
301

A Linear Constraint Technology for Interactive
Graphic Systems

Richard Helm, Tien Huynh, Catherine Lassez, Kim Marriott

I.B.M. Thomas J. Watson Research Center,

P.O. Box 704, Yorktown Heights, NY 10598

Abstract

Constraints provide a natural formalism for user-interface
design and graphical layout. Recent results and algo­
rithms from symbolic computation and geometry pro­
vide new techniques to manipulate linear arithmetic con­
straints. We show how these results can be applied to in­
teractive graphical user-interfaces and how they extend
the capabilities of previous interactive constraint-based
user interface systems. We propose an architecture for
such systems based on these techniques .

Keywords: Linear Arithmetic Constraints, Interactive
Techniques

1 Introduction

Constraints are a natural formalism for specifying user­
interface design and graphical layout . They have shown
their utility in interactive systems [1, 2, 3, 11, 12, 13, 14,
15], in graphic specification languages [5, 17] and recently
in visual language parsing [4] .

The requirements of adequate response time and graphi­
cal feedback for interactive systems demand certain capa­
bilities of constraint solvers . In particular, previous work,
for example ThingLab and ThingLab 11 [2, 11] suggests
that constraint solvers for interactive graphics must pro­
vide :

• Incremental addition and deletion of constraints.

• Fast generation of plans of execution when the ob­
ject that is the focus of manipulation changes .

• Adequate feedback bandwidth when manipulating
a graphic object .

Other capabilities which constraints can provide and which
an interactive constraint-based system should support
are :

• Determining and presenting the range of values
that a variable can take . For example, if a point
is going to be dragged around on the screen, the

system should be able to present graphically to the
user whereabouts this point can be moved.

• Support the definition and compilation of com­
pound objects. Although, this is straightforward in
systems without constraints, the addition of con­
straints raises new issues. In particular, efficiently
representing the constraints in the compound ob­
ject, and determining which variables of a com­
pound graphic object define all objects it contains.

In addition the constraint solver must support other,
more usual, operations associated with constraints. These
include:

• Detecting that a system of constraints is unsatis­
fiable , and identifying which constraints must be
removed to restore satisfiability.

• Detecting an under-constrained system and identi­
fying which variables must be further constrained.

Both the constraints causing unsatisfiability, and vari­
ables that need to be further constrained must be indi­
cated to the user .

Recent results and algorithms from symbolic computa­
tion [6, 8, 9] provide powerful techniques to manipu­
late sets of linear arithmetic constraints containing both
equalities and inequalities. We show that when applied to
interactive constraint-based user-interface systems, these
techniques give new capabilities, and enhance interaction
through improved user-feedback. In particular, they pro­
vide :

1. A canonical form for a set of linear arithmetic con­
straints . The canonical form is concise, does not
contain redundant constraints, identifies the de­
grees of freedom in the constraints, and makes ex­
plicit the equalities implied by the constraints.
There is an incremental algorithm to compute the
canonical form . This algorithm also determines
whether or not the constraints are satisfiable. The
canonical form is a key for both efficient represen­
tation and manipulation of constraints.

Graphics Interface '92

302

2. A parametric solved form for the solutions of a set
of constraints in terms of distinguished paramet­
ric variables . The solved form, which corresponds
to the plans of Thinglab 11, allows the values of
variables to be computed rapidly from the param­
eters. This permits the rapid re-satisfaction of the
constraints when objects are being manipulated by
the user.

3. An efficient projection algorithm to compute the
range of values of distinguished variables. This
allows the user to get feedback about the region
within which selected objects on the screen can be
moved while still satisfying the constraints . Pro­
jection also plays a role in computing the manipu­
lable interface of compound objects.

4 . Techniques to deal with un solvable sets of con­
straints by identifying minimal un solvable subsets .
These provide feedback as to which constraints need
to be relaxed or removed to restore solvability.

5. Techniques to determine if a set of constraints is
underconstrained , that is if some variables cannot
be uniquely determined in terms of certain distin­
guished parameters, and consequently which vari­
ables must be further constrained.

This work extends previous constraint technology for in­
teractive constraint-based systems in two ways.

First, we present new feedback mechanisms and inter­
action styles for constraint-based systems. These are
based on new techniques for extracting information about
causes of over- and under- constrainedness in sets of con­
straints, and determining relationships on specific vari­
ables implied by the constraints . These techniques rely
on manipulating constraints symbolically. To our knowl­
edge these features have not appeared in previous sys­
tems.

Secondly, we extend previous work that uses symbolic
techniques to solve constraints by allowing simultane­
ous linear equations and inequalities. This extension is
important because such constraints arise naturally when
specifying graphical layout . For efficiency reasons , pre­
vious systems have dealt mainly with systems of acyclic
linear equations [3 , 11, 15] , and solved these constraints
using local propagation techniques . Recent research has
addressed the efficient and incremental recompilation of
these types of constraints in response to user interac­
tion [11]. For the more general constraints considered
here , however, local propagation is not sufficient; global
techniques must be used . We note that Wit kin [16] and
Nelson [12] deal with more powerful constraints, but use
numerical techniques for constraint satisfaction. It is not
clear how the feedback mechanisms we present can be
provided using these numerical techniques .

