
44

Program Auralization: Sound Enhancements
to the Programming Environment

Christopher 1. DiGiano
digi@dgp.toronto.edu

Ronald M. Baecker
rmb@dgp.toronto .edu

Dynamic Graphics Project
Department of Computer Science

University of Toronto
Toronto, Ontario, Canada M5S lA4

Abstract

Sound has the potential to improve our understanding of a
program's function, structure, and behavior. In this paper
we identify classes of program information suitable for
mapping to sound and suggest how to add auralization
capabilities to programming environments. We describe
LogoMedia, a sound-enhanced programming system which
illustrates these concepts.

Keywords: Program Auralization, Non-Speech Audio,
Software Visualization, Programming Environments

Program auralization

Gerald Weinberg, author of The Psychology of Computer
Programming, describes programming as "at best a com
munication between two alien species" (Weinberg, 1971).
Indeed, despite efforts in the field of software visualization,
programs are in desperate need of better means of presenta
tion and clarification. This paper explores the potential of
non-speech audio to increase the communications band
width between the two "species."

Non-speech audio is quickly becoming an integral part
of the computer's ability to record and present data, as is
evidenced by recent introductions of computer systems
with built-in high quality sound input and output from
graphics workstation manufacturers such as Sun
Microsystems (Yager, 1991) and Silicon Graphics (Smith,
1991). Interface designers have only just begun to tap into
the capabilities of this new hardware. Although sound has
seen limited use in some software visualization systems
(Baecker, 1981; Brown, 1988), it is only recently that
computer audio has been seriously applied to the program
ming domain to help elucidate the behavior of running
programs (Jackson and Francioni, 1992; Sonnenwald, et
al., 1990). Program auralization refers to the use of non
speech audio for supporting the understanding and effective
use of computer programs.

The fust part of this paper discusses some properties
of sound that are useful to the human-computer interface.
We then propose a program auralization taxonomy describ-

ing how sound may be associated with execution behavior
and with the structure of the code. For each of the three cat
egories in the taxonomy we discuss the relevant character
istics of sound and useful types of program auralization
tools. We conclude by describing our implementation of a
sound-enhanced Logo programming environment called
LogoMedia.

Non-speech audio at the interface

Sound has unique properties which can be exploited in the
computer-human interface. For certain types of data sound
is the most intuitive means of understanding the informa
tion . Experiments mapping time-varying economic data to
sound have found that humans can more effectively identify
correlations using sound than with graphics (Mezrich,
Frysinger, and Slivjanovski, 1984). Logarithmic data,
normally difficult to perceive graphically, has also been
shown to benefit from audio portrayals since pitch and
loudness are logarithmic functions of frequency and inten
sity (Buxton, Gaver, and Bly, in preparation, ch. 3). Gaver
has demonstrated the ability of "everyday" sounds to alert
users instantly yet unobtrusively about certain events
(Gaver, 1989; Gaver, 1990; Gaver, 1991a; Gaver, 1991b).

Sound can be used to relieve the burden of the visual
interface. With the increasing popUlarity of graphical
interfaces, more and more applications are using images to
portray information. The resulting collage of windows and
colors has the potential of overloading the human visual
system. The computer industry is also moving toward
smaller, more portable computers with displays limited by
current technology to fewer colors, less pixels, and slower
update rates. The effective use of sound offers an attractive
design solution to problems introduced by both trends,
providing a new output modality to complement the graph
ical interface.

The multi-dimensionality of sound makes it useful for
presenting complex data which is otherwise difficult to rep
resent. Sound can be systematically varied across many
dimensions including loudness, pitch, vibrato, rate of
modulation, timbre, and tempo (Buxton, Gaver, and Bly, in

Graphic s Interface '92

preparation). Some works (Yeung, 1980) suggest human
can differentiate sounds of up to 20 dimensions. Another
useful property of sound is that humans do not necessarily
have to be facing the source in order to hear it. This means
that the focus of attention can be applied to the computer
screen, a printout, or even a cup of coffee while continuing
to process auditory information.

A program auralization taxonomy

Auralizations appropriate to the programming domain can
be divided into three major categories according to the
characteristics of the information streams mapped to sound
sequences. Each sound generated as part of an auralization
corresponds to some item in a time varying stream of data.
We characterize these streams by their sound generators
the activity which determines which datum comes next for
the purpose of auditory mapping. Probably the most obvi
ous information stream is the sequence of program states
during execution. In this case the sound generator is the
running program itself. As shown in Table 1 we have iden
tified two other unique sources of program sounds. Each
activity corresponds with a program development phase
and covers a particular type of program information.

Sound Program
Phase Generator Information
execution executing variables, internal state,

control flow, backtracking

review scrolling modules, goals/plans,
keywords

preparation parsing syntactic structure

Table 1: Three categories of program information which
are candidates for auralization

Execution
The execution of a program causes variables and machine
state to change over time. By mapping this data stream to
sound the programmer can listen to his or her code run
which has the potential to reveal useful information about
the behavior of the program.

