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Abstract 

Making graphical-object modeling - the task of creating 
graphical objects - easier is one of the most important chal­
lenges facing the CAD and computer graphics community. To 
make the modeling task easier, many researchers have focused 
on object-oriented techniques, and over the last decade or so, 
several object-oriented graphics paradigms have been exam­
ined, with the goal of bringing established benefits of object 
technology - reusability, extensibility and maintainability -
to graphical object modeling. 

However, while the term "object-oriented graphics" is widely 
used, the paradigms developed by researchers differ widely in 
terms of the domains to which they are applicable, the tasks 
that they are meant to simplify, the amount of extensibility they 
offer, and the relationships they have to other subsystems in a 
large graphics application. 

I provide a comparative description of the approaches used 
for object-oriented graphical modeling, especially in the context 
of CAD applications since these place the heaviest demands on 
graphical-object modeling capabilities. This work serves two 
purposes: 1.) to provide a conceptual framework for comparing 
existing paradigms, and 2.) provide an analysis of a few key 
systems, that can help the practitioner choose among the set of 
existing paradigms in specific application scenarios. 

eR categories and subject descriptors: 1.3.5 Computational 
Geometry and Object Modeling; 1.3.6 Methodology and Tech­
niques; l.3 .m Object-oriented Graphics ; D. I.5 Programming 
Techniques - Object-oriented Programming; 1.6 Computer­
Aided Design (CAD). 

Additional Keywords: object-oriented graphics, graphics soft­
ware architectures, graphical design and modeling, user inter­
action. 

1 Introduction 

The task of creating graphical depictions has traditionally 
been divided into two tasks : graphical-object modeling (cre­
ating graphical objects to describe the entity to be visualized) 
and rendering (creating an image from the model). Most of 
the research in computer graphics has focused on the rendering 
task, with the explicit goal of creating photo-realistic images. 
Recently, however, modeling has begun to receive more atten­
tion since most graphics applications do not provide powerful 
modeling paradigms, consequently placing severe demands on 
applications. 
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Modeling support in most traditional graphics systems (GS) 
is based on the conventional "structured display file (or list)" 
paradigm [I]: a basic structured display file (SDF) typically is a 
directed, acyclic graph, with the nodes representing geometric 
and attribute information and the edges representing model­
ing and camera transformations. Such systems include those 
based on the PHIGS [2] and GKS [3] ISO standards, and other 
widely-used systems such as Ithaca Software's HOOPS [4] and 
Pixar's RenderMan [5]. These systems are usually well-suited 
for general purpose graphics applications, especially those re­
quiring photo-realism (ray-tracing, radiosity, etc.). However, 
CAD/CAM applications typically place a much higher demand 
on modeling capabilities and require higher-level abstractions. 
In addition, the development of new CAD applications in com­
plex domains is often severely hampered by the the lack of 
common, reusable modeling components, which can result in 
several person-years of development being put into a new graph­
ical modeling component, or in adapting an existing graphical 
modeling component. 

To make the mode ling task easier, many researchers have 
turned to object-oriented (00) technology, with the goal of 
bring its proven benefits - reusability, extensibility and main­
tainability - to graphical-object modeling . Over the last 
decade or so, several object-oriented graphics systems (OOGS) 
and paradigms have been developed, and graphics class libraries 
or toolkits are now available, However, while the term "object­
oriented graphics" is widely used to describe all such paradigms, 
these paradigms often differ widely in terms of the domains to 
which they are applicable, the tasks that they are meant to 
simplify, the amount of extensibility they offer, and the re­
lationships they have to other subsystems in a large graphics 
application. 

CAD applications - with their heavy demands on modeling 
capabilities - seem well-suited to benefit from object tech­
nology. Unfortunately, the varying meanings and capabilities 
of OOGS and paradigms makes it very difficult to choose the 
paradigm that best matches a particular application. For exam­
ple, the requirements of a large mechanical CAD application 
are quite different from those of a CAD system for designing 
user-interfaces. 

