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AB ST RACT 

A gr'oup-theor'etic analysis is applied to find th e trans­
f01'11wtion of the homogeneous control points of k­
dim ensional B ezier simplices {such as two dim ensional 
triangles and three dim ensional tetrah edra} under' a k­
dim ensional projec tive reparam eterization, This trans­
f ormation has applications in the perspec tive projec ti on 
of textur'es represented as triangular spline intensity sur­
f ace.s, in arbitrary B ezier simplicial subdivision, and in 
weight normalization , 

Th e th eoretical re sults contained in this exposition 
ar'e generalizations of similar results for 1-dimensional 
Bezie r curves, reported by Richard R , Patterson in 
1985, 

RESU M E 

lin e analyse en theorie des groupes est fait e pour trou­
ver la transformation des points de controle homog f'.1les 
pour' un simplexe Bezier de dimension k , en fai sant 
!me repclrand terisation projectif de dim ension k , On 
peut utili.s er cette transformation pour la projection en 
pel'.spec tive de.s texture.s fait es avec les surfaces splines 
d 'intensite, pour la sous-division des simplexes Bh iers, 
et pour regular'iser les poids pour la n ormalisa tion , 

Les re.s ultats theoretiqu es qu 'on pre.sente dan s cet ex­
pose sont des generalisations des re.sultats que Richard 
R , Patterson a presen te en 1985 pour des courbes 
B eziers ayant une seule dim ension , 

KEYWORDS : rational Bezier s pline curves, triangles, 
and surfaces; perspective; projec ti ve transform a­
tion and reparameterization ; ra tional reparamete r­
ization ; texture mapping , 

1 INTRODUCTION 

It is a well known result that the perspective projecti on 
of a spline space curve or surface can be represented 
as a rational spline curve or surface [7] , It is less well 

und erstood how an intensity fun cti on, or texture, repre­
sented as a spline is transform ed by th e same opera ti on, 
In the space spline case, the positions and weights of 
th e control points are changed , In the case of an inten­
si ty dis tri bu tion , the perspecti ve transformation results 
instead in a projective reparameterization , I t will be 
shown in this paper th a t this can also be represented as 
a change in the values and weights of the control points, 
The required transformation opera tes by blendin g t he 
same coordinate of different control points , rather than 
blending different coordinates of each control point as 
in th e space s pline, 

A projective transform a tion , of which th e perspec­
tive transformation is one case, can be represented as a 
fractional linear transformation, In one dimension , this 
transform ati on is given by 

a + bx 
u = c + dx' 

If this transform ation is substituted into a polynomial 
of order n , th en the result ' is a ratio of polynomials of 
order n , We will call such ratios of polynomials ratio nal 
fun ctions, Su bsti t u tion of this same transform ation into 
a rational fun ction will yi eld another rational function of 
the same ord er. Ra tion al fun ctions of a gi ven order are 
therefore closed under proj ective reparameterization , In 
th e same way, m -variate ra tional fun ctions are closed 
under fr ac tion al linear m-variate t ransforms of the form 

a + 2::':1 b iXi 
Uk = ,\,m ' 

C + ~j=1 d jxj 

Results for the projective reparameterization of 
nonuniform ra tional B-spline curves were presented by 
Lee [5], The tensor product B-spline basis function typ­
ically used for B-spline surfaces does not remain a ten­
sor product und er projec tion , so it is difficult t o use 
th a t result directly, Instead , we will work with the sim­
pler Bezier tri angul ar s urfaces firs t with the hope t ha t 
res ults can lat er be extended to t riangular B-spline s ur­
faces, 

A projec tive transformation can be represented as a 
change from one homogeneous coordinate system to an­
other. We would like to represent a change of para­
metri c coordina te system as a transformation of control 
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Figure 1: Example of a quadratic Bezier patch used to 
defin e the intensity of a surface. 

points and weights . For Bezier spline curves, a gen­
eral solu tion was found by Patterson under a univariate 
reparamete rization [6]. This paper is a generalization of 
that result to Bezier splines over triangular, tetrahed ral , 
and higher-dim ension al simpli cial parameter domains. 

Our generalization hinges on the use of suitable nota­
tion; th e symmetrical index notation used here is based 
upon that used in [8]. This notation will be intro­
duced as needed, but a full reference is available in Ap­
pendix A. 

