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Abstract 

General 3x3 linear or 4x4 homoge nous matrices can be 

formed by composing primitive matrices for translat ion, 
rotation , sca le , shear, and perspec tive . Current 3-D 
compute r g raphics system s manipulate and interpolate 
parametric forms of these primitives to generate scenes and 
motion . For thi s and other rea so ns, decomposing a 
composite matrix in a meaningful way has been a long
sta ndin g challenge. Thi s pape r presents a theory and 
method for doing so, propos ing tha t the centra l issue is 
rotation ex traction, and that the best way to do that is Pol ar 
Decomposition . This method also is useful for renormal 
izing a rota tion matrix containing excess ive error. 

Resume 

Des matrices correspondant a des transformations lineai res 
en 3 dimensions, ou bien a de s transformat ions homogenes 
en 4 dimensions, peuvent etre construi tes en composant des 
matrice s qui decrivent des transfo rm ations e lementaires: 
dep lacement, rotation , homothe tie , glissement, et perspec
tive . Les systemes actue ls de v isuali sation graphique a trois 
dimen sions manipulent des forme s parametriques de ces 
transformations e lementaires, pour recreer des scenes et des 
mouvements. 11 en decoule I' interet de trouver des decompo
s itions pratiques de matrices composees. Nous presentons 
ici 'une technique pour trouver de telles decompositions. Le 
probleme fondamental est I ' ex traction des rotations, et nous 
demontrons qu ' une decomposition polaire est la methode de 
choix. Cette methode est a uss i utile quant il faut 
renormali ser une matrice de rotation qui con tient des erreurs 
excessives. 

Keyword s : homogeneous matrix, matrix animati on , 
int erpo lat ion , rotation , matrix decomposition, Polar 
Decomposition , QR Decomposi tion , Singular Value 
Decomposition, Spectral Decomposition , greedy algorithm 

Introduction 

Matrix composition is we ll established as an important part 
of computer graphi cs practice and teaching [Foley 90]. It is 
used to si mplify and speed the transformation of points, 
curves, and surfaces for modeling, rendering, and animation. 

Matrix decomposition-the focus of thi s paper-is less 
well known in computer graphics. It is usefu l for a variety of 
purposes, especially animation and interactive manipul
ation. 

The usual transformations of an object can be described by 
3x4 affine matrices; but the 12 entries of such a matrix are 
not very meaningful parameters. To understand , much less 
modify , matrices req uires a good decomposition. Any 
decomposi tion must account for a ll 12 degrees of freedom 
( 16 for 4x4 matrices) in the independent parameters of the 
primitives used. A decomposition that provides too few 
parameters wi ll not be able to handle a ll inputs, while one 
that provides too many will not be stable and we ll -defined. 
The greatest problem , howeve r, is ensuring that the 
decomposition is meaningful. 

Most wide ly used 3-D animation systems, typified by 
Stern's hhop at NYIT [Stern 83], Gomez 's fwixf at Ohio 
State [Gomez 84] and Duff' s md at Lucasfilm (later Pi xar) 
a ll ow the parameters of primitive transformations to be set 
interactively at key times , and compute transformations at 
intermediate times by spline interpolation in parameter 
space . Sometimes, however, only a composi te matrix is 
avai lable at each key frame, or more design flexibility is 
needed than that allowed by a hierarchy of primitive 
transformations. It is poss ible to interpolate the entries of a 
composite matrix directly , but the results are usuall y 
un sati sfactory. Decomposition a llows th e use of standard 
interpolation methods , and can give much better res ults. 
Matrix animation is discussed in more detail below. 