The rest of the paper is organized as follows . In the
next section, we present an example of a typical inter­
active session which illustrates these new techniques. In

Section 3, we discuss two key elements of the underly­
ing constraints technology : a canonical representation for
constraint, and a new projection algorithm particularly
suited to this application . In Section 4, we propose an
architecture for a constraint manipulation sub-system to
be used within an interactive user interface system. In
Section 5 we present some empirical results concerning
the performance of this constraint technology.

2 Example

To illustrate some of the capabilities of the constraint
technology, we present a simple hypothetical session with
an interactive constraint-based editor.

Consider the diagram illustrated in Figure 1 which con­
sists of two pieces of text Tl and T2, two rectangles RI
and R2 and a surrounding box B. Suppose that the user
wishes to satisfy the following requirements.

B

1. RI and R2 have a fixed aspect ratio.

2. RI and R2 have the same size and cannot overlap.

3. T i is centered in Ri and Ri is large enough to con­
tain T i .

4. B contains both RI and R2 , and they are "nicely"
placed inside B , that is the rectangles are equidis­
tant from the borders of B and from each other .

Text1 Text2

R1 R2

Figure 1: Layout of the diagram

To create this diagram , the user adds and deletes graphic
objects and constraints and modifies the parameters (or
attributes) of the objects . The resulting layout is de­
fined by a set of constraints . These fall into the follow­
ing categories: local constraints, which express the rela­
tionships between the modifiable parameters of system­
defined objects; global constraints, provided by the user ,
which express the relations between objects; and an­
chor constraints which express that certain points or at­
tributes are fixed .

Typically, local constraints are pre-defined for each ob­
ject, and are highly redundant to allow multiple ways to
define an object . In our example , each rectangle may be
defined by its opposite vertices or its center and a vertex.
Thus each rectangle has as parameters, its four vertices -
bl, br , ul , ur for bottom-left, bottom right, etc ... ; its cen­
ter point c, and its extent e in :z: and y dimensions . The

Graphics Interface '92

303

local constraints for an object 0 over these parameters
are

Oc", = 0.5 * Obl", + 0.5 * Obn
Ocy = 0.5 * Obly + 0.5 * Ouly
Obr", = Obl", + 0.",
Ouly = Obly + O.y
0.", 2: 0

Obry = Obly
01.11", = Obl",
Our", = Obr",
Oury = Ouly
O.y 2: o.

Global constraints are provided by the user and are de­
fined over the parameters of the relevant objects. For
example, the requirement that Tl is contained in RI is
expressed by

Thl", 2: Rhl",
Thl y 2: Rhly
Tl ur", ::; Rlur",
Tlury ::; Rlury .

The entire set of local and global constraints which cap­
ture the previous 4 requirements for Figure 1 is shown in
Figure 5. The large number of constraints generated by
this relatively simple example is typical - systems such
as ThingLabII generate similar numbers of constraints
for similarly sized examples. The large numbers of con­
straints means that efficient representation and manipu­
lation of constraints is important .

Anchor constraints are equalities which fix the values of
variables of objects. For instance, the constraint

B bl", = Bbly = 0

expresses that the lower left corner of B is anchored at
the origin of the screen. Anchor constraints are added
by the user when the attributes of objects are not to be
modified .

When creating this diagram, the user adds and deletes
graphic objects and constraints, and modifies the param­
eters (or attributes) of the objects. As constraints and
objects are added, the solvability of the entire set must
be checked. If it becomes unsatisfiable, information as
to which constraints need to be modified to restore solv­
ability is fed back to the user by highlighting a graphical
representation of the offending constraints .

Text1 Text2

R1 IR2
B

Figure 2: Three anchor points were selected

During a session, as graphic objects are moved around
and their attributes modified, the system gives feedback

about the current constraints and presents this in a suit­
able graphical format . For instance, suppose the user
wants to move the upper-right corner of RI. Initially the
vertices of B , one vertex of R2 and the text size are "an­
chored" so that the system will not change their present
values (see Figure 2) . At this point the set of constraints
is over-constrained . When the user selects the upper­
right corner of RI, the system indicates that RI cannot
be moved. This is because the constraints imply that the
coordinates of RI are fixed. Note that this information
is not explicit in the original constraints .

The system can then indicate which anchor constraints
need to be removed to restore some degrees of freedom
in the system . If the user now removes the anchor­
constraint on R2, it is now possible to automatically in­
fer, from the constraints, the possible values for RI. The
possible values are given by the constraints

RluT", - t Rlury = 0
110 ::; RlUTY ::; 150

defining the line segment as depicted in Figure 3. The
system displays this line and the cursor is constrained to
remain on it. Whenever the cursor is moved, the display
is updated to reflect the new configuration (Figure 4).

