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ABSTRACT

A group-theoretic analysis is applied to find the trans-
formation of the homogeneous control points of k-
dimensional Bézier simplices (such as two dimensional
triangles and three dimensional tetrahedra) under a k-
dimensional projective reparameterization. This trans-
formation has applications in the perspective projection
of textures represented as triangular spline intensity sur-
faces, in arbitrary Bézier simplicial subdivision, and in
werght normalization.

The theoretical results contained in this exposition
are generalizations of similar results for 1-dimensional
Bézier curves, reported by Richard R. Patterson in
1985.

RESUME

Une analyse en théorie des groupes est faite pour trou-
ver la transformation des points de contréle homogénes
pour un simpleze Bézier de dimension k, en faisant
une réparaméterisation projectif de dimension k. On
peut utiliser cette transformation pour la projection en
perspective des textures faites avec les surfaces splines
d’intensité, pour la sous-division des simplexes Béziers,
et pour régulariser les poids pour la normalisation.

Les résultats théoretiques qu’on présente dans cet ex-
posé sont des généralisations des résultats que Richard
R. Patterson a présenté en 1985 pour des courbes
Béziers ayant une seule dimension.

KEYWORDS: rational Bézier spline curves, triangles,
and surfaces; perspective; projective transforma-
tion and reparameterization; rational reparameter-
ization; texture mapping.
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It is a well known result that the perspective projection
of a spline space curve or surface can be represented
as a rational spline curve or surface [7]. It is less well
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understood how an intensity function, or texture, repre-
sented as a spline is transformed by the same operation.
In the space spline case, the positions and weights of
the control points are changed. In the case of an inten-
sity distribution, the perspective transformation results
instead in a projective reparameterization. [t will be
shown in this paper that this can also be represented as
a change in the values and weights of the control points.
The required transformation operates by blending the
same coordinate of different control points, rather than
blending different coordinates of each control point as
in the space spline.

A projective transformation, of which the perspec-
tive transformation is one case, can be represented as a
fractional linear transformation. In one dimension, this
transformation is given by
a+ bz
c+dz’

If this transformation is substituted into a polynomial
of order n, then the result-is a ratio of polynomials of
order n. We will call such ratios of polynomials rational
functions. Substitution of this same transformation into
arational function will yield another rational function of
the same order. Rational functions of a given order are
therefore closed under projective reparameterization. In
the same way, m-variate rational functions are closed
under fractional linear m-variate transforms of the form
a4+ i bz

P ST

Results for the projective reparameterization of
nonuniform rational B-spline curves were presented by
Lee [5]. The tensor product B-spline basis function typ-
ically used for B-spline surfaces does not remain a ten-
sor product under projection, so it is difficult to use
that result directly. Instead, we will work with the sim-
pler Bézier triangular surfaces first with the hope that
results can later be extended to triangular B-spline sur-
faces.

A projective transformation can be represented as a
change from one homogeneous coordinate system to an-
other. We would like to represent a change of para-
metric coordinate system as a transformation of control
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Figure 1: Example of a quadratic Bézier patch used to
define the intensity of a surface.

points and weights. For Bézier spline curves, a gen-
eral solution was found by Patterson under a univariate
reparameterization [6]. This paper is a generalization of
that result to Bézier splines over triangular, tetrahedral,
and higher-dimensional simplicial parameter domains.

Our generalization hinges on the use of suitable nota-
tion; the symmetrical index notation used here is based
upon that used in [8]. This notation will be intro-
duced as needed, but a full reference is available in Ap-
pendix A.

This result has many potential applications besides
texture mapping, and several are given in this paper.
Texture mapping, however, requires multidimensional
projective reparameterization and so has not been cov-
ered previously.