This resul t has m any potential applications besides 
texture mapping , and several are given in this paper. 
Texture mapping , however , requires multidimensional 
projecti ve reparameterization and so has not been cov­
ered previously. 

Suppose t he colour variation in a texture is repre­
se nted as a functional spline, i.e. a representation com­
posed of patches such as the one shown ·in Figure 1. 
Such a representation could be reconstructed from a 
discretized texture vi a an interpolation algorithm, or it 
co uld be th e result of a radiosity algorithm using spline 
interpolation [1 , 2]. If the texture is mapped via a pro­
jecti ve transformation on to a flat surface and then re­
projected via perspective, the overall transformation is 
a single two-dimensional projective reparameterization . 
The control points and weights of the tex ture can then 
be transformed direc tly from texture space to screen 
space, res ulting in an analytic representation of the tex­
ture, in screen space. Antialiasing filters and rasteriza­
tion algorithms can then take advantage of this explicit 
representation. This particular appli cation is covered in 
more detail in Section 4.2. 

We first deri ve the reparameterization transformation 
and then show its application to several sample prob­
lems including texture ma pping. 
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2 BEZIER SIMPlICES 

The k-dimensional Bezier simplices a re defined in terms 
of a k-dimensional barycentric coordinate system [3] 
with k + 1 redundant but symmetrical paramete rs. Like 
the Bezier curves, k-dimensional Bh ier sim plices a re 
built upon rec ursive blends. Each blend computes an 
affine combination of k + ]. other points . Consider the 
two dim ensional triangular case: a co nvex blend of three 
points P , Q , and R is given by pP + qQ + rR, wh ere 
1) , q, r E Rand p+q+r = 1. Bezier tetrah edral simplices 
are simil arily built from blends offour points , using four 
coordinates with three degrees of freedom . 

Bezier simpli ces are still multivariate polynomials , 
however. Defin e the basis of nth-order, k-dim ensional 
multinomials as a row vector: 

) tiOtit tlk) , 0 1 .. . k 
tk 

Any mul tinomial can be defin ed as the dot prod uct of 
this vector with a coefficient vector , although to repre­
sent constant terms we must set h = 1. The number of 
basis functions required is given by 

( 
n + k ) Nn.k = k 

In a homogeneous coordinate system, we consider any 
non-zero multiple of the parameter vector to be eq uiv­
alent to any other. If we represent this arbitrary multi­
plicative constant by s, then the k-dirn ensional homo­
geneous multinomial basis beco mes 

[ ( ;: ) (stk) i k
] 

[s" F n.d (tk)]' 

We use square brackets to distinguish homogeneo us vec­
tors from ordinary vec tors. The non-homogeneo us form 
cari be recovered by dividing by Sn' 

Bezier simplices are defin ed in barycentri c coordinate 
systems, so we must have Itkl = 1. We defin e the Bern­
stein basis functions , upon' which Bezier simpli ces are 
built, by removing the extra deg ree of freedom from the 
multinomial form: 

B n.dtk-d 

Fn.k (to,t1, ... ,tk-1, (1 -~tj)) 
Note that this transformation of parameters may be 
represented by a matrix, ~nd in fact we do so in Sec­
tion 3.3. We have assumed that h = 1 befo re the trans­
formation. 
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With these definitions , we can finally define the 
nth order, k-dimensional homogeneously parameterized 
Bernstein-Bezier basis functions as 

The nth order, k-dimensional homogeneous Bezier 
simplices P;;,k are defined by 
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where pHis a N n,k X (m + 1) matrix; a column vector of 
row vectors, each row being a m-channel homogeneous 
control vertex of the form : 

The superscript is a label , not an exponent. The switch 
value Pi is 1 for finite control points and 0 for points 
at infinity. The value wi is called the weight of control 

vertex pf . 
The matrix of control vertices can be factored into 

the product of a diagonal weight matrix Wand a nor­
mali zed version of the control points QH: 

pH WQH 

diag( Wi) ([pi, pi, ... pi, Pi]) . 

This defin es a Bezier simplex over the projective pa­
rameter space RPk. Therefore, P ;; k is an injective map 
from Rpk into Rpm, where Rpl is the real projective 
space of dimension t. 