Thus, while it seems natural for a research and development 
group designing a new graphical-object modeling system to 
adopt object-oriented technology and paradigms, it is usually 
not obvious - without significant research and analysis -
which aspects of the problem are amenable to (and likely to 
benefit from) such techniques . The goal of this paper is to survey 
several key systems from the recent literature and examine the 
approaches that they have used to apply object technology to 
their particular problem domain. 

I provide a comparative description and classification of sev­
eral approaches used for object-oriented graphical modeling, 
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with an emphasis on their suitability in the CAD application 
domain. The audience that I expect this paper to benefit con­
sists principally of two groups: for the practising engineer, this 
paper provides a basis for choosing the appropriate complement 
of the available OOG approaches when developing new CAD 
applications; for the researcher, this study provides a useful 
framework for understanding and comparing OOGS. 

Background and Relevant Work 

My organization produces a large number of CAD/CAM 
products, across a wide spectrum of domains, and differing 
widely in complexity. One of the goals of my group was to 
design the common graphics modeling subsystem for the next 
generation of our CAD/CAM products . We began by analyz­
ing the existing graphics capabilities and those needed in the 
future to formulate a comprehensive list of requirements for the 
graphics modeling subsystem (some of these will be discussed 
below). We then decided to use object-oriented technology 
for precisely the reasons listed earlier - to obtain the benefits 
of reusability, extensibility and maintainability. An analysis 
of our CAD/CAM requirements in comparison to the existing, 
published literature on OOGS led to the conceptual framework 
(described in this paper) for understanding OOGS. In addition, 
we formulated the concept of an object-oriented presentation 
system and developed a novel OOGS - the Unified Graphics 
Subsystem - that I describe later in this paper. 

I expect that this work will benefit both researchers and prac­
tising engineers as I mentioned above. Two important themes in 
current research on OOGS are the specification of standardized 
APls (application programming interfaces) for OOGS, and the 
specification of future graphics software architectures. For ex­
ample, the SIGGRAPH '91 panel on "Object-Oriented Graph­
ics" [6] focused on the need for standardization in the area of 
class libraries for graphics applications beyond user interface 
toolkits, while one of the major themes at the SIGGRAPH '92 
panel on "Graphics Software Architecture for the Future" [7] 
was the nature of objects in "future" graphics subsystems. Some 
of the issues discussed by the panelists in both panels are similar 
to ones I use as a basis of classifying OOGS, including the need 
for a separation between the application modeling, graphics 
modeling and rendering levels, and the need to support multi­
ple application paradigms. 

Brief Review of Object-Oriented Terminology 

While this paper assumes familiarity with object-oriented 
technology, I briefly review some basic terms here (details can 
be found in any text on object-oriented design, e.g. [8]). Objects 
are discrete, distinguishable entities that encapsulate data and 
behavior. A class is an abstraction that describes a collection 
of objects with the same data structure (attributes) and behavior 
(operations, also known as methods or messages). An object 
is said to be an instance of its class. Inheritance allows the 
sharing of attributes and operations amongs classes based on 
a hierarchical relationship: a subclass inherits attributes and 
behavior from a superclass and can selectively refine these, 
or add new ones. Polymorphism allows the same operation 
to behave differently on different classes, e.g. the triangle 
and circle classes in a drawing program may have different 
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behaviors for the drawSelf operation. (In C++, such operations 
are known as virtual methods.) 

One of the key issues in the design of an OOGS (or any 00 
system) is that of extensibility. Extensibility can refer to the ca­
pability to extend the object (class or instance) hierarchy, or to 
the capability to interface with new subsystems (e.g., new ren­
derers or geometric modelers). The ability to add new objects 
or classes depends heavily on the implementation language. 
Three common approaches to extending a class hierarchy are: 

• inheritance: an application can inherit (or, subclass) from 
the classes or objects in an OOGS and add application­
specific data and methods, as well as override existing 
methods (to support polymorphic behavior). Multiple 
inheritance - inheriting from two or more classes - is 
often required by application objects that perform multiple 
roles, as is common at the higher-level subsystems in a 
CAD system (explained below). 