Review

A programmer examines his or her code by scrolling
through the text in a window. The sequence of program sec
tions encountered can be mapped to sound, helping provide
contextual information while using the visual information
from the screen for detailed assessment.

[output
[output (: num * factorial

45

Preparation
While compiling or entering a program, the computer eval
uates language tokens and identifiers in a specific sequence
not necessarily corresponding to the stream of characters
making up the code. This sequence can be translated into
sound, allowing the programmer to monitor the progress of
such activity.

An Example

Consider the following example programming session in
which we auralize the process of preparing, executing, and
reviewing a procedure to compute the factorial function.
Figure 1 shows one way of performing this calculation
using Logo (Harvey, 1986). A single call to factorial
generates a series of nested recursive calls which multiplies
a series of numbers decreasing by one from the original
value to one.

1 to factorial :num
2 if :num = 0
3 [output 1]
4 [output (: num * f act oria l (:num-1))]
5 end

Figure 1: Logo code for computing factorial

While typing line 4 we must be careful to match all of
the nested delimiters. Using a standard editor for entering
the code, we could easily skip one of the right parentheses .
A sound-enhanced programming environment in which
sounds are generated during program entering can inform us
immediately of such an error. Typing the left bracket
might initiate an unobtrusive continuous background sound
such as the soft ticking of a clock as depicted in Figure 2.
The following left parenthesis might start the background
sound of a bubbling fish tank which is layered on top of the
ticking noise. A fan noise might result from typing yet
another left parenthesis. Each background sound continues
playing until its respective matching delimiter is typed, so
that by the end of the line none of the three channels
should be audible. Now if we skipped one of the right
parentheses we would reach the end of the line without the
bubbling stopping-an obvious indication of a problem.

Suppose we mistakenly implemented factorial as
shown in Figure 3 without the base case, resulting in a pro
gram which runs forever or at least until stack memory is
exhausted. When we call our flawed factorial procedure
from the Logo interpreter with the argument of 20, the
computer would pause for a while and finally produce an
error message. Suppose we suspected the problem was actu-

ticking

[output (: num * factorial (: num- 1)

ticking and bubbling
ticking, bubblfng and fan
ticking and bubbling
ticking [output (:num * factorial (: num- 1))

[output (:num * factorial (: num-1))] silence

Figure 2: Delimiter matching sounds while entering line 4 of the procedure in Figure 1

Graphics Interface '92

ally with the value of the parameter : nu rn. Was it actually
decrementing for each successive call, or was the computer
using the outermost runtime stack frame to determine the
value of : n urn? Using a sound-enhanced programming
environment we can monitor the execution behavior of this
and other parameters. We might associate a continuous
sound which varies in pitch with the value of : nurn as the
program executes-the lower the number, the lower the
pitch. Now when we execute the program, we would hear a
note which starts high but quickly drops in pitch. It would
be apparent that : nurn is indeed being decremented and our
error must be elsewhere.

1 to factorial : nurn
2 output (: nurn * factorial (: nurn-l))
3 end

Figure 3: Factorial procedure with missing base case

If the factorial procedure were part of a larger program
it might help us to understand the code if we knew how
often factorial gets called and by which components. A
sound-enhanced programming environment can be asked to
generate a sound each time the identifier fa c tor i a 1
scrolls through the editor window. The sound warns us in
advance to pay closer visual attention to the code coming
into view.

Related audio applications

In recent years the use of non-speech audio at the interface
has become a serious study for interface designers. A semi
nal work by Gaver (1989) was the Sonic Finder which used
everyday sounds to indicate common operations in the
Macintosh direct manipulation interface. Dragging the
mouse generated a scratching sound. The act of deleting
files by dropping their desktop icons into the trash emitted
a crash. The mouse cursor at times also acted like a mallet,
creating sounds as the user clicked on various icons on the
screen. Large file icons had a low hollow sound, while
smaller files had a higher pitch.

Following the Sonic Finder were ARKola (Gaver,
1991a) and EAR (Gaver, 1991b) which used sophisticated
event-driven sounds. ARKola simulated the sounds of a
collection of bottling plant machines running simultane
ously in various stages of disrepair. EAR sounds included
paper falling, the shuffling of people gathering in a room,
and the pouring of a pint of beer to remind users of various
events and conditions taking place or about to take place at
Xerox EuroPARC.

Other studies have focused on using sound to represent
complex computer data, referred to as data auralization.
Exvis (Smith, Bergeron, and Grinstein, 1990) used both
graphics and sound to portray various types of data includ
ing magnetic resonance scans which varied across many
dimensions. As the user moved the cursor over the graphi
cal representation, data points emitted a characteristic
sound with frequency and intensity related to particular
dimensions of the sample. Bly (1982) tested human

46

analysts on six-dimensional data which she mapped to six
sound characteristics: pitch, volume, note duration,
fundamental waveshape, attack envelope, and overtone
waveshape. She found that the information content of the
data could indeed be enriched through audio.