The form of the nth order rational Bezier simplex, 
after normalization , is given by 

which is a m-dimensional row vector indexed by q, the 
channel index. Because of the fact that the Bernstein 
basis forms a partition of unity, this reduces to a. non­
rational form if all weights are equal and all control 
poin ts are fini te: 

R 

p Q 

WpP + wqQ + wTR 

Figure 2: Homogeneous barycentric coordinates have 
wp + WT + wq = w, where w is an arbitrary non-zero 
constant . In this figure , if wp, WT, and wq are given 
by the areas shown, and W is the area of triangle P RQ, 
then the homogeneous barycentric coordinates of the 
central point are [wp, WT, wq] . 

3 REPARAMETERIZATION 

In this section we will show that the homogeneous repa­
rameterization of a linearly parameterized functional 
Bezier patch is given by a matrix multiplication com­
bining the same ·coordinat~s in all control points. This 
characterization admits several applications that will be 
examined in Section 4. 

3.1 Homogeneous Multinomials 

Define an isomorphism rPn between a vector space com­
posed of tensors Sn,k and the vector space of all multi­
nomials with k variables and total degree 11 as 

rPn(Sn,k) = L: si
k 
X~k. 

li k I=n 

The power on each variable in the multinomial identifi es 
that term's coefficient as the corresponding element of 
the tensor. 

The homogeneous parameter space of a linearly pa­
rameterized k-dimensional object is given by Sl,k. By 
convention we will assume that the last element in lexi­
cographic order is the "homogeneous" parameter, set to 
1 (or 0, for infinite points) when normalized . With all 
the above definitions in place, we can express the ba­
sic single-term homogeneous multinomials (defined in 
Section 2) as 

For 11 = 1, k = 2 we have 
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[

Foo l 

F OIO 

F IOO 

8001 
8010 
SIOO r 

and for It = 2, k = 2 we have 

~ .:;' ( 860 1 X6 + 861OX ~ + s~oox~ 
+ 28oolsoloxoxI 
+ 28001 SI00XOX2 

+ 2S0108100XIX2 

Fo0 2 8501 
FOil 2800 I So 10 
F 020 8610 
FIO I 2800 1 SIOO 
F l lo = 280108100 
F 200 8ioo 

3 .2 Projective Reparameterization 

) 
T 

A projective reparameterization of a k-dimensional ho­
mogeneo us multinomial can be represented by a (k + 
1) x (k + 1) matrix post multiplying the parameter vec­
tor . For any given (k + 1) x (k + 1) matrix M = [mij], 
the repa rameterized multinomials are given by 

ljJ;; 1 (ljJI (sl,kMr) 

ljJ;; 1 (ljJI (SI ,kr) on ,k(M) 

We can find the Nn,k x Nn,k matrix on,k(M) by direct 
sy mbolic computation I or by transforming the generat­
ing fun ction into a combinatoric expression . See Ap­
pendix C for specific examples, and Appendix B for the 
com binato ric form of this operator. 

The combinatori c operator On ,k is a homomorphism of 
the group of (k+ 1) x (k+ 1) matrices; a proof is provided 
in Appendix B. Therefore in verses map to inverses, 
and m at rix mul tiplications inside the isomo rphism can 
be moved outside by mapping the component matrices 
through the On ,k operator. 

3 .3 Reparameterization of Bezier Simplices 

The On ,k (M) matrices only al low reparameterization of 
homogeneo us multinomials. To reparameterize Bezier 
simplices, we have to preceed the reparameterization 
matrix by a matrix that transforms the multinomials 
into Bezie r bas is functions. Such a matrix for triangles 
is given by 

o 
-1 ) - 1 . 
1 o 

The inverse of this matrix , which we shall need later , is 
given by 

I Maple cod e is avail able 
dgp .ut'o ro nto.ca (128 .100 .1.129) . 

o 
1 
o 

via a no nymous ftp from 
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We will also define Mn = On.k\Mt}; since On ,k is a ho­
momorphism , M;;I = on ,k(M I- ). The generalization of 
these matrices to higher dimensions should be obvious. 
Now 

F ;;'dsl,kMI ) 

F ;;,k(SI ,k )Mn . 

Defin e ' the matrix operator pn,k such that 

We have 

F;;'dSI ,k )On ,k(A)Mn 

F;;,k(SI,kA)Mn 

B ;;,dsl ,kA) 

B ;;,dsl ,k)Pn,d A ) 

F ;;,dsl ,k )MnPn ,k (A) . 