• layering and delegation: an application can also define 
its own class hierarchy, in which a particular class might 
include a reference to an object from the OOGS. This is 
referred to as layering. In such cases, when an application 
object receives messages (method invocations) that are 
intended for the OOG subsystem, it simply forwards these 
messages to the OOGS object that it references. This is 
referred to as delegation. 

• callbacks: by allowing the application to specify callbacks 
that are invoked when an object is acted upon in a certain 
context (e.g. selected or traversed), the OOGS can let 
the application extend the functionality provided by the 
OOGS (since the application can, at least theoretically, do 
"whatever it wants" at that stage). 

As I discuss several OOGS in Section 3, I will also indicate 
which of the above approaches have been used by those OOGS. 

CAD System Architecture and Requirements 

Since one of the goals of this paper is to examine OOG 
paradigms in the context of CAD systems, I review briefly the 
structure of a typical CAD system and the requirements it im­
poses on any OOG subsystems. CAD systems vary widely 
in terms of application domains and complexity. At one end 
of the complexity scale, a simple drawing editor might only 
have a small number of internal modules: rendering, graphi­
cal modeling, and application-specific modeling. At the other 
end, a large mechanical CAD system will often have over a 
dozen fairly complex subsystems, Figure 1 shows a typical 
layered architecture supported by large CAD systems. The 
modules comprising the bottom layer in the architecture con­
sists of the core subsystems, such as Database, Geometry 
(modeling), User Interface, or Graphics (scene descrip­
tion and rendering). Upwards in the hierarchy are layers of 
applications built on top of the core subsystem and on other 
application modules. The lower levels of these - for exam­
ple, the Selection, Animation, and Constraint-management 
modules use the core subsystems to provide other services for 
the next level up. As we move upwards in the layered ar­
chitecture, the modules get more domain-specific: for exam­
ple, a Piping module would be used for AEC (Architectural 
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Figure 1: Architecture of a Large Mechanical CAD System 

Engineering and Construction) applications; a fairly complex 
mechanical CAD package that supported Parametric History 
Editing, Feature-Based Design and Variational Geometry 
might include Drafting and Solid Modeling applications, along 
with the Constraint-management module. 

One of the key concepts in CAD/CAM applications is that 
of a presentation. A CAD/CAM presentation is a graphical 
picture that is intended to convey information about a product 
or some part of a product. In the architecture shown in Fig­
ure I , an application typically interacts with the user interface 
and geometry subsystems to create a mathematical model of a 
product or some part of a product. At each step in this process 
the application requests that the graphics subsystem update its 
visualization of the product or part being created. Additionally 
the application may want to add extra information (annotations, 
dimensions, etc .) to the presentation of a model by directly in­
teracting with the graphics subsystem. The user can also select 
(or pick) various entities to perform operations on them as a set. 

Most CAD/CAM presentations involve a set of common con­
cepts, including: areas (e.g. views, drawings), groupings (e.g., 
layers), view-specific styles (e.g. , fill areas and line fonts that 
depend on the viewing context), scale-invariant graphics (e.g., 
surface normal depictions whose size remains constant even 
when zooming), picking, style inheritance, persistence, enti­
ties, modeling and camera transforms, highlighting, zooming, 
and editing. Supporting these concepts requires that several 
decisions be made by the OOGS developers. For example: 

• There is usually a mismatch between the capabilities listed 
above as requirements and those offered by the underlying 
rendering modules. A CAD/CAM graphics subsystem 
thus has to map the CAD/CAM-specific concepts onto the 
graphical primitives supported by the rendering modules. 
A OOGS designer needs to address the issue of how the 
application chooses the best mappings to optimize the 
display list structure and rendering. 

