
242

An Interval Refinement Technique for Surface
Intersection

Michael Gleicher
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890
gleicher@cs.cmu.edu

Abstract
This paper describes a technique for computing the in­
tersections of two parametric surfaces based on interval
arithmetic. The algorithm, which can be stopped and
restarted at any point, uses search techniques to refine its
description of the intersections progressively. Interval
arithmetic provides guaranteed points on the intersec­
tion curves to within a user-specified tolerance. These
points are connected into polygons and used to trian­
gulate the trimmed surfaces. We provide details of an
implementation and give examples of the algorithm's
use.

Resume
Cet article decrit une technique pour calculer les inter­
sections de deux surface parametriques avec l'intervalle
arithmetique. L'algorithme utilise des techniques de
recherche pour augmenter la preCision des intersec­
tions, et peut etre interrompu ou redemarrer a n'importe
quel moment. L'intervalle arithmetique nous donne des
points garantis sur les courbes d'intersections . Nous
creons des polygons avec les points et triangulons les
regions interieurs. Nous exposon en detail un modele
de mise en oeuvre et nous donnons des exemples de
l'utilisation de I' algorithme.

Keywords: Surface Intersection, Interval Arithmetic

1 Introduction

Finding the intersection of two parametric surfaces
is an important problem in Computer Aided Geomet­
ric Design. It is useful in many applications such as
trimming surfaces and performing boolean operations
on boundary representation geometric models[17] . The
difficulty of this problem forces solutions to trade gen­
erality, robustness, and performance.

Michael Kass
Apple Computer

20525 Mariani Ave.
Cupertino, CA 95014
kass@apple.com

Here, we present a method for intersecting parametric
surfaces based on interval arithmetic. The method is
very general, placing few restriction on the class of sur­
faces it can handle. Nonetheless, the intersection points
it finds are are guaranteed to be within a specified tol­
erance. Since the method continually refines its results,
a valid estimate of the intersection is always available
during execution. As a consequence, the algorithm can
be stopped when tolerance criteria or time bounds are
met and restarted if the results are unacceptable. Ad­
justing the tolerances makes it posible to trade accuracy
or sampling rate for computation time.

In sections two and three, we briefly review previous
work on the intersection problem and describe the ba­
sics of interval arithmetic. Then section four describes
the algorithm for finding intersection points, formulat­
ing the the task as a search problem. Finally, section
five addresses the issue of linking the intersection points
together and triangulating the bounded regions of para m­
eter space. Results from our prototype implementation
are presented for a variety of shapes.

2 Related Work

Surface intersection problems have been widely stud­
ied because of their practical importance (see [16] or [12l
for a survey). The general problem is to find the set of
points where two surfaces coincide in space. While two
surfaces typically intersect at a set of space curves, the
intersection may also contain distinct points or surface
elements in degenerate cases.

Parametric representations define surfaces by maps
from the plane to three-dimensional Euclidean space.
These representations are extremely popular because of
their convenience for a variety of modeling and ren­
dering purposes. Unfortunately, parametric surfaces are
very difficult to intersect[16].

In general, exact analytical solutions for surface inter-

Graphics Interface '92

section problems are unavailable or impractical, since
even simple surfaces can meet at very complicated
curves[II]. As a consequence practical solutions to
the intersection problems must resort to approximating
the solution . Following Barnhill et. al.[4], we charac­
terize these approximations by tolerances which specify
how closely the approximation must match the actual
intersection.

The literature on surface intersections contains a
wide variety of approaches. The most common are
marching and subdivision. Marching methods (e.g.
[3, 14, 12, 5, 4, 6]), begin with points known to be
at the intersection of the two surfaces and use numerical
techniques to compute successive points on the intersec­
tion curve. In addition to the numerical challenges of
progressing around the curve, these techniques face the
additional task of finding the initial points from which
to begin marching.