Suppose the colour variation in a texture is repre-
sented as a functional spline, i.e. a representation com-
posed of patches such as the one shown in Figure 1.
Such a representation could be reconstructed from a
discretized texture via an interpolation algorithm, or it
could be the result of a radiosity algorithm using spline
interpolation [1, 2]. If the texture is mapped via a pro-
jective transformation onto a flat surface and then re-
projected via perspective, the overall transformation is
a single two-dimensional projective reparameterization.
The control points and weights of the texture can then
be transformed directly from texture space to screen
space, resulting in an analytic representation of the tex-
ture, in screen space. Antialiasing filters and rasteriza-
tion algorithms can then take advantage of this explicit
representation. This particular application is covered in
more detail in Section 4.2.

We first derive the reparameterization transformation
and then show its application to several sample prob-
lems including texture mapping.
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2

The k-dimensional Bézier simplices are defined in terms
of a k-dimensional barycentric coordinate system [3]
with £+1 redundant but symmetrical parameters. Like
the Bézier curves, k-dimensional Bézier simplices are
built upon recursive blends. Each blend computes an
affine combination of £ 4 1 other points. Consider the
two dimensional triangular case: a convex blend of three
points P,Q, and R is given by pP + ¢Q + rR, where
P, ¢, 7 € Rand p+qg+r = 1. Bézier tetrahedral simplices
are similarily built from blends of four points, using four
coordinates with three degrees of freedom.

Bézier simplices are still multivariate polynomials,
however. Define the basis of nth-order, k-dimensional
multinomials as a row vector:

i,

1 )tk
n 19411

(( By B o )to LIRS

(Fn,k,i(tk)) :

Any multinomial can be defined as the dot product of
this vector with a coefficient vector, although to repre-
sent constant terms we must set ¢, = 1. The number of
basis functions required is given by

Ny = < n-}l—k )

In a homogeneous coordinate system, we consider any
non-zero multiple of the parameter vector to be equiv-
alent to any other. If we represent this arbitrary multi-
plicative constant by s, then the k-dimensional homo-
geneous multinomial basis becomes

Foi(te) = [( :,t >(Stk)ik}
[57F i (64)] -

We use square brackets to distinguish homogeneous vec-
tors from ordinary vectors. The non-homogeneous form
cani be recovered by dividing by s™.

Bézier simplices are defined in barycentric coordinate
systems, so we must have [tk| = 1. We define the Bern-
stein basis functions, upon which Bézier simplices are
built, by removing the extra degree of freedom from the
multinomial form:

BEZIER SIMPLICES

n

Fn,k(tk)

s
tk

Bok(tk-1)

k—1
= Fn,k to,tl,...,tk_l, I—th
7=0

Note that this transformation of parameters may be
represented by a matrix, and in fact we do so in Sec-
tion 3.3. We have assumed that t; = 1 before the trans-
formation.
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With these definitions, we can finally define the
nth order, k-dimensional homogeneously parameterized
Bernstein-Bézier basis functions as

B/ (tk)
k—1
= FH | to,t1,. .., the1, tk-ZtJ
1=0

ot e (b
b o .

= tiF.x
kX n,k tk ) tk
H
= [Bn,k,i(tk)] :

The nth order, k-dimensional homogeneous Bézier
simplices Pﬁk are defined by

PH, (te) := Bk (tx)P,

where P is a N,  x (m+1) matrix; a column vector of
row vectors, each row being a m-channel homogeneous
control vertex of the form:

H 1 2
Py = [wipi,wipi,...,wipi",wiﬂi].

The superscript is a label, not an exponent. The switch
value f; is 1 for finite control points and 0 for points
at infinity. The value wj is called the weight of control
vertex PiH.

The matrix of control vertices can be factored into
the product of a diagonal weight matrix W and a nor-
malized version of the control points Q.

P = wq”
= diag(w;) ([p}, p},---P]". Bl) -

This defines a Bézier simplex over the projective pa-
rameter space RP*. Therefore, P,I,{,k is an injective map
from RP* into RP™, where RP? is the real projective
space of dimension £.

