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Abstract 

Constraints provide a natural formalism for user-interface 
design and graphical layout. Recent results and algo­
rithms from symbolic computation and geometry pro­
vide new techniques to manipulate linear arithmetic con­
straints. We show how these results can be applied to in­
teractive graphical user-interfaces and how they extend 
the capabilities of previous interactive constraint-based 
user interface systems. We propose an architecture for 
such systems based on these techniques . 

Keywords: Linear Arithmetic Constraints, Interactive 
Techniques 

1 Introduction 

Constraints are a natural formalism for specifying user­
interface design and graphical layout . They have shown 
their utility in interactive systems [1, 2, 3, 11, 12, 13, 14, 
15], in graphic specification languages [5, 17] and recently 
in visual language parsing [4] . 

The requirements of adequate response time and graphi­
cal feedback for interactive systems demand certain capa­
bilities of constraint solvers . In particular, previous work, 
for example ThingLab and ThingLab 11 [2, 11] suggests 
that constraint solvers for interactive graphics must pro­
vide : 

• Incremental addition and deletion of constraints. 

• Fast generation of plans of execution when the ob­
ject that is the focus of manipulation changes . 

• Adequate feedback bandwidth when manipulating 
a graphic object . 

Other capabilities which constraints can provide and which 
an interactive constraint-based system should support 
are : 

• Determining and presenting the range of values 
that a variable can take . For example, if a point 
is going to be dragged around on the screen, the 

system should be able to present graphically to the 
user whereabouts this point can be moved. 

• Support the definition and compilation of com­
pound objects. Although, this is straightforward in 
systems without constraints, the addition of con­
straints raises new issues. In particular, efficiently 
representing the constraints in the compound ob­
ject, and determining which variables of a com­
pound graphic object define all objects it contains. 

In addition the constraint solver must support other, 
more usual, operations associated with constraints. These 
include: 

• Detecting that a system of constraints is unsatis­
fiable , and identifying which constraints must be 
removed to restore satisfiability. 

• Detecting an under-constrained system and identi­
fying which variables must be further constrained. 

Both the constraints causing unsatisfiability, and vari­
ables that need to be further constrained must be indi­
cated to the user . 

Recent results and algorithms from symbolic computa­
tion [6, 8, 9] provide powerful techniques to manipu­
late sets of linear arithmetic constraints containing both 
equalities and inequalities. We show that when applied to 
interactive constraint-based user-interface systems, these 
techniques give new capabilities, and enhance interaction 
through improved user-feedback. In particular, they pro­
vide : 

1. A canonical form for a set of linear arithmetic con­
straints . The canonical form is concise, does not 
contain redundant constraints, identifies the de­
grees of freedom in the constraints, and makes ex­
plicit the equalities implied by the constraints. 
There is an incremental algorithm to compute the 
canonical form . This algorithm also determines 
whether or not the constraints are satisfiable. The 
canonical form is a key for both efficient represen­
tation and manipulation of constraints. 
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2. A parametric solved form for the solutions of a set 
of constraints in terms of distinguished paramet­
ric variables . The solved form, which corresponds 
to the plans of Thinglab 11, allows the values of 
variables to be computed rapidly from the param­
eters. This permits the rapid re-satisfaction of the 
constraints when objects are being manipulated by 
the user. 

3. An efficient projection algorithm to compute the 
range of values of distinguished variables. This 
allows the user to get feedback about the region 
within which selected objects on the screen can be 
moved while still satisfying the constraints . Pro­
jection also plays a role in computing the manipu­
lable interface of compound objects. 

4 . Techniques to deal with un solvable sets of con­
straints by identifying minimal un solvable subsets . 
These provide feedback as to which constraints need 
to be relaxed or removed to restore solvability. 

5. Techniques to determine if a set of constraints is 
underconstrained , that is if some variables cannot 
be uniquely determined in terms of certain distin­
guished parameters, and consequently which vari­
ables must be further constrained. 

This work extends previous constraint technology for in­
teractive constraint-based systems in two ways. 

First, we present new feedback mechanisms and inter­
action styles for constraint-based systems. These are 
based on new techniques for extracting information about 
causes of over- and under- constrainedness in sets of con­
straints, and determining relationships on specific vari­
ables implied by the constraints . These techniques rely 
on manipulating constraints symbolically. To our knowl­
edge these features have not appeared in previous sys­
tems. 