As an aural alternative to graphical icons Blattner,
Sumikawa, and Greenberg (1989) proposed "earcons" for
denoting a variety of computer events. Earcons consisted
of single notes, short melodies or combinations of other
earcons. The authors suggested that properly designed
earcons could be learned quickly and associated with arbi
trary obje(!ts and computer operations.

Recent works have demonstrated the potential of audio
in the programming domain. lackson and Francioni
(1992) used audio to improve the programmer's awareness
of the behavior of parallel programs by generating sounds
based on trace data recorded during execution. Program
events being monitored caused a unique note or melody to
be played using a particular timbre mapped to each of 16
processors. Music theory was used to identify the most
appropriate melodies for each event. Sonnenwald, et a1.
(1990) developed a set of primitive function calls for
incorporating sound in program code for the purpose of
elucidation. Although the authors primarily discussed the
capabilities of their system for portraying parallel
programs, its general audio functions could be applied to a
variety of programs both concurrent and non-concurrent.
While animating algorithms Brown and Hershberger
(1991) generated sounds corresponding in pitch to
elements being inserted into a hash table, items being
sorted, and to the number of active threads: The sound of a
car crash we used to indicate hash collision. Brown and
Hershberger identify four main uses of sound in algorithm
animation: "reinforcing visual views, conveying patterns,
replacing visual views, and signaling exceptional
conditions. "

Sound in the programming domain

Most of the above examples deal with sound in specific
applications. In contrast this paper discusses the uses of
non-speech audio in a much more generic context-the
programming environment. Auralization in the program
ming environment is a challenging interface design prob
lem since the sounds must be adaptable to a variety of con
ditions. A sound-enhanced programming environment
must represent both data and events aurally. A further com
plication is that the exact types of data and events are
unknown, since the programming environment is meant to
be used to develop arbitrary applications using a variety of
data and control structures. Finally, depending on the stage
in the program development process, the programmer may
use sounds in different ways. When debugging, for
instance, the programmer may want to introduce generic or
symbolic sounds quickly to determine the behavior of his
or her program. When creating auralizations for presenta
tion purposes, he or she may want more specific or iconic

Graphics Interface '92

sounds to portray more appropriately the program execu·
tion.

Figure 4 compares non-speech audio applications
based on the type of information they represent using
sound as well as their articulatory directness. Articulatory
directness as defined by Hutchins, Hollan, and Norman
(1986) is the degree to which form follows function in an
interface. Gaver (1989) used this measure to describe the
intuitiveness of the perceptual mappings used to link the
"model world" of the computer and the audio display, with
symbolic being the least intuitive and iconic the most. A
symbolic mapping is an arbitrary association made
between sound and computer information, whereas an
iconic mapping is based on well-known physical
properties. Exvis and Bly's work which focus on data
auralization belongs near the symbolic end of the
articulatory directness scale because they relate properties
of sound such as pitch and loudness to data which has no
inherent connection with sound. ARKola and EAR on the
other hand use iconic mappings because of the obvious
associations between events and their sounds.

Iconic

1
Articulatory
Directness

Symbolic

Data Events

Figure 4: Comparison of non-speech audio applications

47

The intersection of the two circles in the figure con
tains those applications using non-speech audio to repre
sent both data and events. The Sonic Finder belongs in
this category because of the way impact sounds suggest the
type and size of files. Another application for this cate
gory is program auralization systems which portray both
data and control flow using sounds. A sound-enhanced pro
gramming environment, represented by the shaded area of
the figure, must use sound to portray both data and events.
An area is more appropriate than a point because the pro
gramming environment must be capable of using sound to
portray a variety of different types of data and events at dif
ferent levels of articulatory directness.

Execution sounds

Comprehending the course of execution of a program and
how its data changes is essential to understanding why a
program does or does not work. Auralization expands the
possible approaches to elucidating program behavior.

Protocol studies of novice, intermediate and expert pro
grammers debugging code suggest they make use of a vari
ety of techniques for observing the changing values of

variables and monitoring sub-program calls (N anja and
Cook, 1987). As shown in Table 2 we can divide execution
information into values and events. Value information
refers to the contents of data structures as they change dur
ing execution, often known as data flow. Event informa
tion is the stream of operations on these data structures as
well as the flow of control from one line of code to the next
and from one sub-program to the next.

Inrormatlon
Type Values Events

common queue size, tree loop, branch, push,
depth pop, search, sort

arbitrary a, b, c sub-program calls,
sub-program returns

internal call stack size, register usage,
memory space backtracking

Table 2: Candidates for auralization during execution

For both values and events we group the execution
information into three categories: common, arbitrary, and
internal. Common information refers to typical data and
control structures which we can anticipate will be the sub
ject of interest to the programmer. Sound enhancements to
the programming environment should include default
methods for monitoring the status and usage of these struc
tures. Arbitrary execution information refers to the types
of data and control flow which cannot be predicted. For
this type of information a sound-enhanced programming
environment should provide tools for establishing custom
auralizations. internal information is the changing
machine state over the course of execution which is largely
programming language and machine dependent. Default
auralization for this type of data can increase the program
mer's awareness of activities such as resource usage occur
ring behind the scenes.