B
"r,r

B

!
Text1/ B R1 R2

Figure 3: Range of motion for point Rlur

·--··8··--··_-_·········
, , , , , , , . , ,
: '

: :":.T~*i1·: 1 . , . , , .
LB .1 ••••••••.•...••.••.• j

.......................... , , :8: 1 , _ ...
: ~a··:

R~••...•.•...•....•.• :

,
"

Figure 4: Display reflecting motion of point Rlur

3 The Linear Constraint Technology

From the previous example, we can see that an underly­
ing constraint technology for interactive constraint-based
systems should provide efficient :

Graphics Interface '92

304

• Incremental addition and deletion of constraints.

• Detection of unsatisfiability and identification of
which constraints or anchor constraints are causing
it.

• Rapid re-satisfaction of existing constraints when
a small number of parameters, such as the location
of a vertex, are changed.

• Detection of under-constrained system and identi­
fication of which parameters can be fixed to con­
strain it .

• Recognition of an over-constrained constraint sys­
tem and identification of the responsible anchor
constraints.

• Computation of the range of values that a param­
eter can take while leaving the system satisfiable.

Recent results from symbolic computation provide a tech­
nology for linear arithmetic constraints with these capa­
bilities. The key to an efficient implementation is based
on a new representation for sets of linear constraints
called the canonical form [10], and a new algorithm for
variable projection [9] . We now discuss the canonical
form, how it supports the compilation of plans of execu­
tion or parametric solved forms , and projection.

The Canonical Form

The sets of constraints that arise in interactive systems
often contain redundancy. Local constraints defining at­
tributes of objects often contain redundancy to allow flex­
ible definition of objects. Constraints on objects can be­
come redundant as a user adds further constraints. Be­
cause of the potentially large number of constraints that
can be generated in interactive systems, it is important to
have non-redundant representations. In the technology
we present, this representation is given by the canonical
form .

The canonical form1 of a set of linear arithmetic con­
straints consists of:

1. A set of equations that defines the affine hull of
the solution set of the constraints . This affine hull
is the space having the smallest dimension that
contains the set of solutions to the constraints .

2. A set of inequalities that define the full dimensional
solution set .

The canonical form has the following important proper­
ties: it contains no redundant constraints ; it identifies
the degrees of freedom in the constraints; and it makes
explicit the equalities implied by the constraints.

1 Note : the full definition of the canonical form also in­
cludes negative constraints which are not discussed here . The
interested reader is referred to the reference for a complete
treatment .

Eliminating redundancy is important because typically
the system of constraints may contain many redundant
constraints mainly due to the local constraints. For some
systems of constraints, the corresponding canonical form
has an order of magnitude fewer constraints. Making
equalities explicit is important because they can greatly
simplify the set of constraints. The degrees of freedom
of the set of constraints is given by the number of vari­
ables less the number of equalities in the canonical form .
This means it is possible to determine if the system is
under-constrained and which variables need to be further
constrained.

Transforming an arbitrary set of constraints into its canon­
ical form is a complex three-stage process using a quasi­
dual formulation of optimization techniques (such as the
simplex method) from Linear Programming [7, 10] . The
three stages are identification of implicit equalities, sim­
plification , and elimination of redundancy. The first stage
performs a test for satisfiability. If the system of con­
straints is unsatisfiable, then a minimal subset of con­
straints causing unsatisfiability is identified .

Computing the canonical form from scratch is expen­
sive . However , we use an incremental algorithm that ef­
ficiently recomputes the canonical form when constraints
are added . This is an important consideration when in­
teractively constructing systems of constraints .

The system given in Figure 5 has the canonical form
given in Figure 6. The original system has 54 equalities,
and 28 inequalities involving 32 variables . The canoni­
cal form has 51 equalities , and 10 inequalities involving
9 variables. Note the substantially reduced number of
variables in the inequalities .

The Parametric Solved Form

One of the most important operations in an interactive
graphics system is the manipulation of objects on the
display. To do this efficiently requires computing a plan
of execution in terms of the object being manipulated,
and then continually re-executing this plan.

In our technology, a plan of execution is called a para­
metric solved form with respect to a set of parametric
variables. The parametric solved form is a set of con­
straints such that all dependent variables are expressed
in terms of the parameters, and only the parametric vari­
ables occur in the inequalities . The parametric variables
are those that correspond to the object being manipu­
lated. Thus the parametric solved form has the property
that if the constraints contain the variables Xl , . . , X" , and
the parameters are Xl, ... , Xi, then for j = i+1, ... , n , there
exists an fi such that Xj = Ij(Xl ' . . . , Xi) .