Secondly, we extend previous work that uses symbolic 
techniques to solve constraints by allowing simultane­
ous linear equations and inequalities. This extension is 
important because such constraints arise naturally when 
specifying graphical layout . For efficiency reasons , pre­
vious systems have dealt mainly with systems of acyclic 
linear equations [3 , 11, 15] , and solved these constraints 
using local propagation techniques . Recent research has 
addressed the efficient and incremental recompilation of 
these types of constraints in response to user interac­
tion [11]. For the more general constraints considered 
here , however, local propagation is not sufficient; global 
techniques must be used . We note that Wit kin [16] and 
Nelson [12] deal with more powerful constraints, but use 
numerical techniques for constraint satisfaction. It is not 
clear how the feedback mechanisms we present can be 
provided using these numerical techniques . 

The rest of the paper is organized as follows . In the 
next section, we present an example of a typical inter­
active session which illustrates these new techniques. In 

Section 3, we discuss two key elements of the underly­
ing constraints technology : a canonical representation for 
constraint, and a new projection algorithm particularly 
suited to this application . In Section 4, we propose an 
architecture for a constraint manipulation sub-system to 
be used within an interactive user interface system. In 
Section 5 we present some empirical results concerning 
the performance of this constraint technology. 

2 Example 

To illustrate some of the capabilities of the constraint 
technology, we present a simple hypothetical session with 
an interactive constraint-based editor. 

Consider the diagram illustrated in Figure 1 which con­
sists of two pieces of text Tl and T2, two rectangles RI 
and R2 and a surrounding box B. Suppose that the user 
wishes to satisfy the following requirements. 

B 

1. RI and R2 have a fixed aspect ratio. 

2. RI and R2 have the same size and cannot overlap. 

3. T i is centered in Ri and Ri is large enough to con­
tain T i . 

4. B contains both RI and R2 , and they are "nicely" 
placed inside B , that is the rectangles are equidis­
tant from the borders of B and from each other . 

Text1 Text2 

R1 R2 

Figure 1: Layout of the diagram 

To create this diagram , the user adds and deletes graphic 
objects and constraints and modifies the parameters (or 
attributes) of the objects . The resulting layout is de­
fined by a set of constraints . These fall into the follow­
ing categories: local constraints, which express the rela­
tionships between the modifiable parameters of system­
defined objects; global constraints, provided by the user , 
which express the relations between objects; and an­
chor constraints which express that certain points or at­
tributes are fixed . 

Typically, local constraints are pre-defined for each ob­
ject, and are highly redundant to allow multiple ways to 
define an object . In our example , each rectangle may be 
defined by its opposite vertices or its center and a vertex. 
Thus each rectangle has as parameters, its four vertices -
bl, br , ul , ur for bottom-left, bottom right, etc ... ; its cen­
ter point c, and its extent e in :z: and y dimensions . The 
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local constraints for an object 0 over these parameters 
are 

Oc", = 0.5 * Obl", + 0.5 * Obn 
Ocy = 0.5 * Obly + 0.5 * Ouly 
Obr", = Obl", + 0.", 
Ouly = Obly + O.y 
0.", 2: 0 

Obry = Obly 
01.11", = Obl", 
Our", = Obr", 
Oury = Ouly 
O.y 2: o. 

Global constraints are provided by the user and are de­
fined over the parameters of the relevant objects. For 
example, the requirement that Tl is contained in RI is 
expressed by 

Thl", 2: Rhl", 
Thl y 2: Rhly 
Tl ur", ::; Rlur", 
Tlury ::; Rlury . 

The entire set of local and global constraints which cap­
ture the previous 4 requirements for Figure 1 is shown in 
Figure 5. The large number of constraints generated by 
this relatively simple example is typical - systems such 
as ThingLabII generate similar numbers of constraints 
for similarly sized examples. The large numbers of con­
straints means that efficient representation and manipu­
lation of constraints is important . 

Anchor constraints are equalities which fix the values of 
variables of objects. For instance, the constraint 

B bl", = Bbly = 0 

expresses that the lower left corner of B is anchored at 
the origin of the screen. Anchor constraints are added 
by the user when the attributes of objects are not to be 
modified . 

When creating this diagram, the user adds and deletes 
graphic objects and constraints, and modifies the param­
eters (or attributes) of the objects. As constraints and 
objects are added, the solvability of the entire set must 
be checked. If it becomes unsatisfiable, information as 
to which constraints need to be modified to restore solv­
ability is fed back to the user by highlighting a graphical 
representation of the offending constraints . 

Text1 Text2 

R1 IR2 
B 

Figure 2: Three anchor points were selected 

During a session, as graphic objects are moved around 
and their attributes modified, the system gives feedback 

about the current constraints and presents this in a suit­
able graphical format . For instance, suppose the user 
wants to move the upper-right corner of RI. Initially the 
vertices of B , one vertex of R2 and the text size are "an­
chored" so that the system will not change their present 
values (see Figure 2) . At this point the set of constraints 
is over-constrained . When the user selects the upper­
right corner of RI, the system indicates that RI cannot 
be moved. This is because the constraints imply that the 
coordinates of RI are fixed. Note that this information 
is not explicit in the original constraints . 