• Should the geometric (modeling) and graphics (scene de­
scription and rendering) subsystems be separate? Co m-

bining them makes it difficult to integrate a different ge­
ometric modeler into the system; separating them com­
pletely can require duplication of product data in both 
subsystems, since there is no way to share representa­
tions. For a small graphics application, the choice may 
be a matter of expedience; however, both of the above 
choices are impractical for large CAD/CAM applications, 
and the developers need to design ways of sharing data 
between subsystems. 

The answers to the above questions are difficult to formulate 
in the absence of a coherent framework for understanding the 
characteristics of the various 000 paradigms. One ofthe major 
goals of this paper is : to assist in this task by clearly delineating 
the important issues that make an 000 paradigm suitable or 
unsuitable for a variety of graphics applications - from small 
drawing editors to large CAD packages . 

2 Conceptual Framework 

In order to present the conceptual framework for organizing 
the 000 paradigms, I first consider the lower levels of Figure 1. 
Applications based on an OOOS range from simple systems that 
include only the Graphics Modeler and Renderer to complex 
applications that include not only the core subsystems from the 
figure, but also the Selection, Animation, and Constraint­
management modules. The key difference between the 000 
paradigms is based on the organization of the objects in the 
OOOS : how much behavior from each of subsystems from 
Figure 1 is incorporated into the objects in the OOOS? The two 
extreme cases are: 

• to have completely stand alone modules (the objects in the 
OOOS do not have any behavior or attributes related to 
the other modules), and, 

• to have completely integrated modules (the objects in the 
system include not only graphical capabilities, but also the 
capability to interact with the database, respond to selec­
tion queries , satisfy constraints, and change their behavior 
over time in order to produce animations). 

In Section 3, the 000 paradigms that I discuss fall at various 
points between these extremes. 

For the purposes of comparing 000 paradigms within the 
above conceptual framework, I consider the following issues as 
important "dimensions" along which the paradigms differ: 

• mode ling level 
• selection handling 
• temporal (time-dependent) behavior 
• event handling and display model 
• relationship to geometric modeler 
• relationship to rendering subsystem 
• relationship to database subsystem 
• constraint handling 
• extensibility 

These dimensions can be viewed as providing a recipe for 
choosing the appropriate complement of characteristics when 
designing an new OOOS. Let us explain each of them is some 
detail. 

Graphics Interface '94 



Modeling Level 

One of the distinguishing factors between OOG paradigms is 
the level at which the paradigm operates: graphical rendering, 
graphical modeling, or application modeling: 

• By application modeling , I refer to the process of describ­
ing the object model in terms of concepts appropriate 
for the application; for example, a mechanical CAD user 
would describe a part in terms of assemblies, features, etc . 

• By graphical mode ling , I referto the process of describing 
the visualization of the object model in terms of traditional 
graphical concepts, such as structures (segments), lighting 
and appearance attributes, and transformations . J 

• By graphical rendering , I refer to the process of convert­
ing the graphical model into a picture (image) suitable for 
display on some output medium (CRT, printer, etc.). 

OOG paradigms have been developed to address each of the 
tasks of rendering, graphical modeling, and application mod­
eling. While the emphasis of this paper is on modeling, for 
completeness I include a discussion of OOG paradigms for ren­
dering in Section 3. 

Selection Handling 

The selection (or picking) operation allows a user to specify a 
criteria (for example, enclosure within a 2D region) for creating 
a set of subobjects that can then be subject to some common 
operation, such as scaling. Internally an OOGS can employ two 
distinct strategies to support selections: 

• each object in the OOGS can have the capability to re­
spond to selection queries, or, 

• a separate selection subsystem can interface between the 
user-interface and graphics subsystems to support selec­
tion operations. 

I consider the former an input/output OOGS, since it is capa­
ble of handling user-input (in addition to the output of graphical 
depictions); I consider the latter an output-only (display-only) 
OOGS. 