The form of the nth order rational Bézier simplex,
after normalization, is given by

Z|i|=n Bn,k,i (th_l)wipg
)
E|i|=n Bn,k,i(tk_l)wiﬂi

R k(tk—1) =

which is a m-dimensional row vector indexed by g, the
channel index. Because of the fact that the Bernstein
basis forms a partition of unity, this reduces to a non-
rational form if all weights are equal and all control
points are finite:

Rn,k(tk—l) = Z Bn,k,i(tk—l)pg

lil=n

wq wp

}')

—_—

wpP + wqQ + wrR

Figure 2: Homogeneous barycentric coordinates have
wp + wr + wg = w, where w is an arbitrary non-zero
constant. In this figure, if wp, wr, and wq are given
by the areas shown, and w is the area of triangle PRQ,
then the homogeneous barycentric coordinates of the
central point are [wp, wr, wq).

3 REPARAMETERIZATION

In this section we will show that the homogeneous repa-
rameterization of a linearly parameterized functional
Bézier patch is given by a matrix multiplication com-
bining the same coordinates in all control points. This
characterization admits several applications that will be
examined in Section 4.

3.1 Homogeneous Multinomials

Define an isomorphism ¢, between a vector space com-
posed of tensors s, x and the vector space of all multi-
nomials with k variables and total degree n as

Hn(Sn,k) = E sikxi"'.

Ny |=n

The power on each variable in the multinomial identifies
that term’s coefficient as the corresponding element of
the tensor.

The homogeneous parameter space of a linearly pa-
rameterized k-dimensional object is given by si,x. By
convention we will assume that the last element in lexi-
cographic order is the “homogeneous” parameter, set to
1 (or 0, for infinite points) when normalized. With all
the above definitions in place, we can express the ba-
sic single-term homogeneous multinomials (defined in
Section 2) as

FH (s10) :=¢n" (41 (516)")
For n = 1,k = 2 we have

F{J,z(sl,z) = ¢1_‘ (s001Z0 + So10T1 + $100Z2)
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T
Foor = so01
= Fom = So1o0 ’
Fioo = si100

|

and for n = 2,k = 2 we have

F’f,z(sl,z) = 5 ((Sooxzo + so10Z1 + Slooxz)z)

3(2)01?5(2) + Sgloz% } 3%0013
- + 250018010Z021
+ 2s0015100%0Z2
+ 2801081007122

Fooz = s T
Foi1 = 2s0015010

_ | Fo2o = st

| Flor = 250015100
Fiio = 2s0108100
Fro0 = 3%00

3.2 Projective Reparameterization

A projective reparameterization of a k-dimensional ho-
mogeneous multinomial can be represented by a (k +
1) x (k + 1) matrix postmultiplying the parameter vec-
tor. For any given (k +1) x (k + 1) matrix M = [m,;],
the reparameterized multinomials are given by

= du (d1(s16M)")
= ba (41(816)") Bn (M)

We can find the Ny x X Ny, matrix 8n,k (M) by direct
symbolic computation® or by transforming the generat-
ing function into a combinatoric expression. See Ap-
pendix C for specific examples, and Appendix B for the
combinatoric form of this operator. :

The combinatoric operator 6, x is a homomorphism of
the group of (k+1)x (k+1) matrices; a proof is provided
in Appendix B. Therefore inverses map to inverses,
and matrix multiplications inside the isomorphism can
be moved outside by mapping the component matrices
through the 6, x operator.

Ff,k(sl,;,-M)

3.3 Reparameterization of Bézier Simplices

The 65 x(M) matrices only allow reparameterization of
homogeneous multinomials. To reparameterize Bézier
simplices, we have to preceed the reparameterization
matrix by a matrix that transforms the multinomials
into Bézier basis functions. Such a matrix for triangles
is given by

The inverse of this matrix, which we shall need later, is
given by

1 0 1
M'=( 0 1 1
0 0 1

lMaple code is available via
dgp.utoronto.ca (128.100.1.129).

anonymous ftp from
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We will also define M, = §,x(Mi); since 6n,x is a ho-
momorphism, M;;! = 6, k(M '). The generalization of
these matrices to higher dimensions should be obvious.
Now

H
Bn,k

F.ly(s1,6 My)
= FH (six)Mn.