Therefore, Pn,k is a conjugate representatiGil to On,k: 

M;:IOn ,k(A)Mn 

On ,k(M I-
I AMI) 

Recall our definition of a patch expressed as a matrix 
product: 

P ;;,dSl ,k) = B ;;,dsl,k) p
H

. 

If we substitute our expression for an arbitrary proJec­
tive reparameterization , we get 

where 

B ;;,dsl,kA) p H 

B ;;'dsl,k )Pn ,k (A) p H 

B ;;,dsl ,k)V
H

, 

is the new set of control points. This transformation 
can also be expressed as 

v H = Pn ,i.(A)WQH 

for normalized control points. If Pn ,k(A) is diagonal, 
then only the weights need to be changed to carry out 
the reparameterization. 

3 .4 Complexity 

A projective reparameterization of a Bezier simplex co r­
responds to a projective transformation of each coo rdi­
nate of its control points, treated together as a vector 
in Nn,k-dimensional space. The transformation of these 
control points is combinatorically related to the repa­
rameterization matrix A, and is given by the Nn ,k x Nn ,k 
matrix pn k(A). Performing the matrix multiplication 
Pn ,dA) p H requires O((m + l)N~,d operations for m 
channels, with no assumptions about weights. It should 
be noted t hat Nn,k = O(nk) , so the complexity m ay be 

G raphic s In terface '93 



written 0(mn2k ). Compare this to a spatial projec­
ti ve transformation gi ven by a (k + 1) x (k + 1) ma­
trix B: VH = p H B. This multiplication requires only 
O((k + 1)2 Nn ,k) = 0(k2n k ) operations. 

Summary: the upper bound on complexity of general 
reparameterization has an ex tra factor of O(m;t k /k2) 
over spat ial transformation . This res ult does not pre­
clude special cases from being more effi cient , however. 
For some matri ces A , Pn,k(A) may be sparse, di agonal, 
or afford a recursi ve factorization into sparse ma trices. 

4 APPLICATIONS 

In this section we cover some specific applications of the 
relationship we have derived. 

4. 1 Weight Normalization 

I t is known in the case of rational Bezier curves that 
varying patterns of weights can lead to the same space 
curve, al bei t wi th different pa rameterizations . A curve 
is considered to have a normalized weight pattern when 
Wan = 1 and WnO = 1. 

Correspondingly, we defin e the weight pattern of a 
surface to be normalized wh en the weights at all "cor­
ilers" have been set to 1. Corners have one index se t to 
n and all others set to O. This normalization must be 
acco mplished without changing th e sha pe of the s urface, 
and prefera bly by only changing the weights. 

Consider first th e problem of normalizing a su rface 
that uses the hom oge neous multinomials Ft: k as a basis. 
T he surface is given by , 

for some matri x of normalized homogeneo us control 
points Q H and matrix of weights W = diag(wi)' Define 
the reparamete rizi ng transformation matrix 

Ark = diag(To, TI , ... , Tk). 

This transformation fixes the corn er paramete r values in 
IRpk, since constant factors can be ignored in proj ective 
space. 

TO (1,0,0, ... , 0) (l,O,O, ... ,O)Ark 
TI(0 , 1,0, ... , 0) (0,1,0, ... , 0)Ark 
T2(0 , 0, 1, ... , 0) (0 , 0, 1, .. . ,0)Ark 

Tk(O, 0, 0 ... , 1) (0,0 , 0, ... , 1 )Ark • 

If the parametric co rn er points are fixed in projective 
space, th en the shape of the resulting curve will be un­
changed. 

Consider on ,k( A r k ). Each entry in this matrix is com­
posed of sums of products of entries of Ark' Only diag­
onal elements contain terms t hat are composed entirely 
of diagonal elements of A. TherefC:re, if Ark is diago­
nal then so is on,dAr k ) and on,dA~k)W , The weights 
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will chan ge but the Euclidean positions of the co ntrol 
verti ces will not . 

Create the vector Vn ,k to contain the di ago nal entri es 
of b",dA"k)' It can be seen that the ith element of v 

will be equal to ri . Therefore, to normali ze the corn er 
weights , we simply set the elements of rk as foll ows: 

TO 
WOOO .. 00n 

Wooo . . 0nO 

Tk_1 
WO nO .. 000 

WnOO .. 000 

Furthermore, let. 