The system can then indicate which anchor constraints 
need to be removed to restore some degrees of freedom 
in the system . If the user now removes the anchor­
constraint on R2, it is now possible to automatically in­
fer, from the constraints, the possible values for RI. The 
possible values are given by the constraints 

RluT", - t Rlury = 0 
110 ::; RlUTY ::; 150 

defining the line segment as depicted in Figure 3. The 
system displays this line and the cursor is constrained to 
remain on it. Whenever the cursor is moved, the display 
is updated to reflect the new configuration (Figure 4). 

B 
"r,r 

B 

! 
Text1/ B R1 R2 

Figure 3: Range of motion for point Rlur 
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Figure 4: Display reflecting motion of point Rlur 

3 The Linear Constraint Technology 

From the previous example, we can see that an underly­
ing constraint technology for interactive constraint-based 
systems should provide efficient : 
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• Incremental addition and deletion of constraints. 

• Detection of unsatisfiability and identification of 
which constraints or anchor constraints are causing 
it. 

• Rapid re-satisfaction of existing constraints when 
a small number of parameters, such as the location 
of a vertex, are changed. 

• Detection of under-constrained system and identi­
fication of which parameters can be fixed to con­
strain it . 

• Recognition of an over-constrained constraint sys­
tem and identification of the responsible anchor 
constraints. 

• Computation of the range of values that a param­
eter can take while leaving the system satisfiable. 

Recent results from symbolic computation provide a tech­
nology for linear arithmetic constraints with these capa­
bilities. The key to an efficient implementation is based 
on a new representation for sets of linear constraints 
called the canonical form [10], and a new algorithm for 
variable projection [9] . We now discuss the canonical 
form, how it supports the compilation of plans of execu­
tion or parametric solved forms , and projection. 

The Canonical Form 

The sets of constraints that arise in interactive systems 
often contain redundancy. Local constraints defining at­
tributes of objects often contain redundancy to allow flex­
ible definition of objects. Constraints on objects can be­
come redundant as a user adds further constraints. Be­
cause of the potentially large number of constraints that 
can be generated in interactive systems, it is important to 
have non-redundant representations. In the technology 
we present, this representation is given by the canonical 
form . 

The canonical form1 of a set of linear arithmetic con­
straints consists of: 

1. A set of equations that defines the affine hull of 
the solution set of the constraints . This affine hull 
is the space having the smallest dimension that 
contains the set of solutions to the constraints . 

2. A set of inequalities that define the full dimensional 
solution set . 

The canonical form has the following important proper­
ties: it contains no redundant constraints ; it identifies 
the degrees of freedom in the constraints; and it makes 
explicit the equalities implied by the constraints. 

1 Note : the full definition of the canonical form also in­
cludes negative constraints which are not discussed here . The 
interested reader is referred to the reference for a complete 
treatment . 

Eliminating redundancy is important because typically 
the system of constraints may contain many redundant 
constraints mainly due to the local constraints. For some 
systems of constraints, the corresponding canonical form 
has an order of magnitude fewer constraints. Making 
equalities explicit is important because they can greatly 
simplify the set of constraints. The degrees of freedom 
of the set of constraints is given by the number of vari­
ables less the number of equalities in the canonical form . 
This means it is possible to determine if the system is 
under-constrained and which variables need to be further 
constrained. 

Transforming an arbitrary set of constraints into its canon­
ical form is a complex three-stage process using a quasi­
dual formulation of optimization techniques (such as the 
simplex method) from Linear Programming [7, 10] . The 
three stages are identification of implicit equalities, sim­
plification , and elimination of redundancy. The first stage 
performs a test for satisfiability. If the system of con­
straints is unsatisfiable, then a minimal subset of con­
straints causing unsatisfiability is identified . 

Computing the canonical form from scratch is expen­
sive . However , we use an incremental algorithm that ef­
ficiently recomputes the canonical form when constraints 
are added . This is an important consideration when in­
teractively constructing systems of constraints . 

The system given in Figure 5 has the canonical form 
given in Figure 6. The original system has 54 equalities, 
and 28 inequalities involving 32 variables . The canoni­
cal form has 51 equalities , and 10 inequalities involving 
9 variables. Note the substantially reduced number of 
variables in the inequalities . 

