
37 

Hyper-Rendering 
JUrgen Emhardt 

Thomas Strothotte 

Interactive Systems Lab 
Department of Computer Science 

Free University of Berlin 
NestorstraJ3e 8-9, D-l000 Berlin 31, Germany 

{emhardt, strothotte} @inf.fu-berlin.de 

Abstract 

Current systems for the automatic generation of information 
presentation or the automatic illustration of objects are mainly 
generation-oriented, i.e. they generate solutions to a user who 
in turn has only few possibilities to lead a dialogue with the 
generation system. By contrast, systems which emphasize dia­
logues tend to be weak in graphical interaction. 
In order to build systems which are both generation- and dia­
logue-oriented, we present a new software architecture for 
computer graphics applications. We develop the concept of hy­
per-rendering which produces a formal description of the 
scene as viewed by the user and can either be carried out within 
a renderer or in a separate program. The output of the byper­
rendering program is an image description which consists of 
information which conventional renderers usually compute but 
typically throwaway. We describe two broad categories of ap­
plications of hyper-rendering and a prototypical implementa­
tion. Examples of the pictures produced as well as a sample 
session with an application are included. 

Keywords: rendering, image description, photorealistic imag­
es, virtual reality, multi-media, interactive systems. 

1. Introduction 

Today's graphics systems for producing photorealistic images 
consist of two main software components: a modeler with 
which a user can define a scene (model objects to be rendered, 
choose the camera position and perspective, etc.) and which 
produces as output a scene description; and a renderer, which 
accepts as input a scene description and produces as output the 
image. It is a fundamental characteristic of such graphics sys­
tems that the output of the renderer is designed exclusively for 
viewing by a (human) user. While the machine produces the 
image based on a scene description, no information is stored in 
general as to what a user can actually see. This lack of informa­
tion makes it impossible to establish a link between the render­
er and an application program, although a main purpose of 

producing photorealistic images is communication. 

Indeed, rendering algorithms "waste" a great deal of informa­
tion which could be gathered and represented explicitly. For 
example, hidden surface removal algorithms--as their name 
implies--throw away information about surfaces which are not 
visible to a user: But if a user wants to know which objects of 
the scene she or he cannot see? Such information pertaining to 
objective and subjective perception of the picture by the user 
and its relationship to the modeled scene is not made available 
systematically. 

In this paper we propose that the usability of graphics systems 
can be enhanced greatly by making information about the ren­
dering process explicitly available to other programs. We refer 
to this process of deriving such information as hyper-rende­
ring. Hyper-rendering produces a formal description of the 
scene as viewed by the user and can either be carried out within 
a renderer or, as in our prototypical implementation, in a sepa­
rate program. The latter approach has the advantage that sepa­
rate algorithms can be used for rendering and hyper-rendering 
of the same image, especially when hardware-rendering is 
used. Furthermore, when an image is to be produced with ray­
tracing it may suffice to carry out the hyper-rendering with a 
fast z-buffer algorithm. Indeed, in certain applications it may 
even suffice initially just to carry out hyper-rendering and only 
later to perform the more time-consuming rendering. 

This paper is organized as follows: Previous research is sur­
veyed in Chapter 2. In Chapter 3, we present a new software 
architecture for graphics systems with integrated hyper-rende­
ring. Next, we point out two broad categories of applications 
of hyper-rendering and discuss the benefits to end-users. In 
Chapter 4, we survey the implementation techniques of our 
prototypical hyper-renderer. Chapter 5 gives an example of the 
capabilities of an application which uses this hyper-renderer 
and shows a sample dialogue session. Further work is dis­
cussed in Chapter 6. 

Graphics Interface ' 92 



2. Background 

Our work on hyper-rendering is intended as a bridge between 
the generation-oriented systems which present "canonical" so­
lutions to a mainly passive user, and the dialogue-oriented sys­
tems which rely on an active user and which are able to answer 
questions. A representative of the first category is APT (A Pre­
sentation Tool, [Mackinlay, 1986)). The system generates pre­
sentations of two dimensional relational information, where 
the two main criteria for the generation are expressiveness and 
effectiveness. Expressiveness criteria determine whether a 
graphical language can express the desired information, and ef­
fectiveness criteria determine whether a graphical language ex­
ploits the capabilities of the output medium and the human 
visual system. Thus, users get a large variety of "canonical" 
presentations fulfilling these two criteria. However, the tech­
niques developed by Mackinlay are very difficult to extend to 

user-interaction, for example, for cases in which users wish to 

modify the presentation. The information about such a modifi­
cation of the layout is difficult to report back to the generation 
system, which is in addition not able to judge the quality of the 
modification. 