Brk MIAr.M~1 

TO 0 0 0 TO - Tk 
0 TI 0 0 TI - Tk 
0 0 T2 0 T2 - Tk 

0 0 0 Tk-I Tk-I - Tk 
0 0 0 0 Tk 

This reparameterization fixes the projective parameters 

TO (1 , 0 , 0, ... , 0 , 1) (l , O, O, . .. , O, l )Brk 

TI (0 , 1, 0, ... ,0, 1) (0,1 , 0, ... , 0, 1)Br. 

T2 (0, 0 , 1, .. . , 0, 1) (O,O , l , ... , O, l)Br k 

rk(O , O, O, ... ,O, l) (O,O,O, ... , O,l)Br • . 

Sin ce the' paramet ri c corners of the Bezier patch are 
fixed , the shape will remain unchanged . 

Note that Pn,k(Brk ) on , k(M~1 Br.MI ) 
bn,k (Ar.) , so we can state the Bezier reparameteriza­
tion using Brk : 

pH (SI ,k Br.) 

pH (SI ,k) 

B t:,dsl ,k Brk)WQH 

Bt:,k (SI ,k)Pn,k{ Br. )WQ H 

Bt:,k (SI ,k)On ,k (Ark )WQ H 

B t:,dsl,k)W'QH. 

The matrix Brk gives the same transformation as Ark ' 
but with respec t to the Bernst ein-Bezier basis . 

4. 2 Perspective Reparameterization 

Perspective projection is the most obvious a nd in­
escapable non-affine projective transformation in com­
puter graphics. The persp ective projec tion of a flat t ex­
t ure mapped polygon results in a projective reparame­
teri zation of the colour function. Hence, if the texture is 
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represented as a two-dimensional fun ctio nal Bezier sur­
face , then the rational Bhier representation in screen 
coo rdinates may be found . 

We first review the parameterization , projection, and 
transformation composition process that takes place 
during texture mapping. 

4.2.1 Texture Transformations 

When a texture is mapped onto a flat polygon , some 
sort of parameterization is used. For the moment , as­
s um e that th e map betwee n texture coordinates UI ,2 
and polygon coordinates VI ,2 is in the form 

rnOOUOOI + rnlOUOIO + m 20 UI OO 
VOOI + rnl2UOIO + 1n22UIOO 17L02UOOI 

rnOI UOOI + 1nl I UOIO + 1n21 UIOO 
VOIO 

rn02UOO I + 1n12UOIO + 1n22UIOO 

This projective transformation includes as a special case 
the affine transforms, including the j.dentity. It also al­
lows any four points to be mapped to any other four 
points, while preserving st raight lines . 

An equivalent transformation can be expressed more 
succinctly in homogeneo us coo rdinates: 

[VOOI, VOIO, VIOO ] 

( rn oo rn OI l1L0 2 ), [UOOI, UOIO, UIOO] rnl O rnll rnl 2 

rn20 7n21 rn22 

which can be written as 

VI ,2 UI ,2M. 

The variables UIOO and VIOO are dummy, non-zero vari­
a bles that will cancel wh en we event ually normalize. 
The matrix M also has an extra degree of freedom . 

The polygon coordinate space is now transformed into 
h O lllogeneo ~ s world space coo rdinates, XI ,3, using the 
object modelling transformation 

[ XOOOI , XOOIO , XO I OO, XIOOO] 

[ VOO I ,VOIO,V I OO ] ( 

aOO aOI a02 a03 ). alO all al2 al 3 

a20 a21 a22 a23 

We can also wri te this 

XI ,3 VI ,2A 

Note that the world coordinate system has an extra 
dimension . Vi ewing transformations follow , composed 
with a projection matrix. The projection matrix dis­
cards a dim ension , so that we have a final transform a­
tion to the screen coordinate system SI,2: 

[SOOI, SOlO, SIOO ] 

[,,'"' , ,,",,, "'"', ","00] ( ) 
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Again, we can write this as 

SI,2 XI ,3 B . 

T he composed transform can be found by matrix 
multiplication, and will be a strictly two-dimensional 
projec tive transformation. The intermediate three­
dimensional world space may be ignored. 