Subdivision is another approach to finding the inter­
section of two surfaces. The basic idea (e.g. [16, 9, 7])
is to divide the surface intersection problem into smaller
pieces until each piece is a solvable problem. For exam­
ple, Houghten et. al. [9] subdivide surfaces until each
piece is nearly planar and use the fact that intersections
of planar elements can be calculated directly.

One difficulty with subdivision approaches is that they
require a way of deciding whether the subproblems are
adequately modeled by the solvable problems, for ex­
ample deciding if a surface segment is nearly planar
[9]. A second difficulty is that the results are often not
guaranteed at all, or only guaranteed for a very restricted
class of surfaces. For example, some powerful recent re­
sults (e.g. [19,18]) apply only to polynomial or rational
functions. Even if the results can be guaranteed, many
subdivision techniques have poor performance [19] be­
cause they need to search exhaustively for intersections.

Our approach has several advantages over typical sub­
di vision approaches. The use of interval arithmetic per­
mits us to make guarantees about finding points on the
intersection curve without placing severe restrictions on
the class of surfaces the algorithm can handle. The para­
metric mappings can be expressed in terms of trigono­
metric functions, for example, with no particular diffi­
culty. In addition, the subdi vision strategy we use avoids
exhaustive search in most cases. By adjusting the toler­
ances used for stopping conditions, the tradeoffbetween
time and accuracy can be user controlled.

Interval arithmetic has been used for a variety of pur­
poses in computer graphics[15, 13, I, 20, 21]. Mudar
and Koparkar [15] present the basic idea of using inter­
val arithmetic to identify surface intersections but make
no mention of the issues involved in creating efficient

243

reliable algorithms which provide descriptions of inter­
section curves within user specified tolerances. The
work of Yon Herzen and Barr[22] is very similar, using
Lipschitz conditions to evaluate bounding regions for
portions of surfaces. The Lipschitz conditions are de­
rived by hand for each new analytic surface, unlike the
automatic interval arithmetic used here. Yon Herzen and
Barr also do not address the issue of finding the intersec­
tions themselves, instead relying on implicit functions
for breaking objects into pieces.

3 Interval Arithmetic

Interval arithmetic is a method for providing a bound
on the output of a function given bounds on all of its
inputs. This section provides a brief introduction to in­
terval arithmetic and its relevance to the surface/surface
intersection problem.

Interval arithmetic is based on the idea of extending
ordinary scalar operations to intervals on the real line.
If S is an interval, we can write it as (Smin, Smar) to
denote a quantity whose value lies somewhere between
Smin and Smar. With every ordinary scalar function,
say 1(8, t) , we associate an interval function F(S, T),
which provides a bound on 1(8, t) given bounds on 8

and t . We begin by defining the interval functions corre­
sponding to primitive operations (e.g. basic arithmetic
operations and trigonometric functions). For example,
if 1(8, t) = 8 + t, we can define F(S, T) to be the in­
terval (Smin + Tmin , Smar + Tmar) . Clearly, if 8 and
t are within their bounds, their sum must lie in the inter­
val F(S, T) . Similar rules can be developed for a wide
variety of elementary functions[2].

Once we have defined a set of interval functions cor­
responding to primitive operations, we can create more
complicated interval functions by composing them. The
interval function corresponding to I(g(q, r) , h(8 , t)), for
example, is simply F(G(Q, R) , H(S, T)). We have au­
tomated this operation by defining a set of operations on
intervals using the operator overloading capabilities of
C++.

Parametric surfaces are defined by mappings from
(u , v) to (x , y , z). If we use interval arithmetic to rep­
resent the mapping, then we have an interval function
which maps from (U, V) to (X, Y, Z) . The interval map­
ping provides an axis-aligned bounding box in world
space for every rectangular region of parameter space.
The bounding box may not be a tight bound, but we are
guaranteed that it contains the piece of the parametric
surface defined by the rectangular region of parameter
space.