The WIP system (Knowledge-based Presentation of Informa­
tion, [Wahlster et al ., 1991]) generates a variety of multimodal 
documents from an input consisting of a formal description of 
the communicative intent of a planned presentation. The focal 
point of WIP is the generation of illustrated texts that are cus­
tomized for the intended audience and situation, but interaction 
with the illustrations is not yet possible. 

A representative of generation-oriented dialogue systems is the 
mIS system of [Seligmann and Feiner, 1991] (see also [Feiner, 
1985]). It is intended for the automatic generation of intent­
based illustrations and shares several research interests with 
the WIP system, but differs in the system's architecture, for ex­
ample. An illustration is a picture that is designed to fulfill a 
communicative intent such as showing the location of an object 
or showing how an object is manipulated. The design of an il­
lustration is treated as a goal-driven process within a system of 
constraints. The system uses a generate-and-test approach 
which relies on a rule-based system of methods and evaluators. 
Methods are rules that specify how to accomplish a visual ef­
fect, while evaluators are rules that specify how to determine 
how well a visual effect is attained in an illustration. As users 
are able to manipulate illustrations interactively, IBIS main­
tains the methods of visibility and recognizability during an in­
teractive session. The current implementation supports user­
controlled view specification, that is, the user can zoom objects 
or specify a new camera location. However, there is no possi­
bility for a user to ask anything, for example about the interior 
of a particular object or to find out through a dialogue where 
shadows are located. However, the visibility methods of the 
mIS system do provide very simple information for further 
processing through application modules. For example, the 
evaluator which calculates whether an object which must be 
visible is partially obscured returns a binary value. 

38 

More flexibility is desirable for human-<:omputer dialogues 
concerning the graphics, particularly in user interfaces using 
graphics for teaching purposes. Flexibility here refers not only 
to the viewing specification but also to supplementary infor­
mation about the objects . To this end, [Strothotte, 1989] devel­
oped a prototypical chemistry explanation system which 
generates pictorial explanations automatically and is capable 
ofleading a dialogue with the user. For example, as an answer 
to the question "How is N2 produced?", several pictures show­
ing the steps of the chemical production are presented. In this 
system, the user can manipulate the labels on the diagrams to 
obtain more information. However, the flexibility of the dia­
logues is attained at the expense of the quality of the graphics: 
Strothotte's system relies on handmade bitmapped images, 
that is, users are not able to modify the pictures presented. 

Besides the research on the generation of information presen­
tation, much work is carried out on algorithmic methods for 
computing the images to be presented. Improving the perfor­
mance of image rendering can be done by using visibility pre­
computations, since by performing work off-line they reduce 
the effort involved in solving the hidden-surface problem. In 
particular, many spatial subdivision techniques have been pro­
posed for speeding up ray tracing ([Weghorst et aI., 1984], 
[Glassner, 1989]) as well as for preparing interactive walk­
throughs through complex environments, for example ([Teller 
et al ., 1991)). Another method to improve the performance of 
image rendering is to convey most of the information to the 
user as early as possible, with image quality constantly im­
proving with time, that is, to render images by adaptive refine­
ment ([Bergman et aI., 1986)). 

3. Working with a Hyper-Renderer 

3.1 The Process of Hyper-Rendering 

A software architecture for graphics systems using hyper-ren­
dering is illustrated in Figure 1. The non-shaded boxes with a 
scene description, a renderer and the resulting picture are as 
used in conventional graphics systems . Conceptually, hyper­
rendering software is built around the renderer. It computes 
various pieces of information about both the rendering process 
and the rendered picture, which conventional renderers either 
throwaway or don't bother computing in the first place. This 
information is stored in an "image description file" . 