Monitoring execution values

Traditional techniques for monitoring values during execu
tion generate text to indicate the current program state. An
obvious method of displaying text relating to program
variables is to insert output statements directly into the
source code. Debuggers allow the values of variables to be
printed without having to modify the source code. A popu
lar debugger for the Unix environment, dbx provides a set
of commands for maintaining a list of expressions contain
ing program variables to be printed during execution.

Software visualization systems use pictures to present
often more complex program data in ways which are simply
not possible using text. Visualizations are useful for
making abstract program information easier to understand.
The University of Washington Program Illustrator, for
instance, recognizes the abstract data structure for digraphs
within Pascal programs and represents them on the screen
as a collection of circles connected by arrows (Henry,
Whaley, and Forstall, 1990). Pictures of programs are
well-suited for displaying large quantities of computer

Graphics Interface '92

information simultaneously. In the film Sorting Out
Sorting Baecker (1981) uses graphs to show the progress
of several sorting algorithms on thousands of data items.

Data auralization provides a useful extension to textual
and graphical techniques for monitoring execution.
Although not suitable for conveying exact values, auraliza
tion can indicate trends and increase the number of dimen
sions capable of being presented simultaneously.
Auralizations of program data generate sounds varying
across dimensions of pitch, volume, reverberation, pan
ning, envelope, and tempo in response to the changing
values of program variables. An important advantage over
visual feedback is that auralization frees the programmer to
inspect the actual code while it is executing.

Sound can be useful in conveying simple auxiliary
information relating to common data structures such as the
size of a queue or the depth of a stack. Ideally, these aural
izations of high level data structure values could be built
into the language or class library. Thus, the user is free
from having to specify the particular element of the data
structure to map to sound.

For listening to arbitrary data a sound enhanced pro
gramming environment must support the ability to map
changes in variable values to a variety of audio dimen
sions. The mapping must be flexible so that the user can
experiment with various auralizations in order to fmd the
one most appropriate for his or her application. Users
should be able to select from a variety of synthesized and
prerecorded sounds, or make their own sounds. To support
this type of opportunistic auralization in LogoMedia we
have developed an audio expressions tool for making data
sound associations.

Internal values in an executing program refer to
machine states not normally known to the programmer.
The size of the call stack and the amount of free memory are
two examples of internal values. The default sounds
available for internal values should easily fade into the
auditory background of the listener. Patterson's study of
alarms (1989) provides useful guidelines for designing
non-obtrusive sounds such as the use of slow onsets and
rhythmic patterns.

Monitoring execution events

Traditional techniques for monitoring execution events
produce a sequence of text lines indicating control flow.
The simplest method requires no additional programming
environment tools: inserting lines of code before or after
suspect statements which cause a message to appear on the
screen. More sophisticated program tracing approaches are
found in debuggers such as dbx which can automatically
generate generic tracing information while simulating the
execution of a program.

Software visualization systems use pictures or dia
grams to indicate the execution path. Some visualization
systems such the Transparent Pro log Machine (TPM)
(Eisenstadt and Brayshaw, 1988) can graphically trace pro
grams automatically. Other software visualization systems
offer more customizable and therefore potentially more

48

salient trace feedback than traditional debuggers.
LogoMotion (Baecker and Buchanan, 1990) is a program~
ming environment in which procedure calls can trigger tai
lored visualization code.

Computer audio can enhance textual and graphical exe
cution event information by generating sounds in conjunc
tion with the execution of a line or a collection of lines and
by using multiple voices to indicate layers in a calling
chain. As with program data, control flow auralization al
lows the programmer to focus his or her visual attention on
the actual code being run. Tracing programs using audio
can also uncover repeated patterns of program behavior.
Jackson and Jackson (1992) noted that users of their sys
tem for auralizing parallel program events recognized
"melodies" characterizing various communication patterns
between processors . They also pointed out that missing or
delayed parts of the pattern were noticeable.

A sound enhanced programming environment should
allow users to associate sounds with common, arbitrary,
and internal events. Common events include the execution
of control structures such as loops and branches as well as
operations on common data structures such as stacks and
linked lists. For LogoMedia we have developed sounds of
plates stacking, unstacking, and breaking for the typical
push, pop, and overflow events. Additionally, there are
sounds for indicating list operations using the metaphor of
a three-ringed binder-popping open for an insertion, tear
ing for a deletion, and page flipping sounds for a search.

Arbitrary events of interest to the programmer might
be calls to sub-programs, returns from sub-programs, or the
execution of particular lines. Sound enhancements to the
P.Togramming environment should include the ability to

/ generate sound in response to the program counter reaching
arbitrary lines of code. In Logo Media entering or exiting a
procedure can trigger auxiliary Logo code for turning
sounds on or off or changing their quality. We are currently
developing a tool for specifying program audiopoints
instead of breakpoints.