Graphics Interface '92

4 An Interval Approach to Surface Inter­
section

Suppose that we have two parametric surfaces and
their corresponding interval functions. If we pick a
rectangle in each parameter space, the interval functions
provide a pair of bounding boxes, one for each surface.
We make use of the bounding boxes as follows. If
the bounding boxes do not overlap, we know that the
surfaces do not intersect in the corresponding parameter­
space rectangles. In that case, we need not examine
these regions of parameter space any further. If the
bounding boxes do overlap, the surfaces might intersect
in the corresponding regions of parameter space, but we
cannot be sure that they do. To learn more, we can
subdivide the parameter space. Suppose we subdivide
until the bounding boxe!. all have diagonals smaller than
(/2. Then if we find a pair of intersecting bounding
boxes from the two surfaces, we can conclude that the
surfaces approach each other to within a distance of (
in the corresponding regions of parameter space. We
refer the corresponding parameter-space regions in such
a case as a "dot" and its "mate." Each dot gives us a point
on the intersection curve to within the dot tolerance f.

The problem is to find an appropriate set of dots which
can be linked together to form the trimming curve.

4_1 A Simple Interval Intersection Method

One way to find an appropriate set of dots is to divide
each parameter space into a uniform grid, but the cost
of such a subdivision is prohibitive. Instead, interval
algorithms usually divide space hierarchically, only di­
viding up regions of space which may contain solutions.
In addition to time and space efficiency, the hierarchical
alogithms have the advantage of progressive refinement
approaches: at all times there is a valid approximation
of the entire solution and the approximation improves as
the algorithm progresses.

To avoid having to compare every square in one pa­
rameter space against every square in the other, each leaf
node of the tree maintains a list of the leaf nodes in the
other tree which it overlaps. Since the bounding volume
of a child must be completely contained within the vol­
ume of its parent, when we subdivide, we only need to
check the new children against the boxes intersected by
their parents. The subdivision step of our algorithm is:

244

Subdivide(node)
if node's intersect list is not empty

subdivide node into children
for each i in node's intersect list

remove node from i's intersect list
for each child of node

if child overlaps i
add i to child's intersect list
add child to i's intersect list

The basic algorithm for finding intersections is to pick
a leaf node from one of the trees and subdivide it. A
list of "live" leaf nodes (Le.: ones which contain over­
laps) provides a description of the current model of the
intersection curve as well as a "to do" queue. How the
next node to be divided is chosen from the list of poten­
tial choices provides control over the search algorithm.
An obvious choice is searching breadth-first by always
choosing the node closest to the root of its tree, which
produces an even distribution of sampling (Figure 1).
However, we use the ability to control search to create
algorithms which fit our needs.

4.2 Search Strategy

Our goal is to compute a set of points on the intersec­
tion curves, link them into a polygonal approximation
and triangulate the region bounded by the polygon (in­
terior or exterior as appropriate) . Doing this requires
that we be able to find a set of isolated points on the
intersection curves (dots) with a controllable sampling
rate. We do this with a two-part search strategy. The
first part is a breadth-first search which ensures that each
region of parameter space that could possibly contain an
intersection is subdivided to a minimum degree. After
the breadth-first subdivision, we are left with a set of
"live" regions of parameter space which could stilI con­
tain intersections based on the interval arithmetic tests .
Many of these live regions turn out to be false positives­
regions which in fact do not contain any intersections de­
spite overlapping bounding boxes. In the second stage
of the algorithm, we resolve the false positives using
depth-first subdivision. We either find a dot to witness
the intersection, or prove that no intersection exists. Fig­
ure I illustrates the results of the second search phase.
The algorithm has proven that many of the live regions
of parameter space in figure 2 really do not contain any
intersections. In each of the remaining regions, the algo­
rithm provides a dot and its mate in the other parameter
space.

~ Graphics Interface '92

--
--
--
--
--
f-­

r­
r-
c--

245

Figure 1: Stages in the breadth-first refinement of the intersection of a torus and a plane. On top is a display of
the parameter space of the torus, on the bottom is the plane. All nodes are enclosed by squares. Leaf nodes with
non-empty intersect lists are filled with grey.