The primary purpose of hyper-rendering is to allow users to do 
more with the rendered pictures than just look at them; this is 
facilitated by various kinds of applications which take as input 
the image description. Depending on the application, the scene 
description may also be used or modified . An application thus 
has information about what the user can see in the picture and 
is able to handle the dialogue with the user about the picture, 
evaluate the picture under certain criteria or even modify it so 
as to change the visibility of the objects. 

Graphics Interface '92 



Figure 1: A new software architecture for graphics systems with 
integrated hyper-rendering. The hyper-rendering software is 
built around the renderer and computes various pieces of infor­
mation about both the rendering process and the rendered pic­
ture, which conventional renderers do not provide for further 
processing . 

3.2 Applications 

We consider there to be two broad categories of applications of 
hyper-rendering. The first category pertains to applications 
with direct end-user involvement. If a user is to engage in a dia­
logue about the contents of the graphics with the machine, it is 
an absolute prerequisite that the application has at its disposal 
detailed information about what the user can see. This is par­
ticularly important in virtual reality or cyberspace applications, 
when the user will ask for information and explanations about 
certain objects in the scene. It should be particularly clear here 
that the scene description itself is not sufficient for the machine 
for the purposes of leading such a dialogue, since a user's input 
must be interpreted with respect to what he can see (or in some 
cases more importantly what he cannot see) rather than only 
with respect to the model of the scene. The hyper-renderer can 
also be used in teaching material, when a pupil will ask for in­
formation and explanations about certain parts of the graphics. 

The second broad application of hyper-rendering is in situa­
tions in which a graphic shown to the user (or intended for dis­
play) must be evaluated with respect to its appropriateness by 
the machine. Linking an application program to a renderer 
without modifying the latter is not possible without storing the 

39 

information the renderer calculates. With our architecture, it is 
in particular possible to build knowledge based systems which 
analyse the modeling of a scene with respect to given con­
straints, generate improvements, and prepare explanations for 
the user. For example, [Fischer et aI., 1990] discusses the cri­
tiquing approach to building knowledge based interactive sys­
tems and describes a critiquing system for the 2D design of 
kitchens. A problem in 3D modeling, in particular when deal­
ing with a virtual environment, is to avoid penetrating rigid ob­
jects or having them collide. As standard methods for 
computing collisions have high computational complexity, 
[Pentland, 1990] describes more efficient methods for the cal­
culation of dynamics, collision detection, and constraint satis­
faction. Another deficiency of scene modeling is when parts of 
the scene where the observer should focus on lie in shadow. In 
this case, an improvement generator can suggest better loca­
tions and parameters for the light sources. 

It is important to note that hyper-rendering is independent of 
the modeling software employed and can be used to improve 
the modeling process indirectly in contrast to other approach­
es, where new modelers are developed (for example [Hall, 
1991]). This is particularly important, as many deficiencies in 
scene modeling can only be determined with significant effort 
by modelers. For example, only a renderer knows where shad­
ows are located and how they influence the perception of the 
image. 

The hyper-renderer can, however, hardly be used to design 
good (or appropriate) presentations automatically. It can be 
used in the evaluation of a particular graphic with respect to 
communicative goals . If the evaluation is negative, other 
means must be found to correct the situation. 

In both these categories of applications, the facilities of a hy­
per-renderer provide vital input to programs using photorealis­
tic graphics as a communicative tool. The success of such 
applications depends on the sophistication with which the hy­
per-renderer works to obtain information on the graphics and 
its perceptions by the user. 

4. A Prototypical Hyper-Renderer 

Rather than to integrate a hyper-rendering facility into an ex­
isting renderer, we chose to work with a commercially avail­
able renderer (in the present case Pixar's RenderMan) and 
build a hyper-rendering facility as an extra program. While this 
has the disadvantage that certain code must be duplicated, it al­
lows us in fact to use different algorithms for rendering and hy­
per-rendering. 

Our hyper-renderer is written in about 5k lines of C code on an 
IRIS 4D35. Input is the scene description file in the format 
used by the RenderMan. To support maintainability of the 
scene description file and to facilitate dialogues about the 

Graphics Interface '92 



graphics produced by the renderer. we extended its format to 
include symbolic names of the objects as well as grouping of 
objects into compound objects. 