Most authors have considered decomposition with le ss 
stringent criteria than ours. A common motivation is the 
need to synthesize an arbitrary matrix from a limited set of 
primitives , without regard fo r meaningfulness of the 
decomposit ion [Thomas 91]. Typically, these methods rely 
on a sequence of shears [Greene 86], and give factors that 
depend on the coordinate bas is used. Shears are one of the 
less common operations in graphic s, and a sequence of 
shears is a poor choice for animation. In contrast, th e 
decomposition we propose has a s imple , physical , coor
dinate independent interpre tation , preserves rigid body 
motion as much as possible, and animates well. 
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Composition and Decomposition 

Three types of matrix are commonly used for 3-D graphics: 

3x3 linear, 3x4 affine, and 4x4 homogeneous; similar types 

with one less column and row are used for 2-D graphics. The 
homogeneous matrix is most general, as it is able to 
represent all the transformations required to place and view 
an object: translation, rotation, scale, shear, and perspec
tive. Any number of transformations can be multiplied to 
form a composite matrix , so that a point can be transformed 
from model space coordinates to screen space coordinates in 
a single step.Generally, however, perspective is treated as a 
separate step in the viewing process-because lighting 
calculations must be done first-and not used for modeling 
or object placement. All the transformations except per
spective can be accomodated by an affine matrix , which, in 

turn, can be considered just a 3x3 linear matrix with a trans

lation column appended. (Following [Foley 90], we write 
points as column vectors, [x y z I]T, which are multiplied 
on the left by the matrix.) 
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Figure 1. Prirritive Transformation Matrices 

Each primitive transformation has a more meaningful and 
concise representation than its matrix: a vector for most, a 
quaternion for rotations. It is not too difficult to recover the 
concise form if the matrix for the primitive is available 
[Goldman 91 J[Shoemake 91]. Once primitives have been 
multiplied into a composite matrix , however, recovery is 
generally impossible . Even so, a great deal can be done , as 
we shall see. 

Primitive recovery is difficult for three reasons: absorption, 
order, and interaction. The first two problems are intrac
table; the third is the focus of this paper. Absorption is 
simple: a sequence of translations gives a result which is 
indistinguishable from a single translation , or from any 
number of different sequences; the same is true of other 
primitives. Order is also simple: the effect of a translation 
followed by a scale could as easily be achieved by com
posing primitives in the opposite order; likewise for other 
pairs. Interaction is more subtle: most transformations 
change all columns of the matrix, so scaling (for example) 
affects translation ; all pairs of primitives interact. Notice 
any shear can be achieved by combining rotation and scale. 

While absorption and order cannot be unscrambled, they can 
be standardized; for animation and other applications of 
interest, this usually suffices. Absorption can simply be 
ignored; that is, no attempt is made to tease apart a trans
lation (except perhaps into x, y, and z components). Order 
is handled most easily by assuming a canonical order, such 
as Perspective of Translation of Rotation of Scale of object. 
Which canonical order is chosen is partly a matter of taste; 
this particular one makes translation trivial to extract, and 
places perspective in the order expected for a transformation 
to camera coordinates. If more information is made avail
able in a particular situation, it may be possible to improve 
upon these standard assumptions; for example, it may be 
known that only x translation took place , or that scaling 
was done last. Such special case extraction is outside the 
scope of this paper. 

Rigidity and Rotation 

A perspective matrix of the form given above is easy to 
extract as a left factor of a composite homogeneous matrix, 

C = PA, with non-singular 3x3 corner; the details are left as 

an exercise for the reader. Notice that the usual perspective 
matrix includes translation and scale; we have chosen the 

minimal form necessary to reduce C to an affine matrix. t 
Likewise, a translation is easy to extract as the left factor of 
the remaining affine matrix, A = TM; simply strip off the 

last column. The matrix M then essentially will be the 3x3 

matrix of a linear transformation . It would be simplest not 
to factor M at all, but to animate its entries directly. The 
results of this overly simple approach are visually discon
certing, but worth investigating. 