Beginning with breadth-first subdivision and contin­
uing with depth-first subdivision allows us to control
dot spacing and dot accuracy separately. The level of
the breadth-first subdivision controls the spacing, and
the level of the depth-first subdivision controls the ac­
curacy. This separate control is extremely valuable in
practical situations, and is lacking in many algorithms.

5 Stringing and Triangulating

The interval refinement algorithm presented in the
preceding sections provides a bounding region on the
curves and points on the curves. In this section, we
consider the problem of connecting these points together
to build a polygonal representation of the curve and
to triangulate only a part of parameter space bounded
by these curves, to provide a "trimming" operation of
cutting one surface against another.

The output of the interval refinement algorithm could
be used to drive a marching method intersection. The
points provide starting locations, and the bounding re­
gions could help control the search. However, we are
interested in directly applying the found points since
we assume the user has specified tolerances which will
provide a sufficient number of points to be found.

The first thing to notice about the dot connection prob­
lem is that the solution is not uniquely determined by the
positions of the dots and their surrounding regions . Fig­
ure 3 illustrates the kinds of ambiguity which can arise.
In order to string the dots into a chain, we must make
further assumptions about the underlying intersection
curve.

In stringing the intersection points together, we as-

Figure 4: A "bump" is common case where our stringing
assumptions fail. It is easy to create a hueristic which
handles this special case.

sume that the intersection curve has low curvature rela­
tive to the grid size, and that different curves ~e always
seperated by a grid cell at all points along their length.
If we are interested in curves which do not cross , this
restriction is acceptable if we pick a sufficiently small
grid size. Under these assumption, an intersection curve
will almost always pass through a cell exactly once, en­
tering and exiting through different sides. Each grid
cell which contains part of the intersection will be adja­
cent to exactly two others, unless it is at an edge. It is
straightforward to connect the dots in this case.

Even if the intersection curve is well-behaved, quan­
tization errors can cause the two neighbor assumption to
be violated at any grid resolution. An example of such
an error is the "bump" shown in Figure 4. Fortunately,
this type of situation is not too difficult to deal with. If
we remove the top-most dot in figure 4, the two-neighbor
condition is restored and it is easy to connect the dots.
Our stringer identifies such situations and removes dots
to resolve the ambiguity.

Although we are unable to provide strong guarantees

Graphics Interface '92 ~

246

of

~
~

Figure 2: Dot finding is applied to the example of Figure 1. The white circles represent dots. For each gray square
in Figure 1, a search for a dot was executed . If no dot was found, the square is rejected, and is not shaded.

Figure 3: Although the stringing order for a set of dots may seem obvious, the curve may actually do something
else. Without making further assumptions, points and bounding regions cannot uniquely determine a stringing order.

Graphics Interface '92

about the robustness of our stringer, it has performed
well in our limited tests. Obviously, if the intersection
is not a curve, but rather some degenerate case such as
a surface region, stringing will not succeed in building
a curve. Curves which intersect, or meet with tangency,
violate the two neighbor criteria. By delaying decisions
about ambiguous cases, other parts of the curves can be
built correctly, typically providing enough information
to make the stringing decisions, or at least satisfy the
user. In cases that remain ambiguous, our prototype
implementation uses further depth-first subdivision to
verify the dot positions. We continue to explore other
ways to resolve ambiguous situations with additional
subdivision

247

Once the dots on each surface are connected, corre­
sponding chains on each surface can be merged. This
is important since we want to have one description of
the curve which has the property that it includes a dot in
each grid cell of both parameter spaces through which it
passes.

5.1 Triangulating Trimmed Surfaces

One of our motivations for performing intersection
calculations is to create trimmed surfaces which can be
sewn together. In such cases it is crucial that the pieces
can be assembled and mate together without "cracking"
at the seams. In order for surfaces to fit together without
cracks, their edges (as space curves) must be identical.