The hyper-renderer contains typical rendering algorithms 
which have been enhanced to record information symbolically 
about the graphics. In particular. an extended z-buffer-algo­
rithm was implemented for hidden-surface removal; however. 
as opposed to conventional z-buffers. information about hid­
den surfaces is stored. not thrown away. Our implementation is 
related to Atherton's implementation of an object-buffer 
([Atherton. 1981)). However. while Atherton's three-dimen­
sional display buffer was implemented in the form of a solid 
object description. we approximated quadric surfaces through 
polygons . Although the basic algorithmic method used is not 
new. the output produced by the hyper-renderer. namely the 
image description file. is a significant enhancement. Finally. we 
used our z-buffer to generate shadows which are caused by 
opaque objects. as proposed by Atherton as well (see also [Ap­
pel. 1967] and [Bouknight et al .• 1970)). 

It is important to note that the resolution of the hyper-rendering 
algorithms need not be the same as the resolution of the actual 
rendered picture; the resolution is determined dynamically by 
the application program. A coarser hyper-renderer suffices for 
many applications and means that the results of hyper-rende­
ring can be made available significantly before the rendered 
picture is in fact available. 

By default. our hyper-renderer carries out a fast z-buffer-algo­
rithm in a first pass. By recording which objects are in the line 
of sight of each puel. and with information about which sur­
faces cause. for example. specular reflection or refraction. 
those parts of the scene which require ray tracing are deter­
mined. lbis way. our ray tracer. which is currently being im­
plemented. will be "selective". that is. restricted to such parts 
of the picture as are deemed necessary. Furthermore. the visi­
bility information supplied by the z-buffer algorithm can be 
used for hidden surface removal which makes the ray tracer it­
self much more efficient (this concept is related to that of an 
"item-buffer" as described by [Weghorst et al.. 1984]). The 
calling application program can. however. override these "fan­
cy" features and force the use of particular hyper-rendering al­
gorithms. 

The output of our hyper-renderer is an image description. It is 
implemented as a file organized in an object-oriented manner. 
The names of objects of the scene description file are associat­
ed with various pieces of information. including low-level data 
as to pixels affected by the object and the colors as well as 
high-level information pertaining to the visibility (and invisi­
bility) of objects. their interior. the intersection of objects. cer­
tain prepositional attributes (in front of. behind of. on •.. . ) as 
well as a description of which objects lie in shadows. Figure 2 
summarizes the data produced by our hyper-renderer. 

Note that our prototypical hyper-renderer is by no means com­
plete in the sense that is conceivable that new applications will 

40 

require more or different information. Indeed. the modular im­
plementation of the hyper-renderer supports extensions by a 
systems programmer. In particular. the complex information 
alluded to in Chapter 3.2 needs further study before its extrac­
tion can be implemented. 

shadow material reflection 
properties 

light 
sources I 

part 

Object 

~LeVeIInfOrm~ 

visible interior intersect prepositional 
invisible 

I 
information 

I (in front of. 
behind •... ) 

part part part 

Figure 2: InfonnaJion contained in the image description file . 
The hyper-renderer produces as output for each object and its 
parts a semantic net which contains information about visibil­
ity and invisibility. shadows. the interior of the object, other 
objects intersecting it, prepositional information. information 
about the position of light sources relative to the object, its re­
tlection properties. and its material properties. 

5. An Example 

5.1 A Prototypical Application 

In order to demonstrate the capabilities of hyper-rendering. we 
developed a simple dialogue system for navigating in a scene. 
The dialogue is conducted in a restricted natural language 
which allows a user to specify the kind of graphics to be dis­
played (wire-frame or full-surface-rendering). The most sig­
nificant feature of the application is that it allows the user to 
formulate a constraint on the view. upon which the application 
computes a change in the scene description file and initiates re­
rendering and re-hyper-rendering of the graphics. 

5.2 The Dialogue and a Sample Session 

We will explore the interior of an lKEA cupboard. A descrip­
tion of the cupboard and its contents was designed with a mod­
eler and stored in a RenderMan "rib"-file. The end-user now 
uses the application to draw the picture by typing an appropri­
ate command: 

Graphics Interface '92 ~~ 



Application: 
User: 

Please enter command. 
Draw cupboard. 