4.2.2 Bezier Texture Projection 

Assume that our texture is represented not as an ar­
ray of pixels , but as a continuous bivariate polynomial 
intensity function defin ed over a triangle. Bezier tri­
angles form a basis for bivariate polynomials within a 
triangl e, so assum e that we have homogeneo us control 
verti~es gn ,2 = [wigi , wi]' Note that this is a functional 
form , so the co ntrol vertices are not associated with 
a specific position in space. They are only associated 
with a specific basis function . We also assume here a 
monochrome texture map. A generalization to a colour 
texture map would simply use higher-dimensional con­
trol vertices g n,m. 

The projected texture is a rational fun ction RC : 
!R2 

-+ !R , which is the normalized version of a homo­
geneously parameterized fu.nction C;;,2 : !Rp2 -+ !Rpl . 

Desc ribed using homogeneous texture coo rdinates, 

C;;'2(UOOI, UOIO, UIOO) 

L B:,I,i(uOOI ,UO IO,UIOO)' [w igi ,wi]' 

lil=n 

If we stack the control vertices into a mat rix 

we have the form 

C;;,2(UI ,2) = B;;,2(UI ,2) pH . 

Texture mapping , as we have seen, results in a projec­
tive map S = uC from our texture coordinates to screen 
space. The inverse of this map is U = sC- I. Using the 
res ults of Section 3, we can express the reparameteriza­
tion due to th e transformation u = sC- 1 as 

C;;,2(SI,2C- I ) 

(;;;'2 (SI,2) 

We can set the extra homogeneous screen coordinate to 
1, hence removing th e redundant degree of freedom. We 
will still be able to address all points on the screen. If 
we defin e 

H -I) H ([" ']) Y = Pn ,k(C P = wigi, wi ' 

then 

B;;:2(SOOI,SOI0, 1)y
H 

RC( SOOI , SOlO) 
Llil=n Bn ,2,i (SOOI, SOlO )wigi 

Llil=n Bn ,2,i (SOOI, sOIO)wi ' 
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4.2.3 Evaluation 

To evaluate the texture map in screen space, we need to 
evaluate RG( SOO I , SOlO) which is a ratio of linear CO Ill ­

binations of Bezier bas is functions in screen space.. U n­
fortunately, every new output control value depends, in 
ge neral , on every input control value. This non-locality 
limits the practical use of this technique, unless the tex­
ture is broken up into many segments of low order. For 
cubic triangles , N 3 ,2 = 10, and so a brute-force transfor­
mation of a single segment requires 200 multiplications 
and 180 additions, not to mention the computation of 
Pn ,k «(,'-1). Since N2 ,2 = 6, quadratic triangles require 
72 multiplications and 60 additions. Linear tri angles 
require 18 multiplications and 12 additions. . 

In the special ca'5e in which all the control points have 
been normalized so all wi = 1, then half the multipli­
cations may be eliminated. This is the case where the 
source is always known to be a polynomial , which can 
be a rranged in a texture mapping application . 

4.3 Arbitrary Subdivision 

Suppose we were given a triangular rational Bezier 
patch and needed to extract som~ arbitrary triangular 
subpatch, with the subpatch represented a'5 a triangular 
Bezier patch (i. e. in terms of control points). 

Defin e the parametri c corners of the su bpatch by the 
homogeneous parameters 

a ( aOO 1 , ao 10 , a 100 ) , 

b (bool , bolo , blOo ) , 

c (C001 , C010,C 100). 

To create the subpatch, we have to describe a transfor­
mation t hat maps 

aM Sa = (1,0,0), 

bM -+ Sb = (0 , 1,0), 

cM S e = (0,0 , 1) . 

Such a transformation is given by 

a0 10 

bolO 

C0 10 

alOO ) 
blOo M l . 

C100 

We define this matrix by its inverse because the inverse 
is exactly what will be needed . 

Recall that a rational, triangular Bezier patch is given 
in homogeneo us coordinates by . 