Our intersection method provides us with chains of
dots in the parameter space of each surface which form
piecewise linear approximations to the edges of the
trimmed surface. If we triangulate two regions of differ­
ent parameter spaces bounded by the same chains, the
triangles will match without cracking, as shown in figure
5.

In our prototype implementation, we use a flood fill
to place triangles in each grid square bounded by the in­
tersection curves and then march around the intersection
curve to fill in small triangles around the edge. This sim­
ple strategy has the disadvantage that it is not adaptive.
To get sufficient detail around complicated intersections,
we must also create large numbers of triangles in other
areas of the surfaces. Techniques for doing adaptive
subdivision could easily be added to our triangulation
scheme, and in fact can employ information provided
by the interval evaluations.

6 Status and Directions

We have implementeJ interval arithmetic as part of
our mathematical tool kit in C++[8] . The algorithm de­
scribed in this paper has been implemented and incorpo-

rated in an interactive scene composition program (used
to create figures 5,6, and 7) and in a mathematical mod­
eling system [10].

Figures 5, 6, and 7 show results of our algorithm.
In figure 5, the intersection curve is used to cut the
sphere and cone to create a boundary representation of
the boolean subtraction. The front row shows the results
for three different levels of initial breadth-first search.
Note that since dot size is controlled independently of
spacing, even coarse tesselations with few points on
the intersection curve still yield objects without cracks.
The boolean union is rendered in the rear center. On
each side, the separate objects are rendered with textures
showing their parameterizations. The red curve on the
texture is the trimming curve found by the algorithm.
We have rotated the sphere so that its trimming curve is
visible. The checkerboard pattern shows the cells that
would be created by a uniform subdivision of parameter
space to the level used in the breadth-first search of the
front-center subtraction. Note that the actual breadth­
first subdivision is not uniform. The blue squares are
breadth-first subdivisions through which the trimming
curve passes.

In figure 6, a sphere whose radius is modulated with
a sinusoid is intersected with a torus. Figure 7 shows
the intersection of a sin(r) / (r + f) height field with
a sphere. In both cases, the objects have been texture
mapped in the same manner as figure 5. Figure 7 shows
the union from top and bottom.

Although the prototype has been useful for creating
a wide variety of interesting objects, there are several
extensions to the basic algorithm which would be inter­
esting to explore. For example, the search and trian­
gulation techniques could be made to be non-uniform
and adaptive to improve performance on surfaces with
varying levels of detail. Stringing could be improved by
using further subdivision to disambiguate difficult cases.

The surface intersection technique presented here can
handle a very wide variety of surfaces because of its
reliance on interval arithmetic. The algorithm progres­
sively refines its model of the curve until user specified
tolerances are met allowing separate control over the
spacing and accuracy of the intersection points. String­
ing the points together and triangulating the resulting
parameter-space regions makes it possible to construct
crack-free boundary representations of objects which are
difficult t~ create with other methods.

Acknowledgements

This research was conducted at Apple Computer and
at Carnegie Mellon. At Carnegie Mellon, this research
is supported in part by a grant from Apple Computer

Graphics Interface '92 ~

and by an equipment grant from Silicon Graphics In­
corporated. The first author is supported in part by a
fellowship from the Schlumberger Foundation. Photo­
realistic RenderMan software, which was used to create
images in this paper, was provided to Carnegie Mellon
through Pixar's Renderman Education Program.

References

[1] Janno Alander. On interval arithmetic range approxi­
mation methods of polynomials and rational functions.
Computers and Graphics, 9(4):365-372,1985.

[2] G. Alefeld and J. Herzberger. Introduction to Interval
Computations. Academic Press, 1983.

[3] c. Asteasu and A. Orbegozo. Parametric piecewise sur­
faces intersection. Computers and Graphics, 15(1):9-
13,1991.