The RenderMan full-surface renderer is invoked by the appli­
cation and produces Figure 3. 

The user now wishes to see more of the object in the picture 
and decides to switch to a wire-frame image. 

Application: Please enter command. 
User: Draw wires. 

The RenderMan is invoked again and produces Figure 4. 
The user realizes that the wire-frame image does not provide 
enough information to find out what is in the cupboard. Hence 
he asks for information on what he cannot see: 

Application: 
User: 
Application: 

Please enter command. 
What can I not see? 
Ball, box, safe. 

In this latter response, the application has made use of the hy­
per-renderer tool. The image description contains information 
about the visibility of objects and from this it is easy to com­
pute which objects are not visible. 

The user now wishes to look at a particular object, the safe. By 
looking at the wire-frame image, he recognizes that there are 
two candidate objects which can be a safe (one is on the bottom 
and another is below the top on the left side). Hence, he enters 
the following command: 

Application: 
User: 

Please enter command. 
Show safe through glass. 

The application responds with Figure 5. 

The application used the information in the image description 
file to determine that it was the cupboard itself which blocked 
the user's view of the safe. It then changed the material of 
which the upper left part of the cupboard is made to "glass" in 
the scene description and drew the resulting picture. 

5.3 Resume 

The dialogue illustrated above is a simple example of the use 
of hyper-rendering. While it is in principle possible to extract 
such information as ''What can I not seeT directly from the 
scene description with a significant amount of work, we be­
lieve our hyper-rendering to be the first general purpose tool for 
interactive graphics which allows an application to determine 
this kind of information in a simple manner. Furthermore, im­
plementing a command such as "Show safe through glass", 
specifying a constraint on the visibility of a scene is easily ac­
complished when a hyper-renderer is available but would be te­
dious to program without such a tool. 

41 

6. Concluding Remarks 

In this paper we introduced the concept of hyper-rendering 
which makes information about the rendered image available 
to an application. We argued that such information is useful for 
providing information about the graphics to end-users as well 
as to evaluate the graphics displayed. We demonstrated the im­
portant facilities of the hyper-renderer with a sample dialogue 
application. 

The concepts we introduced open up a range of new problems 
for further study. One area is to use hyper-rendering to improve 
the rendering process itself. As the performance of the rende­
ring process can be improved by refinement, that is, by subdi­
viding it into phases where the results of each phase are carried 
over to the next phase ([Bergman et aI., 1986]), hyper-rende­
ring could be used to supply additional formalized information 
which in turn speeds up the performance of a succeeding 
phase. 

In addition to this, hyper-rendering provides a tool for devel­
oping more effective multi-media dialogue systems. Since 
more information about the graphics is available as a result of 
hyper-rendering, speech or text interaction concerning or inte­
grated with the graphics has a better chance of being appropri­
ate. In particular, hyper-rendering can offer additional 
interaction facilities and information for users who are directly 
placed in a virtual environment or cyberspace. For example, 
users could ask questions about their location and the objects 
they are looking at. Therefore, hyper-rendering could prevent 
users from being "lost in cyberspace". Furthermore, if users 
have difficulties in interpreting the graphics output by the ma­
chine, it is in turn possible to train them to see and to guide 
them where to look. For example, during an interactive presen­
tation it is often difficult to look at the "right" objects dis­
played, as humans are, in general, not trained in this capability. 
Using our hyper-renderer, it is possible to develop interactive 
multi-media systems which allow users to lead dialogues about 
the graphics with the goal of discovering what is important. 

7. Acknowledgments 

We would like to thank Walther Beck for various helpful dis­
cussions on aspects addressed in this paper and Petter Ranefall 
for implementing the prototypical hyper-renderer and applica­
tion described. We would also like to thank an anonymous ref­
eree for some very detailed comments on the initial draft of the 
paper. 

Graphics Interface ' 92 



8. References 

1. A Appel, The Notion of Quantitative Invisibility and the 
Machine Rendering of Solids, in Proc. ACM, Vol. 14, pp. 387-
393,1968 . 