Direct matrix interpolation treats each component of the 
matrix separately, and creates intermediate matrices as 
weighted sums of nearby key matrices. For example, linear 
interpolation between keys MI and M2 uses (1-t)M 1+tM 2, 

while cubic spline interpolation uses affine combinations, 

uIMI+U2M2+U3M3+U4M4, with UI+U2+u3+U4 = I. The 
results of this approach are immediately deduced from the 
linearity of matrix multiplication. 

Proposition: A point transformed by a 
weighted sum of matrices equals the weighted sum 
of the transformed points; that is, 

(LUi Mi)p = L Ui (MiP)· 

An example of this behavior can be seen in Figure 2, where 
the chin and hat back move steadily along a line from initial 
to final position, as do all the points. (We will use planar 
examples because they are easier to interpret on the page, 
but illustrate the same issues as spatial examples .) Notice 
that the interpolated matrix twice becomes singular as the 

t But a permutation matrix may also be needed to provide 
pivoting for what is, in effect, a block LU decomposition . 
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im age appears to flip ove r. At any mome nt of sing ularity 
the image will coll apse onto a line (or worse , a point). 

' .. ~ 

.... ~ 

Figure 2. Direct Matrix Interpolation 

Co ns ide r a squa re cente red a t the orig in , and two key 
matrices: the identity and a 180 0 rotati on. Since the re are 
o nl y two keys, onl y linea r inte rpo lati o n makes sen se. 
Then, however, the theorem implies that each corner of the 
square will move linearly to its rotated pos ition , which is 
diagona ll y opposite; the square will co ll a pse through the 
o ri g in . A lthoug h the di sto rtion s dimini sh w ith sma ller 
ang les o f rotation , the square loses its shape. We ex pec t 
ro tati o ns to tra nsform the shape ri g idl y; direc t ma tri x 
interpo lation fa il s to do so . On the othe r hand , there is no 
problem with matrices for translati on, sca le, or shear. 

Expe riment s with appa rent moti on (fl ash one image, fl ash 
ano ther, see moti on) sugges t that the human v isua l sys tem 
in fe rs r ig id mo ti o n as muc h as poss ible [Ca rlto n 90) 
[Shepard 841. Rotation is the o nl y ri g id tra nsformation that 
is di sto rt ed by direc t m atri x interpo lati o n. It the refore 
seems reasonable to conclude that the centra l p robl em for 
ma tri x a nim ation is to ex tract a ro ta ti on in the b es t 
possible way, so that it can be interpo lated as a rotati on. 

Decomposition Methods 

Ro tati o n matri ces have s impl e de finin g prope rti es: eac h 
column is a unit length vector which is perpend icul ar to the 
others, and the third co lumn is the cross product of the f irst 
tw o. (Rows sati sfy the same prope rti es.) The first t wo 
properties are those o f orthogonality, and can be summa
rized as Q TQ = I ; the las t makes the orthogonality spec ial, 
and can be s tated as det(Q ) = + I . O rth ogona l ity alo ne 
implies th at the determinant mu st be e ithe r + I or - I , w ith 
the latte r indicating the presence of a reflec ti on in the 

matri x. A 3x3 orthogona l matri x with negative de terminant 

can be converted to a pure rotation by facto ring o ut a -I. 

Numerical ana lys ts have developed a number of algorithms 
for orthogonal matrices [Golub 89) [Press 88], in large p art 
because orthogonality limits the accumul ati on of numeri cal 
e rro r. Giv e n a square-and pres um a bl y non-s ingul a r
matri x, three promi s ing orth ogo nal decompos iti o ns a re 
avail abl e : QR decompos iti on , Sing ul ar Va lue Decompo
s ition (SVD), and Po lar Decompos ition. The QR fac tors o f a 

matri x M = Q R are, respec ti ve ly , o rthogona l and lo wer 
tri angular. The SVD g ives three fac tors, M = UKV T, with U 
and V orthogona l and K di agona l and positive. The less 
commo n Po lar Decompos iti o n , M = QS , y ie ld s an o r
thogona l fac tor and a symmet ri c pos iti ve de finite fac to r. 
The latter two decompos itio ns can fac tor s ing ul ar mat ri ces , 
with "positive" repl aced by " no n-negative" in the fac to rs. 