Define the matrix operator pn x such that
By k(s1,64) = By (s1,6)pnk(A).
We have

Frlk(s1,6)8n,k (A) My
= Fli(sixA)M,
= BY,(s1,xA)
= Bf,k(sl,k)l’n,k(A)
= Fi(s16)Mnpni(A).

Therefore, pn k is a conjugate representatici to 6, x:

pni(A) = M7 6, k(A)M,
= bax(M{'AM))
Recall our definition of a patch expressed as a matrix

product:
Pli(s1,6) = BE (s1,4)PH.

If we substitute our expression for an arbitrary projec-
tive reparameterization, we get

Poi(sikd) = B i (s16A)PY
B (s1,%)pnk(A)PH

By i (s16)VH,

I

where
VH = p x(A)PH

is the new set of control points. This transformation
can also be expressed as

VH = p k(A WQH

for normalized control points. If pnx(A) is diagonal,
then only the weights need to be changed to carry out
the reparameterization.

3.4 Complexity

A projective reparameterization of a Bézier simplex cor-
responds to a projective transformation of each coordi-
nate of its control points, treated together as a vector
in Ny x-dimensional space. The transformation of these
control points is combinatorically related to the repa-
rameterization matrix A, and is given by the Np x X Ny,
matrix pnx(A). Performing the matrix multiplication
pnk(A)PY requires O((m + 1) N2 ;) operations for m
channels, with no assumptions about weights. It should
be noted that N x = O(n*), so the complexity may be



written ()(mn%). Compare this to a spatial projec-
tive transformation given by a (k + 1) x (k + 1) ma-
trix B: V# = P¥ B. This multiplication requires only
O((k + 1)2Nn,k) = O(kznk) operations.

Summary: the upper bound on complexity of general
reparameterization has an extra factor of O(mn*/k?)
over spatial transformation. This result does not pre-
clude special cases from being more efficient, however.
For some matrices A, pn x(A) may be sparse, diagonal,
or afford a recursive factorization into sparse matrices.

4

In this section we cover some specific applications of the
relationship we have derived.

APPLICATIONS

4.1 Weight Normalization

[t is known in the case of rational Bézier curves that
varying patterns of weights can lead to the same space
curve, albeit with different parameterizations. A curve
is considered to have a normalized weight pattern when
won = 1 and wypo = 1.

Correspondingly, we define the weight pattern of a
surface to be normalized when the weights at all “cor-
ners” have been set to 1. Corners have one index set to
n and all others set to 0. This normalization must be
accomplished without changing the shape of the surface,
and preferably by only changing the weights.

Consider first the problem of normalizing a surface
that uses the homogeneous multinomials F,Iik as a basis.
The surface is given by

P (1) =FE (si0)WQY,

for some matrix of normalized homogeneous control
points Q7 and matrix of weights W = diag(wj;). Define
the reparameterizing transformation matrix

Ar, = diag(ro,T1,...,Tk).
This transformation fixes the corner parameter values in

R P*, since constant factors can be ignored in projective
space.

r0(1,0,0,...,0) = (1,0,0,...,0)Ar,
r1(0,1,0,...,0) = (0,1,0,...,0)Ar,
r2(0,0,1,...,0) (0,0,1,...,0)Ar,
r£(0,0,0...,1) = (0,0,0,...,1)Ar,.

If the parametric corner points are fixed in projective
space, then the shape of the resulting curve will be un-
changed.

Consider é,,x(Ar, ). Each entry in this matrix is com-
posed of sums of products of entries of Ar,. Only diag-
onal elements contain terms that are composed entirely
of diagonal elements of A. Therefore, if Ar, is diago-
nal then so is 6, x(Ar, ) and 6, x(Ar,)W. The weights
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will change but the Euclidean positions of the control
vertices will not.