The ability to monitor language or machine dependent
internal events using sound is certainly worthy of further
study. Low level internal information such as operations
on registers and high level information such as Prolog
backtracking may prove to be good candidates for auraliza
tion, since the programmer is more likely interested in the
general pattern of activity, rather than exact events.

Review sounds

The review phase when the programmer interactively ex
plores the source code is another opportunity for integrat
ing sound into the programming environment.

Studies in program comprehension (Gellenbeck and Cook,
1991; Kesler and Uram, 1984) have reported the utility of
information supplementary to the raw code in providing
clues to help programmers understand a program and predict
its behavior. Examples of this kind of information include
indentation, comments, typographic signaling, mnemonic
names, module organization, goals and plans, profiling

Graphics Interface ' 92

data. Sound offers a new modality for communicating this
ancillary information. Unique to this phase is the method
by which sequences of sounds are derived from the series of
points in the code on which the programmer focuses his or
her attention.

Visualizations of software can enhance the program
mer's understanding of programs by providing a variety of
views which either compress or elide uninteresting infor
mation. Baecker and Marcus illustrated a collection of
information-rich typographic overviews in SEE (Baecker
and Marcus. 1990). Small's static typographic visualiza
tion system. Viper. revealed the advantages of interactive
systems for culling. clarifying. and amplifying parts of the
program text interesting to the user (Small. 1989). Viper
allowed the programmer to specify code filters used for
remove certain lines of code and highlight statements in
others.

Listening to source files

Computer audio offers an attractive alternative to textual
enhancements to the code for conveying information about
the structure or intent of a program. Sound-enhanced pro
gramming environments should allow portions of code at
the focus of the user's attention to be mapped to sound.
Perusing the code causes the system to generate a sequence
of sounds. providing an auditory context for more detailed
visual examination.

Auralizing the source code requires that interesting
portions of the text somehow be identified for mapping to
sound. This can be done automatically by parsing the code
and flagging syntactic structures such as blocks. and proce
dures as is done with Viper. Profiling and verification sys
tems such as Unix prof or lint can automaticallyassoci
ate other kinds of useful data with sections of code. A semi
automated alternative is using a structured editor which can
identify syntactic structures and problem solving strate
gies. Finally. the programmer can manually select the sec
tions of code for auralization. Although this last option
may seem tedious. the programmer may be able to take ad
vantage of auralizations already in place for the purpose of
monitoring events during execution. If the programmer
had been thorough in marking a variety of interesting pro
gram events with audiopoints, the events themselves can
serve as "audio landmarks" (Jenkins, 1985) into the code
a form of audio documentation.

In LogoMedia we are developing the ability to gener
ate audio feedback while scrolling through a Logo docu
ment. As interesting items enter and leave the window
view the sound will change accordingly. Program con
structs identified during interpretation such as procedure
definitions, Logo lists, and lines with audiopoints will
each have characteristic sounds. Programmers can perform
an auditory search of their code by asking the system to
generate sounds if the items in focus meet certain criteria
such as if they are an identifier of a certain name or a partic
ular Logo command.

Rapid scrolling through a program may generate
emergent sounds patterns indicative of particular types of

49

code or a certain style of programming. Speeth (1961)
found that subjects were able to discriminate between earth
quakes and explosions using compressed auralizations of
large quantities of seismic data which were not visually dis
tinct. Because of sound's ability to reveal patterns in mas
sive quantities of data, new insights may result from the
rapid audio review of complex program.

Preparation sounds

The process of preparing code for execution can be myste
rious to the programmer. In a sound-enhanced program
ming environment the order in which programming lan
guage constructs are parsed can be a source of sound
sequences and increase the programmer's awareness of this
ongoing activity. While entering a program syntax
directed audio feedback can help identify syntactic errors.
During compilation sounds can be used to monitor
progress.

Syntax-directed editors attempt to reduce obvious syntactic
errors through typographic feedback during code entry. In
some systems keywords recognized by the editor change
font after the programmer types a separator such as the
space bar. Lines following an IF clause are automatically
indented until the block is terminated with a semi-colon.
An obvious problem with syntax-directed editors is that
they force users to adopt a particular typographic style.
The persistence of typographic syntax-directed feedback
may also be an annoyance to programmers. The style of
the program text remains changed even after the words have
been typed and the programmer is sure it has been entered
properly.

Listening to program entering

A sound-enhanced programming environment offers the
programmer an alternative output modality for conveying
similar syntactic feedback during program entering. An
approach we are investigating for LogoMedia is to provide
subtle background sounds to indicate whether the computer
recognizes program constructs which are typed and to dif
ferentiate aurally between classes of syntactic structures.
Word classes might include operators, built-in procedures,
control constructs, previously declared procedure identi
fiers, previously declared variable identifiers, new proce
dure identifiers, and new variable identifiers. Discrete
sounds are triggered by completing a typed word with a
delimiting character such as the space bar or comma. Mter
a fixed period of time the sound terminates. Following
Patterson's approach to reducing obtrusiveness (Patterson,
1989), each sound conforms to an intensity envelope in
which the sound begins quietly, is sustained for brief
moment, then fades to silence. We are 'also devising
cor.tinuous sounds to demark sections of code and help
identify problems such as wrong number of delimiters or
wrong number of parameters. When the programmer starts
a Logo block with a left bracket, for instance, a sound is
generated until the matching bracket is typed. Nested

Graphics Interface '92 ~

sections of code cause collections of continuous sounds to
be layered.