The system of constraints corresponding to Figure 4 when
parameterized by variable R1ury has the parametric solved
form given in Figure 7. This solved form consists of 59

Graphics Interface '92

Tl cz = 0.5. Tlbl., + 0.5. Tlbn
Tlcl/ = 0 .5. Tlbll/ + 0.5. Tl"l"
Tlbrz = Tlblz + Tl n
Tlbrl/ = Tl&ll/
Tlur:c = Tlllrz
Tlbl= > Rlblz
Tl",r:c <: Rl",r;z::
Tl cz = -Rl c ,"

Tl n > 0
Rlcz ;; 0.5. Rlblz + 0.5. Rlbn
Rl c" = 0 .5. Rlbll/ + 0.5. Rl"ll/
Rhrz = Rl&lz + Rlu
Rlbr" = Rlbll/
Rl",rz = R1br:c
Rlblz ~ Bblz
Rl""T'z < B ... T"z

Rlu =-2 • Rlol/
Rl n > 0
Bbr:c ~ Ebb:; + BcZl

Bv.lz = Bblz

Mz = Rlblz - Bbl.,
M:c = Bbr:c - R2brz

3. Mz + Rl n + R2u - Bu = 0

305

T2brz = T2blz + T2..,
Tl .. lz = Tlblz
Tl"rl/ = Tl"l"
Tlbl " ~ Rlbl"
Tl"r" ~ Rl"r"
Tl c " = Rl c "

Tlc " ~ 0

R2brz = R2 b l= + R20z
Rl"lz = Rlblz
Rl"r" = Rl"l"
Rhl" ~ B bl"
Rl""lI ~ Bury
R2n = 2. R2 o"

Rl c " ~ 0
Bbr" = B bl "
B .. l " = Bbll/ + Bc"
M:c = R2blz: - R1brz::
M" = R2bl" - Bbl"

T2cz = 0. 5 • T2blz + 0 .5 • T2bn
T2cl/ = 0.5. T2bl" + 0.5. T2"ll/
Tl .. l " = Tlblll + Tlc"
T2br" = T2blll
T2",r:c = T2 brZl

T2bl= > R2bl=
T2v.rz: <:: R2",T'"z
T2c., =-R2 cz
T2u > 0
R2cz ;; 0.5. R2bl= + 0.5. R2bn
R2c " = 0 .5. R2bl" + 0.5. R2"ll/
Rl"l" = Rhl" + Rl o "

R2br" = R2bl"
R2",rz = R2bY'z
R2blz ~ Bblz
R2",r:c ~ B 16 ,..z

R2n > 0
Bur: ;; Bbrz

Bn > 0

M" ;; Rl bl " - Bbl"
M" = B .. l" - R2 .. l ll
2. M" + Rl o " - Bc" = 0

T2"l" = T2blll + T2c"
T2"lz = T2bl.,
T2"r" = T2"ll/
T2blll ~ R 2bl"
T2 .. r " ~ R2,,,,,
T2 c" = R2c"
T2." ~ 0

R2 .. l" = R2bl" + R2o"
R2 .. l z = R2blz
R2"r" = R2 .. l"
R2bl" ~ Bbl"
R2",.y ~ B"'7'1I

R2." ~ 0
B"'7'1I == B""lI
B o" ~ 0
M" = B .. l " - Rl .. l "
M., ~ 0, M" ~ 0
Rl." - R2." = 0

Figure 5: Original Set of 82 Constraints

equations and the two inequalities

110 ::; R1url/ R1ury ::; 150.

One can readily see how all variables are either assigned
to constants or are expressed solely in terms of Rlurl/.
Thus, only one degree of freedom remains in the solved
form .

The parametric solved form is efficiently derived from
the canonical form (see Section 5). It can then be either
interpreted directly or used to compile efficient code to
compute the values of dependent variables as the values
of parameters are changed.

Projection

Projection provides a technique to examine the relation­
ships between particular variables that are implied by
the constraints . Projecting onto a single variable gives
the range of values it can take while still satisfying the
constraints. Projecting a system of constraints onto a set
of variables shows how these variables are inter-related in
any solution to the constraints.

In the example in Section 2, we saw how projecting the
constraints on to variables Run, Rury indicated that they
were constrained to be on the line R1ur", - ~ R1ury = 0
where 110 ::; R1url/ ::; 150.

Unfortunately, the doubly-exponential complexity of gen­
eral algorithms for projection has prevented its use in
many application domains. Recently, however , a new al­
gorithm has been developed [9] that is very efficient when
the number of variables in the projection space is small.
This is exactly the case we are interested in, as we typi­
cally project onto a small number of variables (typically

one or two) corresponding to the object currently being
manipulated.

The new algorithm computes a projection by successive
approximations using an on-line algorithm for convex hull
construction in the projection space. It provides an ex­
act solution when the size of the output is small, and an
approximation (upper or lower) when the size of the out­
put is unmanageable. Previous methods usually failed
to produce any output, even in small cases, because of
the enormous amount of intermediate computation. Ini­
tial testing has shown extremely good performance, es­
pecially for small projection spaces.