Create the vector v, i to contain the diagonal entries
of 8, k(Ar,). It can be seen that the ith element of v

will be equal to riA Therefore, to normalize the corner
weights, we simply set the elements of ry as follows:

- 1
To = =
W000...00n
" 1
r = _
W000...0n0
" 1
Thet = A ——
Wono...000
= 1
T _
Wn00...000
Furthermore, let,
Br, = MAr, Ml_1
ro O O s 0 To — Tk
0 T1 0 0 Tl =Tk
0 0 T2 0 T2 — Tk
0 0 0 Thk—1 Th—t —Tk
0 0 0 :ms 0 Tk

This reparameterization fixes the projective parameters

r0(1,0,0,...,0,1) = (1,0,0,...,0,1)Br,
r1(0,1,0,...,0,1) = (0,1,0,...,0,1)Br,
r2(0,0,1,...,0,1) (0,0,1,...,0,1)Br,
r(0,0,0,...,0,1) = (0,0,0,...,0,1)Br,.

Since the parametric corners of the Bézier patch are
fixed, the shape will remain unchanged.

Note that pnx(Br,) 5n,k(M1_IBI'k M)
6nk(Ar,), so we can state the Bézier reparameteriza-
tion using Br,:

B, (s1,xBr,)WQ"

B, i (s1,6)pnk(Br, )W Q"
B (s1,6)6n,x (Ar, )W Q"
B, (s10)W'QF.

PH(Slkark)

PP (s1 k)

The matrix Br, gives the same transformation as Ar,,
but with respect to the Bernstein-Bézier basis.

4.2 Perspective Reparameterization

Perspective projection is the most obvious and in-
escapable non-affine projective transformation in com-
puter graphics. The perspective projection of a flat tex-
ture mapped polygon results in a projective reparame-
terization of the colour function. Hence, if the texture is
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represented as a two-dimensional functional Bézier sur-
face, then the rational Bézier representation in screen
coordinates may be found.

We first review the parameterization, projection, and
transformation composition process that takes place
during texture mapping.

4.2.1 Texture Transformations

When a texture is mapped onto a flat polygon, some
sort of parameterization is used. For the moment, as-
sume that the map between texture coordinates u
and polygon coordinates vy is in the form

Moo ool + MioUo10 + M20U100

voor =
Mo2Uo01 + M12Uo10 + M22U100
i Mo1 U001 + M11Uo10 + M21UI00
010 =
Mmo2uo01 + Mi12Uo10 + M22U100
viopo = 1

This projective transformation includes as a special case
the affine transforms, including the identity. It also al-
lows any four points to be mapped to any other four
points, while preserving straight lines.

An equivalent transformation can be expressed more
succinctly in homogeneous coordinates:

[1)001,1)010, Uloo]

moo mo1 mo2
= [woo1,%o10,%100] [ ™10 M1 mi2 |,
mo20 mo1 mao2
which can be written as
Vi2 = u 2 M.

)

The variables w100 and vigo are dummy, non-zero vari-
ables that will cancel when we eventually normalize.
The matrix M also has an extra degree of freedom.

The polygon coordinate space is now transformed into
homogeneous world space coordinates, x;,3, using the
object modelling transformation

[room y £0010, L0100, Ixooo]

oo @o1 @02 @03
= [voo1,v010,v100] | @10 ann a1z a3
azo @21 A2 A23
We can also write this
X13 = VigA

Note that the world coordinate system has an extra
dimension. Viewing transformations follow, composed
with a projection matrix. The projection matrix dis-
cards a dimension, so that we have a final transforma-
tion to the screen coordinate system sy 2:

[8001 » $010, Sloo]

boo  bo1  bo2

) bio  bi1 b2

= [-“60001,100101101007%000] boo boy boz
bso  bar  baz
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Again, we can write this as

S1,2 X1,3 B.