Listening to compilation

A programmer typically glances periodically at textual
output from a compiler during the translation process. A
sound enhanced programming environment should support
the ability to generate sounds in response to a compiling
program to prevent the user from having to shift visual
focus from other activities. In some programming
environments such as the Macintosh Programmers
Workshop sounds are used to differentiate successful from
unsuccessful compiles. However, more sophisticated uses
of sound can undoubtedly convey even more than binary
status information. In the "early days" of computing
intrepid hardware hackers on the TX-2 attached a speaker to
the index registers. The resulting sound with some training
was used by programmers to determine the state of running
processes such as compiles which had limited visual
feedback. Richer sounds could be based on the same types
of audio feedback used during the interactive parsing of
programs as mentioned in the previous section. An
interesting question is whether meaning could be extracted
from the emergent sounds generated by this high speed
parsing of program structure. Since Logo is an interpreted
language, LogoMedia has no facilities for compilation
based sounds.

LogoMedia

We have implemented some of the auralization techniques
outlined above relating to the execution and review of pro
grams. Sound capabilities were added to a programming
environment for software visualization developed here at
the University of Toronto called LogoMotion (Baecker and
Buchanan, 1990). The goal of the new version dubbed
LogoMedia is to provide the programmer with simple, non
invasive l techniques for using sound to aid in the devel
opment and presentation of arbitrary programs. We are not
trying to enforce a particular use of sound for auralizing
programs, but rather provide a variety of tools for the pro
grammer to use sound easily while developing.

LogoMedia does not actually synthesize its own
sounds but rather sends Musical Instrument Digital
Interface (MIDI) (IMA, 1983) messages to the Macintosh
MIDI Manager which then relays commands to sound gen
erating devices attached to the computer. Using MIDI
gives us the flexibility which we believe is essential for
auralizing arbitrary programs. The user can generate
simple musical sounds through a primitive synthesizer
responding to MIDI commands or sophisticated sampled
sounds by connecting a different device. Separating the
sound generation from the programming environment

1 Invasive is the term used by Price, Small, and Baecker
(1991) to categorize software visualization systems which
require modification to the source code. It seems an
appropriate descriptor for program auralization systems as
well.

50

using MIDI has reduced the possibility that the auralization
itself will cause problems in a program being debugged.

LogoMedia has three new commands for generating
sound: startnote, play note, and st opallnotes .
start note begins playing a MIDI sound of a given chan
nel, note number, and volume. To turn off a note, the vol
ume of zero is used. The playn ote command has the addi
tional parameter of duration specified in 60ths of a second.
stopallnotes turns off sound in all 16 MIDI channels.

Specifying the monitoring of execution values

In order to facilitate the rapid association of sound with
execution behavior we have devised a tool for mapping
expressions to sound qualities. The audio expression tool
tells LogoMedia what sounds to generate during execution
based on changes in the program information. Each line in
the table describes how an expression containing one or
more program variables is related to particular sound quali
ties of a specified voice. The tool as depicted in Figure 5
was designed to encourage users to use sound in ways which
have been successful in previous auralization applications.
Specifically, the audio expressions tool makes it easy to
differentiate by timbre a collection of runtime values being
monitored and discourages users from mapping this data to
more than one audio dimension.

Rudlo EHpresslons Window
Expr.ss

:nom Pitoh 3
:. Rev.rb«'.iion 5
:it"" * 1 0 + 30 '101"",. 2

Express .. : I

Contirwoys

Short

I (Show Code lfQ=

Figure 5: LogoMedia's expression-sound table for
observing changes in program variables

To prepare a runtime auralization using the audio
expression tool the programmer enters a Logo expression
containing variables used in his or her code. We chose to
map sounds to expressions instead of simply variables to
allow the user to scale and offset their values to fit the
range expected by the MIDI devices. Pitch, for instance, is
specified by MIDI with a value between 0 and 127, yet
many instruments, samplers in particular, cannot play
notes which cover this entire range. After entering the
expression programmer then selects an audio dimension to
which the value of the expression will be mapped.
Currently, the only available dimensions are pitch and vol
ume, although we plan on adding the ability to control
reverberation, stereo panning, and envelope. The next
step for the programmer is to select on of 16 MIDI
channels which determines the timbre of the resulting
auralization for the expression. Lastly, the programmer
specifies the duration of the sound as either "continuous" or
one of three relative time periods-short, medium, and
long. The continuous selection implies after the

Graphics Interface '92

initialization of any variable in the expression the MIDI
channel will play until the program terminates. The
relative periods have varying duration depending on the
rate of execution selected by the user.