More th an one a lgo rithm is ava il able to compute each 
decomposition. The o ldest and best-known me thod fo r QR 
Decompos iti on is call ed Gram-Schmidt orthogona li za tion . 
Eac h row o f the matri x is co ns ide red in turn , with each 
di vided by its magnitude to g ive a unit vector, then project
ed onto the re ma ining row s to s ubtrac t out any paralle l 
component in each of them . A better method is to acc umu
late Hou se holde r re fl ections, orthogona l tran sform ati ons 
which can zero out the elements above the diagonal. 

The re is no s imple SVD a lgorithm. The m os t comm on 
approach is fi rst to use Househo lde r refl ections to make M 
bidi agonal , th en to pe rform a n ite ration in vo lv ing QR 
Decomposition until the o ff-di agona l e ntries conve rge to 
zero. Whil e this is numerically re liable, it is complicated to 
code , and by no means cheap. 

It is possible to compute a Po lar Decompositi on us ing the 
res ults of SVD, suggesting great cost; but a simpler me thod 
is ava ilable [Higham 86). Compute the othogona l fac to r by 
ave rag in g th e m atri x with its inv e rse tra nspose until 

convergence: Set Q o = M , then Q i+ 1 = 1/ 2(Q i+ Q i- T ) until 

Q i+1 - Q i"" O. Thi s is essentia lly a Newton a lgorithm fo r the 
square root of I , and co nverges qu adrat ic all y whe n Q i is 

nearl y orthogona l. Finding the Q fac tor of a 2x2 matri x is 

easy. Suppose 

M = ( a h ) ; 
c d 

the n 

Q = M + Sign(det(M ){ ~ ~c ). 

sca led by a fac tor that makes the co lumns unit vectors. 

Polar Decomposition Advantages 

Care is needed in choos ing am ong the possibilities , s ince 
the purposes of nume rical linear a lgebra are diffe re nt from 
those of computer g raphic s. The worst of the three cho ices 
seems to be SVD: it is the most expensive to compute, and 
the o rthogonal matri ces it produces are prac tica lly use less. 
A matri x which is a lready a pure ro tation can be fac tored in 
an infinite variety of ways into the two orthogona l matrices 
of the decompos iti on, whic h is di sastro us in the contex t of 
matri x anim ati on. Sma ll pe rturbati ons o f the input matri x 
can cause di ffe re nt orthogona l fac to rs to be chosen, even 
tho ugh the se t of s in gul ar values is s ta bl e. Inte rpo la ting 
unre li able matrices w ill produce e rrati c resul ts : cons ide r the 
fo ll ow ing two decompos iti ons. 
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Altho ugh both are perfectl y valid decompositions , inte r
pol a tion of the primitives will g ive visible di storti ons 
- not at a ll what the user expects! Floating point va ri ations 
in the leas t s ignificant di g it can cause an SVD algorithm to 
choose the first decomposition for one key, and the second 
for the nex t. Many SVD routines order the singular values 
by magnitude, which onl y exacerbates the problem . There 
seems to be no way to avoid having small input changes 
cause la rge output changes. 

QR Decomposition is a much better choice , though it still 
presents problems. Unlike the factors of SVD, the QR 
factors can be determined uniquel y, and a re stable unde r 
small perturbations. Also, the algorithms for QR are s imple 
and effic ient. The drawback is that the orthogonal matrix 
ex trac ted is not parti c ularly meaningful: it is not inde
pendent of the coordinate basis used, and so has no 
" phys ical" significance. That is, if the matrix M is given in 

a rotated and uniformly scaled basis M'=BMB- I, coordi

nate independent fact ors would have the form Q' = BQB- I 

and R' = BR B - I ; but the latter is no longer a lower 

tri angul ar matri x, since that property is not preserved under 
si mil a rit y transform s. Thi s is unfortuna te for animatio n 
purposes, because it makes res ults much less pred ictable. 
Suppose , for exampl e, M is constructed by rotating then 
sca ling; a lthough the Q factor might be expected to capture 
the rota ti on, it will no t. Only when M is constructed by 
scaling then rotating will QR recover the original factors. 