The composed transform can be found by matrix
multiplication, and will be a strictly two-dimensional
projective transformation. The intermediate three-
dimensional world space may be ignored.

S12 = 111|2MAB = u1,2("-

4.2.2 Bézier Texture Projection

Assume that our texture is represented not as an ar-
ray of pixels, but as a continuous bivariate polynomial
intensity function defined over a triangle. Bézier tri-
angles form a basis for bivariate polynomials within a
triangle, so assume that we have homogeneous control
vertices g, 2 = [wigi, wi]. Note that this is a functional
form, so the control vertices are not associated with
a specific position in space. They are only associated
with a specific basis function. We also assume here a
monochrome texture map. A generalization to a colour
texture map would simply use higher-dimensional con-
trol vertices gn m.

The projected texture is a rational function RG :
R? — R, which is the normalized version of a homo-
geneously parameterized function G,I;{2 :RP? - RP'.

Described using homogeneous texture coordinates,

+H
G 2(uo01, w010, U100)
§ : H
= Bnylyi(uom,uom,uloo) . [wigi,’wi]-
i]=n
If we stack the control vertices into a matrix
H
P = ([wig, wil)
we have the form
H H H
(Jn,z(ul,2) = Bn,z(ul,2)P

Texture mapping, as we have seen, results in a projec-
tive map s = uC' from our texture coordinates to screen
space. The inverse of this map is u = sC™'. Using the
results of Section 3, we can express the reparameteriza-
tion due to the transformation u = sC~" as

BH

n,2 (Sl,z(/'_l)PH
Bf,z (s1,2) (Pn,2(C_1)PH) .

We can set the extra homogeneous screen coordinate to
1, hence removing the redundant degree of freedom. We
will still be able to address all points on the screen. If
we define

(1’5)2 (Slyz (}—1 )

éﬁz(sl,ﬂ

VI = pi(CPH = ([ufof, u),
then
BnH:2 (so001, so10, 1yv#
Z|i|=n Bn,2)i(3001 i soxo)wigi

Eli|=n Bn,z,i(som ) Sow)wi

GE,(s001, s010)

RG (5001, S010)
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4.2.3 Evaluation

To evaluate the texture map in screen space, we need to
evaluate RG/(so01,S010) which is a ratio of linear com-
binations of Bézier basis functions in screen space. Un-
fortunately, every new output control value depends, in
general, on every input control value. This non-locality
limits the practical use of this technique, unless the tex-
ture is broken up into many segments of low order. For
cubic triangles, N3 2 = 10, and so a brute-force transfor-
mation of a single segment requires 200 multiplications
and 180 additions, not to mention the computation of
pnk(C™1). Since N,z = 6, quadratic triangles require
72 multiplications and 60 additions. Linear triangles
require 18 multiplications and 12 additions.

In the special case in which all the control points have
been normalized so all w; = 1, then half the multipli-
cations may be eliminated. This is the case where the
source is always known to be a polynomial, which can
be arranged in a texture mapping application.

4.3 Arbitrary Subdivision

Suppose we were given a triangular rational Bézier
patch and needed to extract some arbitrary triangular
subpatch, with the subpatch represented as a triangular
Bézier patch (i.e. in terms of control points).

Define the parametric corners of the subpatch by the
homogeneous parameters

a = (aoo1,@010,a100),
b = (boo1, bo1o,b10o),
c = (6001,6010,0100)-

To create the subpatch, we have to describe a transfor-
mation that maps

aM — s.=(1,0,0),
bM — s,=(0,1,0),
cM — s.=(0,0,1).

Such a transformation is given by

aopo1 apio @100
—1 —1
M~ = M; boor  boro  bioo | M.
Coo1  Coio  C100

We define this matrix by its inverse because the inverse
is exactly what will be needed.

