapped in the same manner as figure 5. Figure 7 shows 
the union from top and bottom. 

Although the prototype has been useful for creating 
a wide variety of interesting objects, there are several 
extensions to the basic algorithm which would be inter­
esting to explore. For example, the search and trian­
gulation techniques could be made to be non-uniform 
and adaptive to improve performance on surfaces with 
varying levels of detail. Stringing could be improved by 
using further subdivision to disambiguate difficult cases. 

The surface intersection technique presented here can 
handle a very wide variety of surfaces because of its 
reliance on interval arithmetic. The algorithm progres­
sively refines its model of the curve until user specified 
tolerances are met allowing separate control over the 
spacing and accuracy of the intersection points. String­
ing the points together and triangulating the resulting 
parameter-space regions makes it possible to construct 
crack-free boundary representations of objects which are 
difficult t~ create with other methods. 
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Figure 5: Trimming a cone against a sphere. Note that even coarse tesselations are crack-free. 

Figure 6: Intersection of a five-lobed surface and a torus . 

Figure 7: Intersecting a sphere with a sin(r)/r bump. The middle right is a bottom view of the middle left. 
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