[4] R. E. Barnhill, G. Farin, M. Jordan, and B. R. Piper. Sur­
face / surface intersection. Computer Aided Geometric
Design, 4:3-16,1987.

[5] John J. Chen and Tulga M. Ozsoy. An intersection al­
gorithm for C2 parametric surface. In Alison Smith,
editor, CAD86: Seventh International Conference on the
Computer as a DesignTool, pages 69-77. Butterworths,
September 1986.

[6] Koun-Ping Cheng. Using plane vector fields to obtain
all the intersections curves of two general surfaces. In
Theoryand Practice of Geometric Modelling, pages 187-
204. Springer-Verlag, 1989.

[7] Daniel Filip, Robert Magedson, and Robert Markot. Sur­
face algorithms using bounds on derivatives . Computer
Aided Geometric Design, 3:295-311, 1986.

[8] Michael Gleicher and Andrew Witkin. Snap together
mathematics. In Edwin Blake and Peter Weisskirchen,
editors, Advances in Object Oriented Graphics 1: Pro­
ceedings of the 1990 Eurographics Workshop on Object
Oriented Graphics. Springer Verlag, 1991. Also appears
as CMU School of Computer Science Technical Report
CMU-CS-90-164.

[9] Elizabeth G. Houghton, Robert F. Emnett, James D. Fac­
tor, and Chaman L. Sabharwal. Implementation of a
divide-and-conquer method for intersection of paramet­
ric surfaces . Computer Aided Geometric Design, 2: 173-
183,1985.

[10] Michael Kass. CONDOR: constraint-based data flow.
Computer Graphics, 26, July 1992. to appear . . ~

[11] Sheldon Katz and Thomas Sederberg. Genus of the inter-
section curve of two rational surface patches. Computer
Aided Geometric Design, 5:253-258,1988.

[12] Gabor Lukacs . The generalized inverse matrix and
the surface-surface intersection problem. In Theory
and Practice of Geometric Modelling, pages 167- 185.
Springer-Veriag, 1989.

248

[13] Don P. Mitchell. Robust ray intersection with interval
arithmetic. In Graphics Inteiface, pages 68-72,1990.

[14] Michael Mortenson. Geometric Modelling, chapter 7:
Intersections, pages 319-344. John Wiley & Sons, 1985.

[15] S. P. Mudur and P. A. Koparkar. Interval methods for
processing geometric objects . IEEE Computer Graphics
and Applications, pages 7-17, February 1984.

[16] M. J. Pratt and A. D. Geisow. Surface/surface intersec­
tion problems. In J. A. Gregory, editor, The Mathematics
of Suifaces, pages 117-142. Clarendon Press, 1986.

[17] Aristides G. Requicha. Representations for rigid solids:
Theory, methods, and systems. Computing Surveys,
12(4):437-464, December 1980.

[18] T. W. Sederberg and R. J. Meyers. Loop detection in
surface patch intersections. Computer Aided Geometric
design, 5:161-171,1988.

[19] Thomas Sederberg and Tomoyuki Nishita. Geomet­
ric Hermite approximation of surface patch intersection
curves . Computer Aided Geometric Design, 8:97- 114,
1991.

[20] Kevin G. Suffem. Interval methods in computer graph­
ics . Computers and Graphics, 15(3):331-340, 1991.

[21] Daniel Toth . On ray tracing parametric surfaces . Com­
puter Graphics, 19(3):171-179, July 1985.

[22] Brian Von Herzen andAlan Barr. Accurate triangulations
of deformed, intersecting surfaces. Computer Graphics,
21(4): 103-108, July 1987. Proceedings SigGraph '87.

Graphics Interface '92

249

Figure 5: Trimming a cone against a sphere. Note that even coarse tesselations are crack-free.

Figure 6: Intersection of a five-lobed surface and a torus .

Figure 7: Intersecting a sphere with a sin(r)/r bump. The middle right is a bottom view of the middle left.

Graphics Interface '92