The Parametric Solved Form 

One of the most important operations in an interactive 
graphics system is the manipulation of objects on the 
display. To do this efficiently requires computing a plan 
of execution in terms of the object being manipulated, 
and then continually re-executing this plan. 

In our technology, a plan of execution is called a para­
metric solved form with respect to a set of parametric 
variables. The parametric solved form is a set of con­
straints such that all dependent variables are expressed 
in terms of the parameters, and only the parametric vari­
ables occur in the inequalities . The parametric variables 
are those that correspond to the object being manipu­
lated. Thus the parametric solved form has the property 
that if the constraints contain the variables Xl , . . , X" , and 
the parameters are Xl, ... , Xi, then for j = i+1, ... , n , there 
exists an fi such that Xj = Ij(Xl ' . . . , Xi) . 

The system of constraints corresponding to Figure 4 when 
parameterized by variable R1ury has the parametric solved 
form given in Figure 7. This solved form consists of 59 
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Tl cz = 0.5. Tlbl., + 0.5. Tlbn 
Tlcl/ = 0 .5. Tlbll/ + 0.5. Tl"l" 
Tlbrz = Tlblz + Tl n 
Tlbrl/ = Tl&ll/ 
Tlur:c = Tlllrz 
Tlbl= > Rlblz 
Tl",r:c <: Rl",r;z:: 
Tl cz = -Rl c ," 

Tl n > 0 
Rlcz ;; 0.5. Rlblz + 0.5. Rlbn 
Rl c" = 0 .5. Rlbll/ + 0.5. Rl"ll/ 
Rhrz = Rl&lz + Rlu 
Rlbr" = Rlbll/ 
Rl",rz = R1br:c 
Rlblz ~ Bblz 
Rl""T'z < B ... T"z 

Rlu =-2 • Rlol/ 
Rl n > 0 
Bbr:c ~ Ebb:; + BcZl 

Bv.lz = Bblz 

Mz = Rlblz - Bbl., 
M:c = Bbr:c - R2brz 

3. Mz + Rl n + R2u - Bu = 0 
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T2brz = T2blz + T2.., 
Tl .. lz = Tlblz 
Tl"rl/ = Tl"l" 
Tlbl " ~ Rlbl" 
Tl"r" ~ Rl"r" 
Tl c " = Rl c " 

Tlc " ~ 0 

R2brz = R2 b l= + R20z 
Rl"lz = Rlblz 
Rl"r" = Rl"l" 
Rhl" ~ B bl" 
Rl""lI ~ Bury 
R2n = 2. R2 o" 

Rl c " ~ 0 
Bbr" = B bl " 
B .. l " = Bbll/ + Bc" 
M:c = R2blz: - R1brz:: 
M" = R2bl" - Bbl" 

T2cz = 0. 5 • T2blz + 0 .5 • T2bn 
T2cl/ = 0.5. T2bl" + 0.5. T2"ll/ 
Tl .. l " = Tlblll + Tlc" 
T2br" = T2blll 
T2",r:c = T2 brZl 

T2bl= > R2bl= 
T2v.rz: <:: R2",T'"z 
T2c., =-R2 cz 
T2u > 0 
R2cz ;; 0.5. R2bl= + 0.5. R2bn 
R2c " = 0 .5. R2bl" + 0.5. R2"ll/ 
Rl"l" = Rhl" + Rl o " 

R2br" = R2bl" 
R2",rz = R2bY'z 
R2blz ~ Bblz 
R2",r:c ~ B 16 ,..z 

R2n > 0 
Bur: ;; Bbrz 

Bn > 0 

M" ;; Rl bl " - Bbl" 
M" = B .. l" - R2 .. l ll 
2. M" + Rl o " - Bc" = 0 

T2"l" = T2blll + T2c" 
T2"lz = T2bl., 
T2"r" = T2"ll/ 
T2blll ~ R 2bl" 
T2 .. r " ~ R2,,,,, 
T2 c" = R2c" 
T2." ~ 0 

R2 .. l" = R2bl" + R2o" 
R2 .. l z = R2blz 
R2"r" = R2 .. l" 
R2bl" ~ Bbl" 
R2",.y ~ B"'7'1I 

R2." ~ 0 
B"'7'1I == B""lI 
B o" ~ 0 
M" = B .. l " - Rl .. l " 
M., ~ 0, M" ~ 0 
Rl." - R2." = 0 

Figure 5: Original Set of 82 Constraints 

equations and the two inequalities 

110 ::; R1url/ R1ury ::; 150. 

One can readily see how all variables are either assigned 
to constants or are expressed solely in terms of Rlurl/. 
Thus, only one degree of freedom remains in the solved 
form . 