The Polar Decompositi on factors are unique , coordinate 
independent , and si mple and efficient to compute. Further
more, th e o rthogonal factor Q is the closest poss ibl e 
orth ogonal matri x to M , a property which is also coo r
dinate independent. That is, Q sati sfies the fo ll owi ng 
conditi ons. 

Find Q minimizing 11 Q - M II~ 
subjec t to QTQ - I = 0, 

where the measure of c loseness, the Frobenius matri x norm 
squared, is 

11 Q - M II~ = L (qirmu)2 . 
iJ 

Since thi s important c lai m appears in [Higham 88 ) withou t 
proof, a proof is g ive n in the Append ix. When M has 
positive de te rminant , Q will be a pure rotation, otherwise it 
will inc lude a reflec tion . It might seem preferable to exclude 
reflections, but there is no we ll-defined nearest rotation. For 
example, every 2- D ro tati on is eq uall y distant from eve ry 
2- D refl ec ti on. (Po lar Decompositi on is applicable to 
matrices of any size and shape.) A ro tat ion has the form 
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(c -s ) . 2 2 . f1 " (a h) . h se' wtth C + 05 = I, while a re ectlOn IS h - a ,WIt 

a 2+h2= 1. The sum of the squ ares of the diffe re nces is 
(c-a)2+(-o5-h )2+(s-h)2+(c+a)2 = 2(c2+s2)+2(a2+h2) = 4. As 

no ted ea rlie r, howeve r, a 3x3 Q matri x which includes a 

re fl ec ti on (indicated by a negative determinant) can be 
factored as Q = R(-J). 

Closeness a lso makes Polar Decomposition good for matrix 
renormali zation . Moderate amounts of numerical noi se can 
be removed in a single iteration of the averaging algorithm. 
Thi s improves and formally grounds [Raible 90] . 

The combin at ion of uniqueness and closeness guarantees 
that small input pe rturbations will not produce large output 
variations. The Q factor of Polar Decomposition appears to 
be the bes t poss ible rotation. What, then, is the S factor? 
As the appendix show s, in some rotated coordinate system 
S is di agonal- in other words, a scale matri x. Thi s form of 
scaling is preserved through coordinate changes, and has a 
good claim to being a new primiti ve, stretch. The S fac tor 
can move to the other side of the Q factor without changing 
form , though its value will change to QTSQ. Thus Polar 
Decomposition has a ve ry phys ical inte rpre tation . 

FlQure 3. Physical View of Polar DecOfll)OSition 

One drawback of Polar Decom pos ition is that there is no 
ex pli c it represent ati on of shear. As ex pl a ined ea rli e r, 
inte rac ti on is to bl ame; shear will be fac tored as rotation 
and stre tch. In two dimensions, for example, a simple shear 
will fac tor as 

"=(6 ~1) 
= _ 1- ( 2h 

--J 4+h2 -

= QS . 