4 Proposed Architecture

In this section we propose an architecture for a constraint
manipulation sub-system within an interactive constraint­
based user-interface system. The architecture exploits
the technology described in the previous section. This
architecture must address issues of incrementality, inter­
action latency and feedback bandwidth [11] . These issues
are most critical when anchor constraints and the values
of the parameters of objects are changed during manip­
ulation .

To address these issues, we use a two level architecture
which maintains sets of constraints in canonical form .
The first, the free canonical jorm(FCF), is a canonical
form of the local and global constraints. The second, the
anchored canonical jorm(ACF), is a canonical form for
the entire set of local, global and anchor constraints . In
addition local constraints associated with primitive and
compou~d objects are kept in canonical form .

The FCF does not change often, only when local or global
constraints are added or deleted . However, whenever an

Graphics Interface '92

306

Tlc: = B,.I: + B.~ + M: - 2M~
Tlbl: = -Tl,.rz + 2B,.I: + 2B.~ + 2M: - 4M~
T1brz: = Tl"rz:
Tl n = 2Tl,.r: - 2B,.I: - 2B.~ - 2M: + 4M~
Tl,.l: = -Tl,.rz + 2B,.I: + 2B.~ + 2M: - 4M~
T2c: = B,.I: + 3B.~ + 2M: - 6M~
T2bl: = -T2,.rz + 2B,.I: + 6B.~ + 4M: - l2M~
T2brz: = T2""';I)
T2.: = 2T2,.r: - 2B,.I: - 6B.~ - 4M: + l2M~
T2,.1: = -T2ur: + 2B,.I: + 6Bo~ + 4M: - l2M~
Rlbl: = B,.I: + M:
Rlc: = B,.I: + B.~ + M: - 2My
Rlbrz = B,.I: + 2B.~ + M: - 4M~
Rl,.u = Bul: + 2B.y + M: - 4M~
Rlcz = 2B.~ - 4M~

R2bl~ = B"I~ - B.~ + M~
R2c~ = B"I~ - 0.5Bo~
R2ul~ = B"I~ - M~
R2".,.y = B,.ly - My
Bbl:c = Bulz:

Bbr: = B,.I: + 4B.~ + 3M: - 8My

B .. rz = B .. I: + 4B.~ + 3M: - 8M~
Rlul: = B .. I: + M:
R2,.1: = B .. I: + 2B. y + 2M: - 4M~
R2.~ = B.~ - 2M~
Bn = 4B.~ + 3M: - 8M~

My + Tln~ - B"I~ ~ 0
-B.y - 2Tl .. r~ + 2B .. ly ~ 0
My - B .. I~ + T2,.r~ ~ 0
-B.y + 2B .. I~ - 2T2 .. ry ~ 0
-M: ~ 0

Tlcy = B .. ly - 0 . 5B.~
Tl bly = -Tl .. ry + 2B .. ly - B. y
Tl",y = T1-u.TY
Thry = -Tl .. ry + 2Buly - Bo~
Tl. y = 2Tl .. ry - 2Buly + B.~
T2cy = B .. ly - 0 .5B. y
T2bly = -T2ury + 2B .. I~ - B.~
T2,.ly = T2 .. ry
T2bry = -T2,.r~ + 2B"I~ - B.~
T2.~ = 2T2 .. ry - 2B .. ly + B.~
Rlbly = B .. ly - B. y + M~
Rlcy = B,.ly - 0 . 5Bo~
Rl .. ly = B .. ly - My
Rl ury = B-u.ly - My
R2bl: = B .. I: + 2B.~ + 2M: - 4My
R2c: = B .. I: + 3B.y + 2M: - 6M~
R2brz = B .. I: + 4B. y + 2M: - 8My

R2 .. rz = B .. I: + 4B. y + 2M: - 8My

R2cz = 2B. y - 4M~
Bbl~ = B .. ly - Boy
Bbry = B uly - Bey
Bury = B,,11I
Rl. y = B.~ - 2My
Rlbry = B .. ly - B.~ + M~
R2 bry = B"I~ - Boy + My

-2Tl .. rz + 2B,.I: + 2Boy + 2M: - 4M~ ~ 0
-B .. I: - 4B. y - 2M: + 8My + T2 .. r : ~ 0
2B .. I: + 6B. y + 4M: - l2My - 2T2 .. rz ~ 0
Tl .. rz - B,.I: - 2Boy - M : + 4M~ ~ 0
-My ~ 0

Figure 6: Canonical Form of Original Set - 61 constraints

anchor constraint is changed, or the picture is manip­
ulated via a new object, a new ACF is incrementally
computed from the current FCF. Obviously - it is better
not to redo the work already done in finding redundancy
and implicit equalities . The role of the ACF is to be a
parametric solved form with respect to the variables in
the object currently being manipulated. This allows ef­
ficient updating of the display when the parameters are
changed.