Because of the ease of creating meaningless
cacophony, the audio expression tool was deliberately
designed to constrain the user to auralization techniques
that show the most promise. The layout of the window, for
instance, encourages users to differentiate their
expressions by timbre and discourages mapping its value
to different sound channels. Additionally, the design of the
tool makes it difficult to monitor the same expression
using more then one audio dimension. A more flexible
interface which allowed expressions to be entered for each
sound quality including timbre was rejected, since it
provided no guidance as to the more effective uses of sound.
We have also rejected the ability to enter absolute duration
times, since this reduces the adaptability of the auralization
to various rates. We believe that the capability to play
back programs at different speeds we believe is key to
deriving meaning from auralizations and this is planned to
be a focus of our user study.

The constraints imposed by the audio expressions tool
reflect simply techniques which have been effective in the
past, but we cannot expect the tool to facilitate all useful
"sonifications." However, the audio expressions tool can
be used to generate a first approximation of the appropriate
auralization which can later be rermed by the progranuner
using the Logo language. By pressing the "show code"
button the user can see the underlying Logo code responsi
ble for auralizing a particular Logo expression. This code
can then be copied into a LogoMedia document and edited.

Informal observations from the use of the audio
expressions tool reveal weaknesses which must be
addressed in the next iteration of the interface before user
testing. Scaling and offsetting a variable to fit MIDI
protocol has proved cumbersome. A more fundamental
problem is predicting the range of values the variable will
take on. This was a challenging task even for the original
author of some simple turtle drawing programs. To expect
the programmer to know the range of a variable is in a
sense begging the question: if the programmer knew its
variance, there might be no point to auralizing . This
problem is not unknown to the field of software
visualization in which limits are imposed by the boundary
of screen coordinates. Our next version of LogoMedia will
monitor the range of values during each execution of a
program and present this information to the user to help
guide the next iteration of the auralization specification.

Speclrylng the monitoring or execution events

In order to provide LogoMedia with simple non-invasive
techniques for auralizing control flow, we are developing a
method for associating audio commands called aUdiopoints
with individual lines of code. Figure 6 illustrates a sample
LogoMedia editor window with the Logo code on the right
and its associated aUdiopoints on the left. To add an audio
point to a line of the program the user simply positions the

51

cursor in the left colunm beside the desired line and types a
Logo statement. Alternately, the programmer after moving
the cursor over the appropriate column can simply play a
note on an attached MIDI keyboard. The corresponding
LogoMedia command for reproducing this note will then
appear as an aUdiopoint. As the program is running
LogoMedia will execute each aUdiopoint immediately prior
to the line of code on its right.

-. ---==--- Factorial
to foctorlol :num

o .tortnot. :click 60 60 If :nu m • 0
[output, J

• drumup [out put (:num • foctorl., (:num - '» J
• drumdo,",n .nd

Figure 6: LogoMedia's two column format for
associating audio with program events

A simple aUdiopoint such as on the second line can
generate a fixed length tone as the code is executed to indi
cate the line has been reached. Additionally, the program
mer can call his or her own custom auralization procedures
or choose from a library of useful sound procedures. We are
constructing such a library with the ability to toggle
sounds on and off and layer sounds. The audiopoint on line
4, for instance, causes drumming sounds to become increas
ingly dense as the factorial program descends into succes
sively deeper levels of recursion. As the program pops out
of the nested levels, the aUdiopoint on line 5 causes the
sound to become less dense.

Conclusions

Whether sound can be used effectively in programming
environments remains to be determined. Testing and
evaluation of LogoMedia is planned to ascertain which
applications of audio in the program development process
are most useful. We do not expect sound to replace either
traditional textual representations or software
visualizations, but to complement them. Further research
is needed to determine how all three modalities can be best
synthesized to take advantage of the multi-media
capabilities of today's computers . We hope that by
enhancing the development environment with sound we
can make programming more engaging and empower the
programmer with tools for more accurate entering, faster
debugging, and an improved understanding of a program's
function, structure, and behavior.

Acknowledgements

We appreciate the support to our laboratory from the
Natural Sciences and Engineering Research Council of
Canada, the Information Technology Research Centre of
Excellence of Ontario, and Apple Computer, Inc.

Graphics Interface '92 ~

References

Baecker, Ronald M. (1981). Sorting Out Sorting. Dynamic
Graphics Project, Computer Systems Research Institu.te,
University of Toronto. 16 mm color sound film, 30 mm
utes, distributed by Morgan Kaufman Publishers.

Baecker, Ronald M., and Aaron Marcus (1990). Human
Factors and Typography for More Readable Programs.
Reading, Massachusetts: Addison-Wesley.

Baecker, Ronald M., and J.W. Buchanan (1990). A
Programmer's Interface: A Visually Enhanced and Animated
Programming Environment. Proceedings of the Twenty
Third Annual Hawaii International Conference on Systems
Sciences, 531-540.
Blattner, M., D. Sumikawa, and R. Greenberg (1989).
Earcons and icons: Their structure and common design
principles. HCI 4 (1): 23-37.