In large CAD/CAM applications, a single graphics subsys­
tem has to be useable by a variety of user-interface subsystems, 
each supporting its own user-interaction paradigm. In such 
scenarios, the graphics subsystem is used only to display vi­
sualizations of the mechanical parts, and thus is output-only. 
In other applications, for example drawing editors and user­
interface builders, it is more natural for the objects (which often 
are user-interface entities anyway) to respond to user events, a 
task to which an input/output OOGS is better suited. 

1 In [9], Kochhar, Marks and Friedell view the graphical-modeling process it­
self as a combination of two different activities: design and anicu/alion . Design 
is the more creative aspect of modeling . Articulation is the activity of providing 
a precise graphical description of an object conceptualization. However, in this 
paper, I treat graphical-object mode ling as a whole when analyzing the OOG 
paradigms, si nce currently the design/articulation distinction has not sufficientl y 
pervaded object-oriented graphics paradigms to be useful as an important com­
parative factor. I would like to investigate this issue in my future work. 
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Temporal (Time-Dependent) Behavior 

Another issue that differentiates among OOG paradigms is 
whether the paradigm supports the notion of temporal or time­
dependent behavior in objects: 

• Some OOGS allow an application to specify time­
dependent behavior in objects; these objects can render 
themselves automatically as the time changes, thereby 
producing animations . 

• In other OOGS, where objects do not include time­
dependent behavior, animations are produced by allow­
ing the application to vary the structure of the object 
instance-hierarchy or vary attributes of objects, and then 
re-rendering the scene. 

Event Handling and Display Model 

Another important issue in the OOG paradigms is 

• whether objects in the OOGS should include user­
interaction event handling, or, 

• whether events should be handled by an external subsys­
tem (such as the user-interface subsystem), which relies 
on the application to manipulate the graphics objects ap­
propriately in response to user actions . 

Important user-interaction events are those that relate to di­
rect responses to graphical gestures performed by users (for 
example, mouse clicking, dragging, and resizing) - some of 
these might imply only a redisplay of portions of the object's 
image; others imply that an object change its appearance sig­
nificantly (for example, highlighting itself when the mouse is 
clicked within its bounding box). 

OOG paradigms that include event handling as part of the ob­
jects facilitate the creation of systems for drawing editors, user­
interface builders, etc.; however, one limitation of this approach 
is that the "look and feel" of the user-interaction is controlled 
by the objects, and is not easily adapted to the look-and-feel 
supported by the overall application or windowing system. In 
a large suite of CAD packages that often have to support dif­
fering look-and-feel , this approach is not feasible if the OOGS 
is to be reusable by many applications. In this scenario, the 
preferable approach is to delegate the user-interaction handling 
and customization to the user-interface subsystem. 

Relationship to Geometric Modeler 

Consider a mechanical part being designed using a CAD 
system. The user needs to specify both the geometric represen­
tation and graphical visualization of this part: 

• The geometric representation of a part refers to the 
application-specific geometric and product data needed 
for purposes of analysis and manufacturing. 

• The graphical visualization refers to a description of the 
graphical structures needed to display the part (or to pro­
duce manufacturing drawings). 
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As an example, the product data might include: geomet­
ric descriptions of the sub objects and assemblies; topological 
relationships between faces, edges and vertices of subparts; 
materials-related information; and, manufacturing tolerances. 
The visualization of the same part, on the other hand, might 
require a hierarchy of graphical primitives, along with styling, 
modeling and viewing information. A key issue that an OOG 
paradigm needs to address is whether the objects in the OOGS 
incorporate both types of information or only the data needed 
for visualizing the product. 

Large CAD/CAM applications normally have separate ge­
ometric (modeling) and graphics (scene description and ren­
dering) subsystems. An OOGS that combines geometric and 
graphical modeling would usually be impractical for these ap­
plications, since such an OOGS often requires duplication of 
product data in the geometry and graphics subsystems, which 
results in severe performance overheads (in terms of time, mem­
ory and disk usage). 