When objects or global constraints are added to the sys­
tem new canonical forms are computed from the old one .
Firstly, an FCF for the new local and global constraints
is computed incrementally from the old FCF . Then, the
ACF for the entire system of constraints is computed
incrementally from the new FCF by adding the anchor
constraints. This is quite efficient because the anchor
constraints are always equations. Computation of these
canonical forms will reveal if the system is unsatisfiable,
and if so which constraints are at fault .

Deletion of objects or global constraints is more problem­
atic. However, because local constraints associated with
each object are kept in canonical form, then a new FCF
and subsequently a new ACF can be computed relatively
quickly. Thus the architecture provides:

• Incremental addition and deletion of constraints .

• Detection of unsatisfiability and identification of

which constraints are the cause .

When an object is selected for manipulation, the ACF is
examined to see if it is in parametric solved form with
respect to the variables in the object . There are three
cases to consider: the ACF is under-constrained, over­
constrained, or it is in parametric solved form .

Examination of the ACF will reveal the system is over­
constrained if there are no degrees of freedom, that is all
variables are uniquely determined. For instance, consider
the anchor constraints in Figure 2. These constraints, as
follows,

B ll", = B lly = 0
Tl.", = 30
T2. y = 20

B ur", = 400
Tl. y = 10
R2lr", = 300

Bury = 200
T2.", = 40
R2lry = 87.5

will fix the width and height of the boxes containing
text. Before adding these anchor constraints, the FCF
is that shown in Figure 6. When the anchor constraints
are added, we derive from the FCF, the following very
simple ACF with 60 equations that assign each variable
to a constant:

Tl cy = 100, Thl", = 110, Thly = 95, ...

As every variable is uniquely determined , there are no
remaining degrees of freedom. Thus, with these anchor

Graphics Interface '92

T1e< = 200 - %R1"ry

T1blz = 185 - ~R1"ry
Thu = 215 - ~R1"ry
T1,,1: = 185 - "3"R1"ry
T1 .. = 30

T2cz = 200 + !R1"ry
T2blz = 180 + ~R1",y
T2bu = 220 + ~R1"ry
T2,,1: = 180 + "3"R1"ry
T2 .. = 40
R1cz = 200 - ! R1"ry
R1blz = 400 - iR1"ry
Rl b ,..: = !Rl",.,.y
R1"lz = 400 - !R1"ry
R1 .. = -400 + 4R1"ry
R2blz = 400 - jR1"ry
R2c: = 200 - % R1"ry

R2br: ~ \Rlu,.,y
R2 ur : - 3' R1 ury

R2 .. = -400 + 4R1"ry
Bblz = 0
Bbu = 400
B"rz = 400
Bv.I: = 0
B .. = 400

T1"rz = 400 - !R1"r y

T2"rz = 220 - "SR1"ry
Mz = 400 - !R1"ry
Rlurz::: = ! Rl"'T'lI

T1cy = 100

T1bly = 95
T1"ry = 105

T1bry = 95
T1. y = 10
T2cy = 100

T2bly = 90

T2"ly = 110
T2 bry = 90
T2. y = 20
R1cy = 100

R1b1y = 200 - R1"r.
R1bry = 200 - R1"ry
R1"ly = -400 + 4R1"ry
R1 •• = -200 + 2R1"ry
R2bly = 200 - R1"ry
R2cy = 100

R2bry = 200 - R1"ry
R2",.,y :::: Rl",ry
R2. y = 200 - R1"ry
B b1y = 0
B bry = 0
B"ry = 200
B"ly = 200
B. y = 200
T1"ry = 105

T2"ry = 110
My = 200 - R1"ry

R1"ry ::; 150

307

Figure 7: Paremetric Solved form in Rury - 61 con­
straints

constraints the system is over-constrained - it only has
one solution. Note that this was certainly not obvious in
the original set of constraints in non-canonical form.

At this point we need to determine which anchor con­
straints need to be removed. To do this, a set of in­
equations are added corresponding to the variables in
the object that we wish to manipulate. This of course
results in an unsatisfiable system of constraints, but, in
computing the new FCF, the unsatisfiable system can be
analyzed to find other constraints, other than those we
just added, which cause the unsatisfiability. These can
be then removed by the user.

If we consider only two anchor constraints instead of
three, as in Figure 3, the ACF, as shown in Figure 7, is
in parametric solved form having parameter Rl"ry. This
solved form consists of 59 equations and 2 inequalities,

110 ~ Rl"ry (1)

and clearly has only one degree of freedom. This solved
form can now be compiled into code to update the de­
pendent variables whenever this parameter is changed.

If the ACF is not in solved form, then the constraint sys­
tem is under-constrained. From the ACF it is straightfor­
ward to determine possible choices for additional anchor

constraints. These are variables which are not uniquely
determined by the desired parametric variables of the
ACF.

Thus the architecture provides:

• Rapid re-satisfaction of existing constraints when
a small number of parameters, such as location of
a vertex, are changed .

• Detection of under-constrained system and identi­
fication of which parameters can be fixed to con­
strain it .