The parametric solved form is efficiently derived from 
the canonical form (see Section 5). It can then be either 
interpreted directly or used to compile efficient code to 
compute the values of dependent variables as the values 
of parameters are changed. 

Projection 

Projection provides a technique to examine the relation­
ships between particular variables that are implied by 
the constraints . Projecting onto a single variable gives 
the range of values it can take while still satisfying the 
constraints. Projecting a system of constraints onto a set 
of variables shows how these variables are inter-related in 
any solution to the constraints. 

In the example in Section 2, we saw how projecting the 
constraints on to variables Run, Rury indicated that they 
were constrained to be on the line R1ur", - ~ R1ury = 0 
where 110 ::; R1url/ ::; 150. 

Unfortunately, the doubly-exponential complexity of gen­
eral algorithms for projection has prevented its use in 
many application domains. Recently, however , a new al­
gorithm has been developed [9] that is very efficient when 
the number of variables in the projection space is small. 
This is exactly the case we are interested in, as we typi­
cally project onto a small number of variables (typically 

one or two) corresponding to the object currently being 
manipulated. 

The new algorithm computes a projection by successive 
approximations using an on-line algorithm for convex hull 
construction in the projection space. It provides an ex­
act solution when the size of the output is small, and an 
approximation (upper or lower) when the size of the out­
put is unmanageable. Previous methods usually failed 
to produce any output, even in small cases, because of 
the enormous amount of intermediate computation. Ini­
tial testing has shown extremely good performance, es­
pecially for small projection spaces. 

4 Proposed Architecture 

In this section we propose an architecture for a constraint 
manipulation sub-system within an interactive constraint­
based user-interface system. The architecture exploits 
the technology described in the previous section. This 
architecture must address issues of incrementality, inter­
action latency and feedback bandwidth [11] . These issues 
are most critical when anchor constraints and the values 
of the parameters of objects are changed during manip­
ulation . 

To address these issues, we use a two level architecture 
which maintains sets of constraints in canonical form . 
The first, the free canonical jorm(FCF), is a canonical 
form of the local and global constraints. The second, the 
anchored canonical jorm(ACF), is a canonical form for 
the entire set of local, global and anchor constraints . In 
addition local constraints associated with primitive and 
compou~d objects are kept in canonical form . 

The FCF does not change often, only when local or global 
constraints are added or deleted . However, whenever an 
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Tlc: = B,.I: + B.~ + M: - 2M~ 
Tlbl: = -Tl,.rz + 2B,.I: + 2B.~ + 2M: - 4M~ 
T1brz: = Tl"rz: 
Tl n = 2Tl,.r: - 2B,.I: - 2B.~ - 2M: + 4M~ 
Tl,.l: = -Tl,.rz + 2B,.I: + 2B.~ + 2M: - 4M~ 
T2c: = B,.I: + 3B.~ + 2M: - 6M~ 
T2bl: = -T2,.rz + 2B,.I: + 6B.~ + 4M: - l2M~ 
T2brz: = T2""';I) 
T2.: = 2T2,.r: - 2B,.I: - 6B.~ - 4M: + l2M~ 
T2,.1: = -T2ur: + 2B,.I: + 6Bo~ + 4M: - l2M~ 
Rlbl: = B,.I: + M: 
Rlc: = B,.I: + B.~ + M: - 2My 
Rlbrz = B,.I: + 2B.~ + M: - 4M~ 
Rl,.u = Bul: + 2B.y + M: - 4M~ 
Rlcz = 2B.~ - 4M~ 

R2bl~ = B"I~ - B.~ + M~ 
R2c~ = B"I~ - 0.5Bo~ 
R2ul~ = B"I~ - M~ 
R2".,.y = B,.ly - My 
Bbl:c = Bulz: 

Bbr: = B,.I: + 4B.~ + 3M: - 8My 

B .. rz = B .. I: + 4B.~ + 3M: - 8M~ 
Rlul: = B .. I: + M: 
R2,.1: = B .. I: + 2B. y + 2M: - 4M~ 
R2.~ = B.~ - 2M~ 
Bn = 4B.~ + 3M: - 8M~ 

My + Tln~ - B"I~ ~ 0 
-B.y - 2Tl .. r~ + 2B .. ly ~ 0 
My - B .. I~ + T2,.r~ ~ 0 
-B.y + 2B .. I~ - 2T2 .. ry ~ 0 
-M: ~ 0 