2. P.R. Atherton, A Method of Interactive Visualization of 
CAD Surface Models on a Color Video Display, in Computer 
Graphics, Vol. 15, No. 3, pp. 279-287, August, 1981. 

3. L. Bergman, H. Fuchs, E. Grant, S. Spach, Image Rendering 
by Adaptive Refinement, in Computer Graphics, Vol. 20, No. 
4 (Proc. SIGGRAPH'86), pp. 29-34, August, 1986. 

4. w.J. Bouknight, K.C. Kelley, An Algorithm for Producing 
Half-Tone Computer Graphics Presentations with Shadows 
and Movable Light Sources, in SJCC, AFIPS, Vol. 36, pp. 1-
10,1970. 

5. S. Feiner, APEX: An Experiment in the Automated Creation 
of Pictorial Explanations, in IEEE Compute r Graphics and Ap­
plications, Vol. 5, No. 11, pp. 29-38, November, 1985. 

6. G. Fischer, AC. Lemke, Th. Mastaglio, Using Critics to 
Empower Users, in Proceedings of the CHI '90 Conference on 
Human Factor in Computing Systems, pp. 337-347, April, 
1990. 

7. J. Foley, A van Dam, S. Feiner, and J. Hughes, Computer 
Graphics: Principles and Practice, 2nd Edition. Addison­
Wesley, Reading, MA, 1990. 

8. AS. Glassner, An Introduction to Ray Tracing. Academic 
Press, San Diego, CA, 1989. 

9. R. Hall, M. Bussan, P. Georgiades, D.P. Greenberg, A Test­
bed for Architectural Modeling, in Proc. EUROGRAPH­
ICS'91, Vienna, pp. 47-58, September, 1991. 

10. 1. Mackinlay, Automating the Design of Graphical Presen­
tations of Relational Information, in ACM Transactions on 
Graphics, Vol. 5, No. 2, pp. 110-141, April, 1986. 

11. AP. Pentland, Computational Complexity versus Simulat­
ed Environments, in Computer Graphics, Vol. 24, No. 2, pp. 
185-192, March, 1990. 

12. D. D. Seligmann, S. Feiner, Automated Generation of In­
tent-Based 3D Illustrations, in Computer Graphics, Vol. 25, 
No. 4 (Proc. SIGGRAPH'91), pp. 123-132, July, 1991. 

13. Th. Strothotte, Pictures in Advice-Giving Dialog Systems: 
From Knowledge Representation to the User Interface, in 
Proc. Graphics Interface '89, London, Ontario, pp. 94-99, 
June, 1989. 

42 

14. S. 1. Teller, C. H. Sequin, Visibility Preprocessing for In­
teractive Walkthroughs, in Computer Graphics, Vol. 25, No. 4 
(Proc. SIGGRAPH'91), pp. 61-69, July, 1991. 

15. W. Wablster, E. Andre, Som Bandhyopadhyay, W. Graf, T. 
Rist, WIP: The Coordinated Generation of Multimodal Presen­
tations from a Common Representation, in ComputatioTUll 
Theories of Communication and their Applications, Oliviero 
Stock, John Slack, Andrew Ortony (eds.). Springer-Verlag, 
Berlin, 1991. 

16. H. Weghorst, G. Hooper, D.P. Greenberg, Improved Com­
putational Methods for Ray Tracing, in ACM Transactions on 
Graphics, Vol. 3, No. 1, pp. 52-69, January, 1984. 

Graphics Interface '92 ~ 



43 

Figure 3 (top left): The rendered image a/the IKEA cupboard. 
The user is unable to see many objects, such as those lying inside or behind the cupboard. 
Figure 4 (top right): The rendered wire-frame image a/the cupboard. 
All objects are visible, though largely indiscernible. 
Figure 5 (bottom): The modified image showing the inside a/the cupboard. 
The user previously recognized that there were two candidates for the safe in the wire-frame im­
age. He thus entered the command "Show safe through glass". Based on the information placed 
at the disposal of the application by the hyper-renderer, the application converted the material 
of which the upper left part of the cupboard is made to glass, thereby offering the user a view 
of the objects of interest to him. 

Graphics Interface '92 ~ 