• Recognition of an over-constrained system and iden­
tification of anchor constraints responsible for the
unsatisfiability.

When an object is selected for manipulation, the ACF
is projected onto the object's variables giving the ranges
of values that they may take while still satisfying the
constraints. As the constraints are linear, the range will
always be a convex polygon allowing it to be easily dis­
played. In the example, we saw that the upper right
corner of RI was constrained to move only on a diago­
nal line . In other situations it might be constrained to
move inside a small region . In both cases it is possible to
present these regions graphically to the user .

Thus the architecture provides:

• Computation of the range of values that a param­
eter can take and still leave the system satisfiable.

Interactive editors must support the definition and com­
pilation of compound objects. Although this is straight­
forward in systems without constraints, the addition of
constraints raises new issues. In particular, efficiently
representing the constraints in the compound object, and
determining which variables of a compound graphic ob­
ject define the objects it contains.

An efficient representation for the constraints of a com­
pound object can be obtained by computing the canoni­
cal form for all the constraints inside it.

Defining a compound object is more problematic . Intu­
itively, the user should be able to select a group of ob­
jects on the display, and then the editor should abstract
the desired definition from this instance of the definition.
Essentially this can be done as follows. Once the user
has selected a set of objects to form the compound ob­
ject, selected anchor constraints must then be removed
to permit the compound object to be located freely, and
finally a set of definitionalvariables which ensure that all
its internal objects are well-defined - none of their vari­
ables are left unspecified - must be selected . The last
step can be done by ensuring that the constraints in the
compound object are parametric solved form for these
definitional variables.

Graphics Interface '92

308

Projection can be used to simplify the constraints associ­
ated with the definition, acting as a type of compilation
or partial evaluation. The idea is to project the con­
straints onto the definitional variables of the new object:
this will remove local or internal variables from the con­
straints, and so simplify them.

For example suppose we were constructing a square com­
pound object from the rectangle definition given earlier.
The square object has the additional constraints that the
z and y extents are equal. If we allow the square to be de­
fined in terms of a diagonal and a point, then the square's
local constraints are simpler than those of the rectangle .

Thus the architecture supports:

• The definition and compilation of compound ob­
jects.

5 Empirical results

We now present empirical results concerning the perfor­
mance of this constraint technology. We consider the fol­
lowing operations which are typical of those which occur
during an interactive session:

1. Testing the solvability of a set of constraints and
computing their canonical form .

2. Adding new constraints or anchor points, and com­
puting a new canonical form.

3. Generating a parametric solved form in terms of a
set of specific variables that correspond to a point
which is being dragged.

All these operations are handled by a new incremental
constraint solving system we are developing. This system
integrates algorithms for : testing solvability; computing
the canonical form; performing Gauss-Jordan reduction
to obtain parametric solved forms ; and performing pro­
jections. This system is implemented in C++ on an IBM
Risc Systemj6000, model 530 running AIX. Run times
are measured in virtual CPU seconds.

In this evaluation, we use three sets of constraints as
test data and time the operations described above. The
results are shown in Figure 8.

The first test corresponds to the well known example
of recursively nested quadrilaterals (see Figure 9) . The
initial set of 76 constraints consist of constraints that
ensure that the end points of lines in the quadrilaterals
touch, that the midpoints of the quadrilaterals form a
parallelogram, and that the vertices of the embedded
quadrilaterals are at the midpoints of the edges of the
enclosing quadrilateral . It takes 0.06 seconds to trans­
form this system into its canonical form which contains
64 constraints. (Remark: the twelve constraints that are
eliminated are exactly those that constrain the midpoints

I

Figure 9: Recursively Nested Quadrilaterals

of each quadrilateral's edges to form a parallelogram. In
retrospect, this was to be expected. The geometry theo­
rem that this example illustrates states this fact!) To this
system, we then add the three anchor points, consisting
of 6 equality constraints, shown in Fig. 9. It takes 0.11
seconds to derive a new canonical form. Lastly, the time
taken to obtain the parametric solved form in terms of
the unanchored vertex of the quadrilateral is below the
resolution of our timing system (lj100th of a second).

The second test corresponds to that given in section 3.
The initial set of constraints (see Figure 5) consists of 82
constraints (54 equalities, 28 inequalities) over 60 vari­
ables. It takes 0.80 seconds to convert this to its canoni­
cal form (Fig. 6) containing 65 constraints. We then add
2 anchor points , consisting of 4 equalities. It takes 0.17
seconds to compute a new canonical form. Finally, the
parametric solved form in terms of the point
(R1urz, R1urll) takes 0.01 seconds to compute.

The third test, although from outside the graphics do­
main, has similar characteristics (sparsity, relative per­
centage of equalities and inequalities, etc ..) as the pre­
vious examples . It is of interest because the initial con­
straints are all inequalities. The initial set of constraints
consist of 1819 inequalities over 68 variables. This is
simplified into 58 equalities plus 90 inequalities over 10
variables . Then, 10 new equalities are added and the set
is updated accordingly. Finally, 10 variables are chosen
to obtain a parameterized representation .