Tlcy = B .. ly - 0 . 5B.~ 
Tl bly = -Tl .. ry + 2B .. ly - B. y 
Tl",y = T1-u.TY 
Thry = -Tl .. ry + 2Buly - Bo~ 
Tl. y = 2Tl .. ry - 2Buly + B.~ 
T2cy = B .. ly - 0 .5B. y 
T2bly = -T2ury + 2B .. I~ - B.~ 
T2,.ly = T2 .. ry 
T2bry = -T2,.r~ + 2B"I~ - B.~ 
T2.~ = 2T2 .. ry - 2B .. ly + B.~ 
Rlbly = B .. ly - B. y + M~ 
Rlcy = B,.ly - 0 . 5Bo~ 
Rl .. ly = B .. ly - My 
Rl ury = B-u.ly - My 
R2bl: = B .. I: + 2B.~ + 2M: - 4My 
R2c: = B .. I: + 3B.y + 2M: - 6M~ 
R2brz = B .. I: + 4B. y + 2M: - 8My 

R2 .. rz = B .. I: + 4B. y + 2M: - 8My 

R2cz = 2B. y - 4M~ 
Bbl~ = B .. ly - Boy 
Bbry = B uly - Bey 
Bury = B,,11I 
Rl. y = B.~ - 2My 
Rlbry = B .. ly - B.~ + M~ 
R2 bry = B"I~ - Boy + My 

-2Tl .. rz + 2B,.I: + 2Boy + 2M: - 4M~ ~ 0 
-B .. I: - 4B. y - 2M: + 8My + T2 .. r : ~ 0 
2B .. I: + 6B. y + 4M: - l2My - 2T2 .. rz ~ 0 
Tl .. rz - B,.I: - 2Boy - M : + 4M~ ~ 0 
-My ~ 0 

Figure 6: Canonical Form of Original Set - 61 constraints 

anchor constraint is changed, or the picture is manip­
ulated via a new object, a new ACF is incrementally 
computed from the current FCF. Obviously - it is better 
not to redo the work already done in finding redundancy 
and implicit equalities . The role of the ACF is to be a 
parametric solved form with respect to the variables in 
the object currently being manipulated. This allows ef­
ficient updating of the display when the parameters are 
changed. 

When objects or global constraints are added to the sys­
tem new canonical forms are computed from the old one . 
Firstly, an FCF for the new local and global constraints 
is computed incrementally from the old FCF . Then, the 
ACF for the entire system of constraints is computed 
incrementally from the new FCF by adding the anchor 
constraints. This is quite efficient because the anchor 
constraints are always equations. Computation of these 
canonical forms will reveal if the system is unsatisfiable, 
and if so which constraints are at fault . 

Deletion of objects or global constraints is more problem­
atic. However, because local constraints associated with 
each object are kept in canonical form, then a new FCF 
and subsequently a new ACF can be computed relatively 
quickly. Thus the architecture provides: 

• Incremental addition and deletion of constraints . 

• Detection of unsatisfiability and identification of 

which constraints are the cause . 

When an object is selected for manipulation, the ACF is 
examined to see if it is in parametric solved form with 
respect to the variables in the object . There are three 
cases to consider: the ACF is under-constrained, over­
constrained, or it is in parametric solved form . 

Examination of the ACF will reveal the system is over­
constrained if there are no degrees of freedom, that is all 
variables are uniquely determined. For instance, consider 
the anchor constraints in Figure 2. These constraints, as 
follows, 

B ll", = B lly = 0 
Tl.", = 30 
T2. y = 20 

B ur", = 400 
Tl. y = 10 
R2lr", = 300 

Bury = 200 
T2.", = 40 
R2lry = 87.5 

will fix the width and height of the boxes containing 
text. Before adding these anchor constraints, the FCF 
is that shown in Figure 6. When the anchor constraints 
are added, we derive from the FCF, the following very 
simple ACF with 60 equations that assign each variable 
to a constant: 

Tl cy = 100, Thl", = 110, Thly = 95, ... 

As every variable is uniquely determined , there are no 
remaining degrees of freedom. Thus, with these anchor 
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T1e< = 200 - %R1"ry 

T1blz = 185 - ~R1"ry 
Thu = 215 - ~R1"ry 
T1,,1: = 185 - "3"R1"ry 
T1 .. = 30 

T2cz = 200 + !R1"ry 
T2blz = 180 + ~R1",y 
T2bu = 220 + ~R1"ry 
T2,,1: = 180 + "3"R1"ry 
T2 .. = 40 
R1cz = 200 - ! R1"ry 
R1blz = 400 - iR1"ry 
Rl b ,..: = !Rl",.,.y 
R1"lz = 400 - !R1"ry 
R1 .. = -400 + 4R1"ry 
R2blz = 400 - jR1"ry 
R2c: = 200 - % R1"ry 