We can reparameterize this patch so that the desired 
triangle lies in the stand ard parameter range using th e 
param eter transformation Ul ,2 = Vl ,2 M- l : 

P ;;,2(Vl ,2M- l) 

i> ;;,2 (Vl ,2 ) 

B;;,2 (Vl,2 M-I )pH , 

B;;'2(Vl ,2 ) (Pn,2(M -
l )p H), 

B;;'2(Vl ,2)yH. 
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The control points of the subdivided patch are th ere­
fore yH = Pn,2(M- l )pH . Once again , this is a rel­
atively expensive operation; however, the fact that it 
is totally general can be useful in some cases. There 
are, for example , no restrictions on the orientation of 
the subpatch with respec t to the larger patch, and no 
special ca'5es. 

5 CONCLUSIONS 

A multidimensional generalization of a 1-D result has 
been presented . The general theoretical result ha'5 many 
applications, although specialization is needed to derive 
effici ent algorithms. Application of the techniques pre­
sented in this paper results in algorithms for a variety 
of applications of rational reparameterization of poly­
nomial spline surfaces, including weight normalization , 
texture mapping , and subdivision. 
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A NOTATION 

The objects used to construct Bezier simplices are most 
properly understood as tensors. A symmetrical multiin­
dex notation is used to refer to elements of these tensors 
and they are implicitly stacked in lexicographical ord er: 
This is formalized in the foll owing sections. 

A.I Tensors and Multiindices 

Defin e the simplicial tenso r Sn ,k := {si.} such that h = 

{io, il , . .. ,id with ij EN and Ihl:= L~=oiJ = 11. 
Note that the multiindex h has k+ 1 elements , although 
it is redundant and should be considered as only having 
dimension k. . 

We will call k the order of the tensor Sn ,k , and 11 th e 
dimension. The short form Sk := Sl ,k may be used for 
one-dimensional vectors, hence i k = il ,k. When pos­
sible and unambiguo us, we will leave out comma') in 
su bscripts of the elements of tenso rs. 
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Examples: 

81 ,2 (SOOI,SOIO , SIOO) 

~ {soo~l,o~~,olO} 
82 ,2 ( S 002 , SOII,S020,SI01 , 8110,S200) 

~ { SIO~~O~;IO ' } 

S002, SIOI, S020 

For a one-dimensional tensor Xk , define exponentia­
tion by a multiindex of the same dimension as 

Define the multiindex combination , with lik I = n , as 

( 
n ) h 

n 

nk 'I 
j=O l). 

n 

A. 2 Stacking 

Tensors are somewhat awkward to work with, especially 
tensors of the form used here, where the entire multiin­
dex has to be considered to determine a valid (or equi v­
alently, non-zero) element of the tensor. While keeping 
the tensor structure in mind, we would like to map the 
variables into a familiar matrix-vector form. This we 
can accomplish with a stacking operator. The stacking 
operator simply arranges the elements of a tensor in a 
specific order wi thin a row vector. A matrix can then 
specify arbitrary linear combinations of tensor elements 
to create a new tensor. 

The stacking operator is defined by any bijective map­
ping On,k : N k + 1 -+ N of the multiindex onto a single 
index: i = On,k(h). This mapping is invertible by defi­
nition. 

There are many possible stacking maps, but to make 
the mathematics cleaner we can choose maps that sat­
isfy some simple conditions. The stacking map should 
map (0,0, .... , n) to 1, should not have any gaps, and 
should be lexicographically ordered. 

A mapping that satisfies these conditions in two di­
mensIOns IS 

An example for 11 = 5 is given in Table 1. 
The maximum value in this mapping, which is also 

the number of tensor elements, is given by 

. (n+l)(n+2) 
N n ,2 := On,2(12 = , nOO) = 2 . 

Note that we typically write multiindices in reverse 
order in subscripts , so that the most significant digit 
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5 16 Os ,2(i2, i l , io) 
4 11 17 
3 7 12 18 
2 4 8 13 19 

1 1 2 5 9 14 20 
II 0 1 3 6 10 15 21 

0 1 2 3 4 5 
l2 ---+ 

Table 1: Example mapping between tensor and linear 
indices for n=5,k=2 (three-variable multiindices). Note 
that io is redundant. 

comes first. In other words, the index 102 indicates 
io = 2, i l = 0, i2 = 1. 