As Figures 4 and 5 show, the appearance of a factored anima
tion can be quite different from that of a direct animation for 
shear. Nevertheless , factorization g ives a reasonable result . 
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Figure 4. Direct Shear Interpolation 

Direct Stretch Animation 

Although S can be facto red into di agonal form , S = UKU T 
(us in g a symmetri c e ige nva lu e routine [Golub 89 J 
[Carnahan 69]), as with SVD the factori zation is not unique. 
Thi s unav oidable inde te rminacy combined w ith sm a ll 
nume rical e rrors could cause diffe rent U ' s to be chosen at 
d iffe rent keys, a nd the resulting interpo lation would suffer 
g rea tl y . Fortun a te ly, howeve r , S m a tric es can be 
interpo la ted direc tl y, a nd w ill prese rve the ir fo rm and 

meanin g. That is, U I SI +U 2S 2+ '" y ie ld s a symm et ri c 

matrix, which for non-negative u; will also be positi ve defi 

nite, so it is not necessary to c hoose a diagona li z in g 
rotati on U . If some U di agona li zes both S I and S 2 simul -

taneously, then U IS I+U2 S2 = U(u IKI+<12K 2} UT , so direc t 

inte rpo la ti o n s impl y int e rpo la tes th e sca le fac to rs , as 

des ired . Weights u ; fo r inte rpo lati o n w ill usua ll y inc lude 

negati ve va lue s ( to e ns ure s mooth m o ti o n), so th e 
inte rpo lated S matri ces can become s ing ul ar; but the same 
thing can happen w ith pure sca le matri ces. In both cases 
thi s does no t seem to be a ser io us probl em , and can be 
solved us ing spline tension. 

Figure 6. Polar Decol11lOsed Matrix Interpolation 

Factored Stretch Animation 

Diagona li zati on of S as U K UT is still a useful a lternati ve if 
it can be s tabilized ac ross keys. (Eve n wi th o ut s ta
bili zation , an inte rac ti ve user inte rface w ill certa inly deal 
w ith stre tch in fac tored fo rm .) So in thi s sec ti on-which 
can be skipped on firs t reading-we conside r the fo llow ing 
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Figure 5. Decol11lOsed Shear Interpolation 

pro bl e m : Given tw o stre tc h m a tri ces, S I and S 2' 

interpol ated in that o rde r, how ca n the ir diagona li z in g 
ro tati o ns, U I and U 2, be c hose n to be as s imil a r as 
possible? More prec isely, if the rota ti on taking U I into U 2 
is des ignated by U I2 = U I

TU 2, the problem is to m inimi ze 
th e absolute angle of ro tati on perfo rmed by U 12' Furthe r

more, so that the results can eas ily be gene ra li zed to a se ries 
of matrices S i, let U I be fixed . (Then fix U 2 while m ini mi z
ing UB , and so on. Beg in w ith Uo = I. ) 

The re are three cases , depending on how many ide nti ca l 
va lues occ ur on the d iagona l K 2. When a ll three va lues are 
the same, it is poss ible to se t U 2 = U I' Uni fo rm sca ling is 

comm on in compute r gra phi cs p rac ti ce , a nd is eas il y 
detec ted by inspection of S2. whic h will a lready be d iagona l 

with identical va lues. Whe n a ll three values are d iffe rent , we 
have 24 cho ices fo r U 2. T hese are o bta ined by a ll axis 

pe rmut ati o ns (6 ), tim es a ll ax is s ig n combina ti ons (8) , 
ac hievable by a rotati on (d ivide by 2). When exactly two 
values are the same, we have an extension of the all d iffe rent 
case: free rotati on is all owed around one of the axes . T he 
las t two cases are di scussed more full y be low. 

An easy way to measure the rotation U 12 is to convert it into 

a unit quate rnion. ([Shoem ake 85] introduces unit qua ter
nions as a representati on of 3-D ro tatio n and di sc usses how 

to interpo late them .) Its rea l component is cos( 8/2} , whe re 

8 is the total rota ti on ang le . Picki ng U 2 to maxi mi ze the 

quaterni on ' s real component minimi zes the ang le . 

The re is a qu ick way to do thi s maxi mi za ti on. Le t q be the 
quaternion corresponding to U 12. The 24 variati ons corre

spond to qp, whe re p is one of 48 q uate rni ons ( inc luding 
bo th p and - p ) th at m a p th e coord inate a xes in to 
the m se lves: p = [x y = W J can be o ne o f [0 0 0 ±I], 

[00 ± I ± IJ/{2, [±l ± l ±I ± 1]l2, or a pe rmutation of these. 