R2br: ~ \Rlu,.,y 
R2 ur : - 3' R1 ury 

R2 .. = -400 + 4R1"ry 
Bblz = 0 
Bbu = 400 
B"rz = 400 
Bv.I: = 0 
B .. = 400 

T1"rz = 400 - !R1"r y 

T2"rz = 220 - "SR1"ry 
Mz = 400 - !R1"ry 
Rlurz::: = ! Rl"'T'lI 

T1cy = 100 

T1bly = 95 
T1"ry = 105 

T1bry = 95 
T1. y = 10 
T2cy = 100 

T2bly = 90 

T2"ly = 110 
T2 bry = 90 
T2. y = 20 
R1cy = 100 

R1b1y = 200 - R1"r. 
R1bry = 200 - R1"ry 
R1"ly = -400 + 4R1"ry 
R1 •• = -200 + 2R1"ry 
R2bly = 200 - R1"ry 
R2cy = 100 

R2bry = 200 - R1"ry 
R2",.,y :::: Rl",ry 
R2. y = 200 - R1"ry 
B b1y = 0 
B bry = 0 
B"ry = 200 
B"ly = 200 
B. y = 200 
T1"ry = 105 

T2"ry = 110 
My = 200 - R1"ry 

R1"ry ::; 150 
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Figure 7: Paremetric Solved form in Rury - 61 con­
straints 

constraints the system is over-constrained - it only has 
one solution. Note that this was certainly not obvious in 
the original set of constraints in non-canonical form. 

At this point we need to determine which anchor con­
straints need to be removed. To do this, a set of in­
equations are added corresponding to the variables in 
the object that we wish to manipulate. This of course 
results in an unsatisfiable system of constraints, but, in 
computing the new FCF, the unsatisfiable system can be 
analyzed to find other constraints, other than those we 
just added, which cause the unsatisfiability. These can 
be then removed by the user. 

If we consider only two anchor constraints instead of 
three, as in Figure 3, the ACF, as shown in Figure 7, is 
in parametric solved form having parameter Rl"ry. This 
solved form consists of 59 equations and 2 inequalities, 

110 ~ Rl"ry (1) 

and clearly has only one degree of freedom. This solved 
form can now be compiled into code to update the de­
pendent variables whenever this parameter is changed. 

If the ACF is not in solved form, then the constraint sys­
tem is under-constrained. From the ACF it is straightfor­
ward to determine possible choices for additional anchor 

constraints. These are variables which are not uniquely 
determined by the desired parametric variables of the 
ACF. 

Thus the architecture provides: 

• Rapid re-satisfaction of existing constraints when 
a small number of parameters, such as location of 
a vertex, are changed . 

• Detection of under-constrained system and identi­
fication of which parameters can be fixed to con­
strain it . 

• Recognition of an over-constrained system and iden­
tification of anchor constraints responsible for the 
unsatisfiability. 

When an object is selected for manipulation, the ACF 
is projected onto the object's variables giving the ranges 
of values that they may take while still satisfying the 
constraints. As the constraints are linear, the range will 
always be a convex polygon allowing it to be easily dis­
played. In the example, we saw that the upper right 
corner of RI was constrained to move only on a diago­
nal line . In other situations it might be constrained to 
move inside a small region . In both cases it is possible to 
present these regions graphically to the user . 

Thus the architecture provides: 

• Computation of the range of values that a param­
eter can take and still leave the system satisfiable. 

Interactive editors must support the definition and com­
pilation of compound objects. Although this is straight­
forward in systems without constraints, the addition of 
constraints raises new issues. In particular, efficiently 
representing the constraints in the compound object, and 
determining which variables of a compound graphic ob­
ject define the objects it contains. 

An efficient representation for the constraints of a com­
pound object can be obtained by computing the canoni­
cal form for all the constraints inside it. 

Defining a compound object is more problematic . Intu­
itively, the user should be able to select a group of ob­
jects on the display, and then the editor should abstract 
the desired definition from this instance of the definition. 
Essentially this can be done as follows. Once the user 
has selected a set of objects to form the compound ob­
ject, selected anchor constraints must then be removed 
to permit the compound object to be located freely, and 
finally a set of definitionalvariables which ensure that all 
its internal objects are well-defined - none of their vari­
ables are left unspecified - must be selected . The last 
step can be done by ensuring that the constraints in the 
compound object are parametric solved form for these 
definitional variables. 
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Projection can be used to simplify the constraints associ­
ated with the definition, acting as a type of compilation 
or partial evaluation. The idea is to project the con­
straints onto the definitional variables of the new object: 
this will remove local or internal variables from the con­
straints, and so simplify them. 