In general, these mappings are generated by [4] (pp. 
297- 298,303): 

O (')'_2:k (k-.r-1+Lik=+lii) n k Ik ._ T. , k-r 
r=O 

For example, the mapping 1Il three dimensions would 
be 

On,3(h) = 

= 

( 2 + i3 i i2 + i 1 ) 

+ ( 1 + i~ + i2 ) + ( i; ) + 1 

(2 + i3 + i2 + iI)(l + i3 + i2 + iI)( i3 + i2 + i1) 
6 

(1 + i3 + i2)( i3 + i2) , 
+ 2 + '3 + 1. 

Inverses of these maps may be computed via a lookup 
table. 

B PROOF OF HOMO MO RPHISM 

If M is a (k+ 1) x (k+ 1) invertible matrix , let 4>n(M) be 
the column vector of multinomials obtained by applying 
</>n to every row of M . Let 4>n(M) = (pj(Xk))T = 
Pk(Xk)T, where pj(Xk) is a multinomial in Xk and j is 
the index of the corresponding row in M. 

Before continuing with the proof of homomorphism, 
we need the following: 

LEMMA: Given Vk E Rk +1 and M an invertible (k + 
1) x (k + 1) matrix, tlien </>n(vkM) = vk4>n(M). 

PROOF OF LEMMA: Let an,k = (xikf be an Nn,k el­
ement column vector containing the power basis 
of multinomials in Xk of total degree n. Then 
</>n(Vk) = Vkan,k, and 

(vkM)an,k = vk(Man ,k) 
vk4>n(M) . • 
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Now we can prove the following theorem, which shows 
that the reparameterization can be externalized , and 
also gi ves a more explici t form for eval uating the com­
bina torical matrix: 

THEOREM 1: If Dn ,k (M) is defin ed by 

Fn ,k(SkM) = Fn ,dSk)Dn ,d M ), 

th en 

Dn ,dM) = 
pg(Xk)p?(Xk) ... pL, (Xk)Pk(Xk) 
pg(Xk)P?(Xk) .. . pi-, (Xk)pZ-' (Xk) 
pg(Xk)P?(Xk) ... pi-, (Xk)pZ-2(Xk) 

l)g-' (x k)pl (Xk) . . . pL , (xkh)~(Xk) 
PO'(Xk)P?(Xk) .. ·pL, (Xk)p~(Xk) 

= ~~' ( (pik (Xk)) T) . 

PROOF OF THEOREM 1: Combine the Lemma and the 
multinomial theorem: 

,p;; ' (,p ,(skM),,) 

,p ;;' ({sk~,(M)}n) 

.~ ' ( {t. ,,p,(x,) n 
,p ;;' (.2: ( ;: ) S~kP~k(Xk)) 

Il k I=n 
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,p;; ' (( ( ;: ) S~k) (p~k (Xk) f) 

( ( ;: ) S~k ) ~;;' ( (p~k (Xk)f) 
Fn ,k(Sk)Dn ,k(M) . • 

THEOREM 2: The operator Dn ,k is a homomorphism of 
th e gmup of invertible (k + 1) x (k + 1) matricies. 

PROOF OF THEOREM 2: Let A , B be two invertible (k+ 
1) x (k + 1) matrici es. Note that 

Fn ,k(Sk(AB)) 

Fn ,k((SkA)B) 

Fn ,k(Sk )Dn,k(A B) , 

Fn ,k (Sk )Dn ,k(A )Dn ,k (B) . 

By the associativity of matrix multiplication, we 
must have D" ,k(AB) = Dn,k(A)Dn,d B) on th e linear 
span of Fn ,dsk). Since Fn,dsk) spans all of Rk+', 
D,. ,k is a homomorphism. • 

C COMBINATORIAL MATRICES 

Let 

M= ( ~ 
G 

b 
e 
H 

For n = 1 and k = 2, co rres ponding to linear triangles, 
the combinatorial matrix D, ,2 (M) is : 

D,,2(M) = M = ( ~ 
b { ). e 

G H 

For n = 2 and k = 2, co rresponding to quadra ti c tri an-
gles, the combinato ri al matrix D2,2(M) is: 

D2 ,2 (M) = 

( a' 
2ab 2ac b2 2bc c2 

) 
ad db+ ae af + dc be bf + ec cf 
aG aH + Gb Gc+a bH Hc +b c 
d2 2de 2df e2 2ef f 2 

dG Ge+dH Gf+d eH Hf+ e f 
(;2 2G H 2G H2 2H 
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