Recall that a rational, triangular Bézier patch is given
in homogeneous coordinates by

PH, (w1 2) = B (w1 2)P¥

We can reparameterize this patch so that the desired
triangle lies in the standard parameter range using the
parameter transformation u; 2 = vy M~

Pf,z(vl,zM—l)

Pg’z(vlﬂ)

BY,(vioM™)PY,
BY,(vi2) (pn2(M~H)PH),
B, (vi2)VH
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The control points of the subdivided patch are there-
fore VH = p,(M~")P#. Once again, this is a rel-
atively expensive operation; however, the fact that it
is totally general can be useful in some cases. There
are, for example, no restrictions on the orientation of
the subpatch with respect to the larger patch, and no
special cases.

5 CONCLUSIONS

A multidimensional generalization of a 1-D result has
been presented. The general theoretical result has many
applications, although specialization is needed to derive
efficient algorithms. Application of the techniques pre-
sented in this paper results in algorithms for a variety
of applications of rational reparameterization of poly-
nomial spline surfaces, including weight normalization,
texture mapping, and subdivision.
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A

The objects used to construct Bézier simplices are most
properly understood as tensors. A symmetrical multiin-
dex notation is used to refer to elements of these tensors,
and they are implicitly stacked in lexicographical order.
This is formalized in the following sections.

NOTATION

A.1 Tensors and Multiindices

Define the simplicial tensor s, := {sik} such that ix =

{do,i1,. .., ix} with i; € N and [ix| := 30_ 4
Note that the multiindex ix has k+1 elements, although
it is redundant and should be considered as only having
dimension k.

We will call k the order of the tensor snk, and n the
dimension. The short form sg := s;,x may be used for
one-dimensional vectors, hence ix i1,k. When pos-
sible and unambiguous, we will leave out commas in
subscripts of the elements of tensors.

= n.
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Examples:
s12 = (Soo1, S010, S100)
Y 8100, -
001, So010
S22 = (3002,3011,3020,8101,5110,8200)
$200,
= $101, S110,
S002, S101, S020

For a one-dimensional tensor xx, define exponentia-
tion by a multiindex of the same dimension as

i 10,01 tk
—.'l:o 1,'[ ...zk

combination, with |ix| = n, as

n

IT)=ois!
j=0 3"

n
0! 0!l .ol

A.2 Stacking

Tensors are somewhat awkward to work with, especially
tensors of the form used here, where the entire multiin-
dex has to be considered to determine a valid (or equiv-
alently, non-zero) element of the tensor. While keeping
the tensor structure in mind, we would like to map the
variables into a familiar matrix-vector form. This we
can accomplish with a stacking operator. The stacking
operator simply arranges the elements of a tensor in a
specific order within a row vector. A matrix can then
specify arbitrary linear combinations of tensor elements
to create a new tensor.

The stacking operator is defined by any bijective map-
ping 8,.x : N**! — N of the multiindex onto a single
index: © = 0y x(ix). This mapping is invertible by defi-
nition.

There are many possible stacking maps, but to make
the mathematics cleaner we can choose maps that sat-
isfy some simple conditions. The stacking map should
map (0,0,...,n) to 1, should not have any gaps, and
should be lexicographically ordered.

A mapping that satisfies these conditions in two di-
mensions is

143 . .
_( +l2+11)(l2+11)+

0n,2(i2) = 2 12+1

An example for n = 5 is given in Table 1.
The maximum value in this mapping, which is also
the number of tensor elements, is given by

: 1 2
Np2 := 6y 2(i2 = n00) = %—)
Note that we typically write multiindices in reverse

order in subscripts, so that the most significant digit
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51| 16 052(12,11,%0)
4 (11 17
3|17 12 18
2| 4 8 13 19
| 1 2 5 9 14 20
i 0] 1 3 6 10 15 21
0 1 2 3 4 5
12 —

Table 1: Example mapping between tensor and linear
indices for n=>5,k=2 (three-variable multiindices). Note
that 2o is redundant.

comes first. In other words, the index 102 indicates
10 =2,1; =0,1 = 1.