In these examples, the advantage of keeping constraints
in canonical form is demonstrated by how little time it
takes to add constraints, and to compute the parametric
solved forms . The most time consuming operation is the
detection of equalities implicitly defined by inequalities in
the original system. This can be significant when there
are large number of inequalities. However because the
system is incremental, it will rarely, if ever, have to deal
with the size and complexity of dataset 3 in an interactive
application . Adding large numbers of inequalities at once

Graphics Interface '92

309

Total Constraints Computing Canonical Form Addition Solved Form
N (=,<) Constraints (=,<) (sec) (sec) (sec)
Recursive Quads
76 (76,0) : 72 var. 64 (64,0) 0.06 0.11 <0 .01
Layout :
82 (54,28) : 60 var . 65 (51,14) 0.80 0.17 0.01
Dataset 3:
1819 (0,1819) : 68 var . 148 (58 ,90) 17.96 0.28 0.01

Figure 8:

is unlikely.

6 Conclusion

We have shown how recent results and algorithms to ma­
nipulate linear arithmetic constraints provide a technol­
ogy for interactive constraint-based user-interface sys­
tems . This extends previous constraint technology for
user interfaces, by allowing simultaneous linear equations
and inequalities, and by providing techniques which give
improved user-feedback.

[7) T. Huynh, J-L. Lassez and K. McAloon, Simplifi­
cation and Elimination of Redundant Linear Arith­
metic Constraints, proc. NACLP 89, MIT Press.

[8) J-L. Lassez, Querying Con$trainb, Proceedings of
the ACM conference on Principles of Database Sys­
tems Nashville 1990.

[9) C. Lassez and J-L . Lassez, Quantifier Elimination
for Conjunctions of Linear Constraints via a Convex
hull Algorithm, IBM Research Report . RC 16779.
1991.

[10] J-L. Lassez and K. McAloon, A Canonical Form for
Generalized Linear Constrainb, IBM Research Re-

We have proposed an architecture based on this technol- port RC 15004, IBM T .J . Watson Research Center ,
ogy and are currently implementing a interactive constraint- to appear Journal of Symbolic Computation.
based editor based upon it. '[11) J .H . Maloney, A . Borning and B.N. Freeman-

Acknowledgements

The authors thank Jean-Louis Lassez for his helpful com­
ments .

References

[1] A. Borning, The programming language aspects of
ThingLab - a constraint-oriented simulation labo­
ratory, ACM Trans . on Prog. Lang. and Systems 3,
1981, 343-387.

[2] A . Borning, R .A. Duisberg. Constraint based tools
for building user interfaces. ACM Transactions on
Graphics . 5(4) . 1986.

[3) D. Epstein and W .R. Lalonde, A Smalltalk window
system based on constraints, in Proc. of ACM Con­
ference on Object Oriented Programming Systems ,
Languages and Applications (OOPSLA '88), pp. 83-
94, ACM Press, 1988.

[4] R . Helm, K. Marriott and M. Odersky, Building vi­
suallanguage parsers, in ACM CHI'91, pp. 105- 112,
ACM Press, 1991.

[5) R. Helm and K. Marriott , Declarative specification
of visual languages, in 1990 IEEE Workshop on Vi­
sual Languages, pp. 98-103, IEEE Comp. Soc. Press ,
1990.

[6) T . Huynh, C. Lassez and J-L . Lassez , Fourier Al­
gorithm Revisi ted, 2nd International Conference on
Algebraic and Logic Programming, Lecture Notes in
Computer Sciences, Springer-Verlag 1990.

Benson, Constraint technology for user-interface
construction in Thinglab 11, OOPSLA '89, pp. 381-
388 , ACM Press, 1989.

[12] G. Nelson, Juno: a constraint-based graphics sys­
tem, in ACM SIGGRAPH' 85 Conf. Proc ., pp. 235-
243, ACM Press, 1985.

[13] D.R . Olson Jr ., K . Allan, Creating Interactive Tech­
niques by Symbolically Solving Geometric Con­
straints . Proc . of Third Symp. on U$er Interface
Software and Technology Snowbird, Utah. October
1990. pp. 102-107.

[14) I.E. Sutherland, Sketchpad: A man-machine graph­
ical communication system, in Proc. of the Spring
Joint Computer Conference, pp. 329-345, 1963.

[15) P .A. Szekely and B .A. Myers, A user interface
toolkit based on graphical objects and constraints,
in OOPSLA '88, pp. 36-45, ACM Press, 1988.

[16] A . Wit kin , M. Gleicher, W. Welch. Interactive Dy­
namics . in Proc . of SIGGRAPH'90. 1990

[17] C .J. Van Wyk, A high-level language for specifying
pictures, ACM Transactions on Graphics 2, 1982,
163-182.

Graphics Interface '92 ~