For example suppose we were constructing a square com­
pound object from the rectangle definition given earlier. 
The square object has the additional constraints that the 
z and y extents are equal. If we allow the square to be de­
fined in terms of a diagonal and a point, then the square's 
local constraints are simpler than those of the rectangle . 

Thus the architecture supports: 

• The definition and compilation of compound ob­
jects. 

5 Empirical results 

We now present empirical results concerning the perfor­
mance of this constraint technology. We consider the fol­
lowing operations which are typical of those which occur 
during an interactive session: 

1. Testing the solvability of a set of constraints and 
computing their canonical form . 

2. Adding new constraints or anchor points, and com­
puting a new canonical form. 

3. Generating a parametric solved form in terms of a 
set of specific variables that correspond to a point 
which is being dragged. 

All these operations are handled by a new incremental 
constraint solving system we are developing. This system 
integrates algorithms for : testing solvability; computing 
the canonical form; performing Gauss-Jordan reduction 
to obtain parametric solved forms ; and performing pro­
jections. This system is implemented in C++ on an IBM 
Risc Systemj6000, model 530 running AIX. Run times 
are measured in virtual CPU seconds. 

In this evaluation, we use three sets of constraints as 
test data and time the operations described above. The 
results are shown in Figure 8. 

The first test corresponds to the well known example 
of recursively nested quadrilaterals (see Figure 9) . The 
initial set of 76 constraints consist of constraints that 
ensure that the end points of lines in the quadrilaterals 
touch, that the midpoints of the quadrilaterals form a 
parallelogram, and that the vertices of the embedded 
quadrilaterals are at the midpoints of the edges of the 
enclosing quadrilateral . It takes 0.06 seconds to trans­
form this system into its canonical form which contains 
64 constraints. (Remark: the twelve constraints that are 
eliminated are exactly those that constrain the midpoints 

I 

Figure 9: Recursively Nested Quadrilaterals 

of each quadrilateral's edges to form a parallelogram. In 
retrospect, this was to be expected. The geometry theo­
rem that this example illustrates states this fact!) To this 
system, we then add the three anchor points, consisting 
of 6 equality constraints, shown in Fig. 9. It takes 0.11 
seconds to derive a new canonical form. Lastly, the time 
taken to obtain the parametric solved form in terms of 
the unanchored vertex of the quadrilateral is below the 
resolution of our timing system (lj100th of a second). 

The second test corresponds to that given in section 3. 
The initial set of constraints (see Figure 5) consists of 82 
constraints (54 equalities, 28 inequalities) over 60 vari­
ables. It takes 0.80 seconds to convert this to its canoni­
cal form (Fig. 6) containing 65 constraints. We then add 
2 anchor points , consisting of 4 equalities. It takes 0.17 
seconds to compute a new canonical form. Finally, the 
parametric solved form in terms of the point 
(R1urz, R1urll ) takes 0.01 seconds to compute. 

The third test, although from outside the graphics do­
main, has similar characteristics (sparsity, relative per­
centage of equalities and inequalities, etc .. ) as the pre­
vious examples . It is of interest because the initial con­
straints are all inequalities. The initial set of constraints 
consist of 1819 inequalities over 68 variables. This is 
simplified into 58 equalities plus 90 inequalities over 10 
variables . Then, 10 new equalities are added and the set 
is updated accordingly. Finally, 10 variables are chosen 
to obtain a parameterized representation . 

In these examples, the advantage of keeping constraints 
in canonical form is demonstrated by how little time it 
takes to add constraints, and to compute the parametric 
solved forms . The most time consuming operation is the 
detection of equalities implicitly defined by inequalities in 
the original system. This can be significant when there 
are large number of inequalities. However because the 
system is incremental, it will rarely, if ever, have to deal 
with the size and complexity of dataset 3 in an interactive 
application . Adding large numbers of inequalities at once 
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Total Constraints Computing Canonical Form Addition Solved Form 
N (=,<) Constraints (=,<) (sec) (sec) (sec) 
Recursive Quads 
76 (76,0) : 72 var. 64 (64,0) 0.06 0.11 <0 .01 
Layout : 
82 (54,28) : 60 var . 65 (51,14) 0.80 0.17 0.01 
Dataset 3: 
1819 (0,1819) : 68 var . 148 (58 ,90) 17.96 0.28 0.01 

Figure 8: 

is unlikely. 

6 Conclusion 

We have shown how recent results and algorithms to ma­
nipulate linear arithmetic constraints provide a technol­
ogy for interactive constraint-based user-interface sys­
tems . This extends previous constraint technology for 
user interfaces, by allowing simultaneous linear equations 
and inequalities, and by providing techniques which give 
improved user-feedback. 
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