In general, these mappings are generated by [4] (pp.
297-298,303):

For example, the mapping in three dimensions would

be
1413412 13

9n,3(i3)=
(145)(4)

241 +i2+ 1
3
(2+i3 + 1 +1.1)(1 + 13 + 12 +11)(13 + 1 +ll)
6
(1413 4 12)(13 + 12)
W 2

Inverses of these maps may be computed via a lookup
table.

k

On (i) =) (

r=0

k—r—1 +Ef=r+1 i

k—r

+ 13+ 1.

B PROOF OF HOMOMORPHISM

If Misa(k+1)x(k+1) invertible matrix, let ®,(M) be
the column vector of multinomials obtained by applying
¢n to every row of M. Let ®n(M) = (p;(xx))”
pr(xx)T, where p;(xk) is a multinomial in xx and j is
the index of the corresponding row in M.

Before continuing with the proof of homomorphism,
we need the following:

LEMMA: Given vi € R*¥t! and M an invertible (k +
1) x (k + 1) matriz, then ¢n(ViM) = vi®n(M).

PROOF OF LEMMA: Let anx = (x}*)7 be an Nnx el-
ement column vector containing the power basis
of multinomials in xi of total degree n. Then
#n(Vk) = Viani, and

dn(ViM) (VviM)ank = vi(Man,i)
' vi®n(M). R
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Now we can prove the following theorem, which shows
that the reparameterization can be externalized, and
also gives a more explicit form for evaluating the com-

binatorical matrix:

THEOREM 1: If 65,1 (M) is defined by
Frk(skM) = Fui(sk)bnk (M),

then
lsn,k(M) =
Pg(xk)P?(xk) o Pror (Xk)PR Xi)
PO (% )PT (%) - Pk (Xk)PL " (Xk)
_ g Po (k)T (Xk) - - - PRy (xk‘)l’:_z (xk)
P (xk)P1(%Xk) - - - PRy (%K) PR (%K)

6 (xk)PS (k) - . - P _1 (%) PR (Xk)

= ¢! ((pi" (xk))T> :

PROOF OF THEOREM

1: Combine the Lemma and the

multinomial theorem:

Fn,k(SkM)

én' (d1(s6M)™)
dn' ({sk®1(M)}"™)

¢;1 ({Z SJPJ(xk)} )

> (1

¢;’(<(%z>s%)(p%0u0j>
(2))« (o)

Frk(sk)bnix(M). 1

bn' )#ﬁun

THEOREM 2: The operator b6,k ts a homomorphism of
the group of invertible (k + 1) x (k 4+ 1) matricies.

PROOF OF THEOREM

2: Let A, B be two invertible (k+

1) x (k + 1) matricies. Note that

Fn,k(sk(AB))
Fn,k((SkA)B)

By the associativity

Frk(sk)6nk(AB),
Fn,k(sk)‘sn,k(A)én,k(B).

of matrix multiplication, we

must have 8y, x(AB) = 65,k (A)n,x(B) on the linear

span of Fy x(sk).
bn,k 1s a homomo

C

Let

Since Fn x(sk) spans all of RFt!

rphism. W

COMBINATORIAL MATRICES

e )

b
€
H

)

For n =1 and k = 2, corresponding to linear triangles,
the combinatorial matrix 6, 2(M) is:

§12(M)=M

a b ¢
d e f |].
G H 1

For n = 2 and k = 2, corresponding to quadratic trian-
gles, the combinatorial matrix 62 2(M) is:

022(M) =
a’ 2ab 2ac b2 2bc c?
ad db + ae af +dc be bf+e cf
a aH+Gb Ge+a bH He+b ¢
d? 2de 2df e? 2¢ef  f?
dG Ge+dH Gf+d eH Hf+e f
«? 2GH 2G H*? 2H 1
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