The real part of qp is w"w"-x'r""-Y,,Y,,-=,,=,,, which is simple 
to max imi ze because o f the s imple fo rm of each p . We take 
the absolute value s of the components of q , sort them , and 
c hoose the max imum of e ither the largest, or half the sum of 

all fo ur, or Im ti mes the s um of the two larges t. Then we 
ca n work back wa rd s from ou r c ho ices to ded uce the 
corresponding p. 
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If exact ly two of K 2 's va lues are the same , we have a con

tinuous optimi zat ion. As be fore , we are free to permute the 

axes , but we have the additiona l freedom to rotate by any 

ang le in the p lane of equa l sca lin g. We can a rrange for the 

equal va lu es to be the first two , so that a change of 
coordinates rotating around the: ax is leaves K 2 ' unchanged. 

So our problem is to pi ck p and r to max imi ze the real 

component of qpr , w he re p is one of the 48 quaternions 

above and r = [0 0 .I cl. wi th c2+s2= I, is a quat e rnion that 

rotates about the: axis. 

The product of a quate rnion [x y : wJ with r = [00 s cl is 

Ixc+\'.\" yc- xs :c+ws wc- :s] . C hoos ing c = w/-V 11'2+:2 and 

s = -:/-V 11'2+:2 max imizes the rea l component to -V \1.2+:2. 

Conseq uently , the bes t p is one that maximizes 11'2+:2. Only 

s ix va lues of p give essentially different res ult s. These are 

10 00 I], [I I I 1] /2, [I I I - 11/2 and each of these times 

[I 0 0 01. Summing the squares of the 11' and: components 
from the product o f q wi th each of these and subtracting 1/2 

gives ±(w 2+: 2_ 1/ 2) ' ±(x:- wy) and ±(wx+y:). Choose the p 

corresponding to the la rges t positive va lu e , and if the 

nega ti ve s ign was used, post-m ultipl y P by [I 000]. 

Thi s method for stab ili z ing the S decomposition is a greedy 

a lgorithm. It ex tend s partial so lution s at eac h stage by 
findin g an optima l continuation , w ith no backtracking . 

The re is no g uarantee that thi s produces a g lobal optimum

a locally infe rior c ho ic e co uld pos s ibl y be warranted 

beca use it a ll ows better cho ices furthe r on tha t more than 

compensate. However, we can prove the following: 

Propos ition : Given a sequence S i of sy mm e tric , 

positi ve defi nite matri ces , none of which has a di

agonal izat ion w ith exac tl y two equal va lues, the 

greedy algorithm g ive n above pick s a seq uence of 
rotation matri ces U i that minimi zes the sum of the 

rotation ang les between adjacent rotation s. 

Th e proof depends on two obse rvat io ns . Firs t, the S i with 

three equ a l va l ues do not affec t the sum ; and second, the 

ax is- permuting rotations p form a group. With thi s in mind , 

le t (p) be the greedy sequence of permutations , and (P) the 

optimal sequence. Suppose now that some Pk # P k' Then the 

di sc repency () = Pt.1 Pk is in the group, and can post-multi

ply every Pi, i 2: k with out increasing the angle sum. For Pk 

is replaced by Pk, which by de finition of the g reedy sequence 

gives the small est ang le poss ibl e at that step; and none of 

the o ther angles change , s ince () - lq j lqi+l() has the same 

ang le as the orig inal qj lqi+I' So (p ) is also opt imal. 

With doubl e va lue s, however, some greedy sequences are not 

optim al. In mitigation, we point out that floatin g -point 

arithmetic stands between us and any reliabl e determination 
of equality of values , and that the add iti ona l freedom offered 

by equ a l values on ly ca uses the g reedy a lgorithm to find 

so luti ons w ith sma ll er to tal rotation . Furthermore, th e 

g lobal optimi za tion probl em in the ge nera l case is a mixed-
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integer programming problem of the sort that is often NP

compl e te. (But we make no c laims as to the status of this 

particular problem .) 