B ly, S ara (1982). Presenting information in sound.
Proceedings of the CHI '82 Conference on Human Factors
in Computer Systems, 371-375.

Brown, Marc H. (1988). Exploring Algorithms Using
Balsa IT. IEEE Computer 21 (5): 14-36.

Brown, Marc H., and John Hershberger (1991). Color and
Sound in Algorithm Animation. Digital Equipment
Corporation. Systems Research Center Report, 76a.

Buxton, William,William Gaver, and Sara Bly (in prepara
tion). Auditory Interfaces: The Use of Nonspeech Audio at
the Interface. Cambridge University Press.

Eisenstadt, M., and M. Brayshaw (1988). The Transparent
Prolog Machine (TPM): An Execution Model and Graphical
Debugger for Logic Programming . Journal of Logic
Programming 5 (4): 1-66.

Gaver, W. W. (1989). The Sonic Finder: An interface that
uses auditory icons. HC/4 (1): 67-94.

Gaver, W. W. (1990). Auditory icons in large-scale collab
orative environments. Proceedings of the Human
Computer Interaction - Interact '90 Conference,

Gaver, W. W. (1991a). Effective sounds in complex sys
tems: The ARKola simulation. Proceedings of the ACM
Special Interest Group in Computer-Human Interaction
Conference, 85-90.

Gaver, W. W. (1991b). Sound Support for Collaboration.
Proceedings of the Second European Conference on
Computer-Supported Cooperative Work, 293-308.

Gellenbeck, Edward M., and Curtis R. Cook (1991). Does
Signaling Help Professional Programmers Read and
Understand Computer Programs? Proceedings of the
Empirical Studies of Programmers: Fourth Workshop, 82-
98.

Harvey, B . (1986) . Computer Science Logo Style :
Intermediate Programming. Cambridge: MIT Press.

Henry, R. R.,K.M. Whaley, and B. Forstall (1990). The
University of Washington Illustrating Compiler.
Proceedings of the ACM SIGPLAN '90 Conference on
Programming Language Design and Implementation, 223-
233.

52

Hutchins, E. L., J. D. Hollan, and D. A. Norman (1986).
Direct manipulation interfaces. In User centered system
design: New perspectives on human-computer interaction.
Edited by D. A. Norman and S. W. Draper. 87-124.
Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

!MA (1983). MIDI musical instrument digital interface
specification 1.0. North Hollywood, CA: !MA. (Available
from !MA, 11857 Hartsook Street, North Hollywood, CA,
91607, USA)

Jackson, Jay AI an, and Joan M. Francioni (1992). Aural
Signatures of Parallel Programs. Proceedings of the
Twenty-Fifth Hawaii International Conference on System
Sciences, 218-229.

Jenkins, James J. (1985). Acoustic information for
objects, places and events. Proceedings of the First
International Conference on Event Perception.,

Kesler, T. E., and R. B. Uram (1984). The effect of indenta
tion on program comprehension. 21 415-428.

Mezrich, J. J.,S. Frysinger, and R. Slivjanovski (1984).
Dynamic representation of multivariate time series data.
Journal of the American Statistical Association 79: 34-40.

Nanja, Murthi, and Curtis R. Cook (1987). An Analysis of
the On-Line Debugging Process. Proceedings of the
Empirical Studies of Programmers: Second Workshop ,
172-184.

Patterson, R. D. (1989). Guidelines of the design of audi
tory warning sounds. Proceedings of the Institute of
Acoustics 1989 Spring Conference, 17-24.

Price, Blaine A.,1an S. Small, and Ronald M. Baecker
(1992). A Taxonomy of Software Visualization.
Proceedings of the Twenty-Fifth Hawaii International
Conference on System Sciences, 597-606.

Small, lan S. (1989). Program Visualization: Static
Typographic Visualization in an Interactive Environment.
Masters Thesis, Department of Computer Science,
University of Toronto.

Smith, Ben (1991). Unix Goes Indigo. Byte 16 (9): 40-41.

Smith, Stuart,R . Daniel Bergeron, and Georges G.
Grinstein (1990) . Stereophonic and Surface Sound
Generation for Exploratory Data Analysis. Proceedings of
the CH1'90, ACM Conference on Human Factors of
Computing Systems, 125-132.

Sonnenwald , Diane H.,B. Gopinath ,Gary O.
Haberman,William M. Keese Ill, and John S. Meyers
(1990). InfoSound: An Audio Aid to Program
Comprehension. Proceedings of the Twenty-Third Hawaii
International Conference on System Sciences, 541-546 .

Speeth, R.D. (1961). Seismometer sounds. The Journal of
the Acoustical Society of America 33 (7): 909-916.

Weinberg, Gerald (1971). Psychology of Computer
Programming . New York: Van Nostrand Reinhold
Company.

Yager, Tom (1991). The Littlest SPARC. Byte 16 (2): 169-
174.

Yeung, E.S. (1980). Pattern recognition by audio represen
tation of multivariate analytical data. Analytical Chemistry
52 (7): 1120-1123.

Graphics Interface '92