Les t thi s ex tended di sc uss ion leave the wrong impress ion , 

we point out that diagonalization has not been necessary in 

our ex peri e nce . Th e animations achieved by direc t S 

inte rpolation look as good as tho se us in g th e more 

e laborate procedure. (Also, the code required is much shorte r 

than the discuss ion.) Since the deve loper of an animation 

system may choose not to introduce our new stretch 

primitive, however , we hav e offe red a rea so nable 

a lt e rnative. 

Conclusions 

With the assistance of Polar Decomposition , a non-s ingul a r 

4 x 4 homo ge neous matrix M can be factored into 

meaning ful primitive components, as 

M = PTRNS , 

where P is a s impl e perspec tive matri x, T is a translation 

matrix , R is a rotation matri x, N is ±I, and S is a symmetric 

positiv e de finite stre tch matri x. The stre tch matrix can 

optionally be factored , thoug h not unique ly, as U K UT , 

where U is a rotation matrix and K is diagonal and positive . 

For a 4x3 affine matrix th e pe rspective factor can be 

dropped; and for a 3x3 linear matrix , so can the translation. 
Also, N can be multiplied into S if des ired. 

Pol ar Decomposition produces fac tors QS which are unique , 

coordinate independent, and both simple and efficient to 

compute. The factors have a phys ical , visua l interpretation 

not found with other decompos ition methods. The PTRNS 

decompos ition is useful for a variety of purposes, including 

matri x animat ion and interac tive interfaces. It has the minor 

di sadvantage that it does not directly represent shear. 
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Appendix 

Theorem: The Polar Decompos ition facto r Q is the c loses t 
poss ible orthogonal matrix to M , with closeness measured 

us ing the Frobenius matri x norm . That is, Q satisfies the 

following conditions. 

2 
Find Q minimizing 11 Q - M IIF 

subject to QTQ - I = 0, 

where 

11 Q - M II~ = L (qi,-mU)2 . 
ij 

Proof: Though expressed in matri x te rm s, the proof 

s impl y requires finding the minimum of a quadratic functi on, 
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which we learned to do in ca lculus by finding where the 

derivative is zero. We can express IIM II~ as the diagonal 

sum-the trace-of M TM , and incorporate the orthogo
nality constraint as a linear term using a symmetric 
Lagrange multiplier matrix Y. So, as the reader can verify, 
we can differentiate 

with respect to Q and eq uate to zero to obtain 

2(Q-M) + 2QY = 0 

which s implifies to 

Q(I+Y) = M. 

Thus M will be factored as our desired Q times a symmetric 
S = I+Y . 

M =QS . 

This factorization is the Polar Decomposition of M . To use 
it we need to solve for S in terms of M . Since QTQ = I , we 
must have 

A symmetric S has a symmetric inverse, so this si mplifies 
to 

and · finally to 

S2 = MTM. 

Now. MTM is guaranteed to be sym metric and positive 
definite (or semi-definite if M is singular) , and so there is a 
s imilarity transform that makes M TM diagonal , with 
pos itive (or zero) real entries. This gives the Spectral 
Decomposition of S2. 

/(i ~ O. 

Taking either the positive or negative square root of each 
diagonal e lement of K, we obtain eight candidates for S, 

( ±~ 0 o} 
u 0 ±~ 0 T. 

o 0 ±~ 
Howeve r, for Q to be a minimal so lut ion , the second 
derivative , 2( I+Y ) = 2S, of our function must be positive 
definite , which means on ly the positive square roots are 
a llowed , and so S is uniquely determined . For any M which 
is non-singular, Q is also uniquely determined. 

• 
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