On the other hand, OOGS that allow the creation of objects 
containing both product (geometric) data and visualization data 
are useful for small applications, especially when a separate 
geometric-modeling subsystem is not easily available or imple­
mentable for pragmatic reasons. This is the case, for example, 
in drawing editors and simple drafting packages. 

Relationship to Rendering Subsystem 

OOG paradigms also need to be concerned with the issue of 
separation between the graphical modeling subsystem and the 
rendering system: 

• Some OOG paradigms rely on a clear separation between 
the two subsystems. In this scenario, the rendering subsys­
tem has a well-defined set of primitives that it is capable 
of displaying and the OOGS is responsible for convert­
ing objects to be displayed into those primitives . The 
main advantages of this approach are that new rendering 
techniques can be added without modifying the OOGS, 
and that the rendering system can make decisions about 
displaying the primitives in the most efficient manner. 
A disadvantage of this approach is that the OOGS can 
not easily take advantage of newly added rendering prim­
itives, nor of context-specific knowledge about the ef­
ficiency of rendering primitives (for example, a certain 
primitive might be slow when rendered on one device and 
much faster on another). Some OOGS have addressed 
this issue by allowing closer communication between the 
two subsystems: the modeling system can query the ren­
dering system for available drawing primitives and the 
efficiency of rendering them, and then decide on the best 
collection of primitives into which to transform the object 
to be visualized. 

• Other OOG paradigms incorporate rendering methods into 
the objects themselves : thus, each object is capable of 
displaying itself in a given graphical context, without re­
quiring the use of a separate rendering subsystem. One 
advantage of this approach is that objects can be copied 
(or sent via messages) from one application to another, 
without the latter knowing how to display the objects 
it receives (since these objects are capable of rendering 
themselves) - this allows complex objects to be "cut and 

pasted" just as easily as is possible with simple objects 
like Ascii text. The main disadvantage of this approach is 
that when different rendering techniques or primitives be­
come available (for example, on a different display device 
or graphical accelerator), every object's implementation 
has to be modified. 

Relationship to Database Subsystem 

This issue is very similar to the previous one. An OOG 
paradigm can directly support persistent objects (using an 00 
database), can support objects that include archival methods, 
or can use the services of a database subsystem (with a well­
defined interface) by converting the objects' attributes and re­
lationships into a form suitable for archival. The retrieval of an 
object hierarchy follows the same principles: persistent objects 
may be retrieved automatically (by the 00 database manager), 
objects may have methods for retrieving their attributes and 
relationships, or the OOGS may convert data retrieved by the 
database subsystem to recreate the object hierarchy. 

Constraint Handling 

An object model typically needs to satisfy a variety of con­
straints: graphical (for example, limits on available colors), ge­
ometrical (for example, minimum sizes of faces in a boundary 
representation), topological (for example, consistency between 
the numbers of faces , edges and vertices in an object), and 
product- or domain-specific (for example, minimum and max­
imum stress loads, tolerancing limits). Systems that simulate 
physical models also need to take into account constraints that 
describe the relationships between interactions of physical ob­
jects in the "real world." The manner in which constraints are 
described and satisfied is another distinguishing factor between 
the OOG paradigms. Some OOGS directly support "constraint 
objects" that incorporate methods to satisfy their conditions, an 
approach widely used in constraint-based drawing editors. A 
limitation of this approach is that incorporating all the types of 
constraints that an object might need to satisfy (as listed above) 
can be a difficult task. Moreover, adding new constraint types 
can result in significant modifications to the OOGS. 

The alternative approach - suitable for large OOGS (e.g., 
a large mechanical CAD package that supported Parametric 
History Editing and Variational Geometry) - is to have sep­
arate constraint solvers (for the variety of types of constraints), 
which the application can invoke in response to user actions; 
these solvers obtain attribute-values for and manipulate the ob­
jects in the OOGS through the defined interfaces. Thus, new 
constraint solvers can be added without modification to the 
OOGS. 

Extensibility 

As I mentioned in Section I , extensibility in an OOGS can 
refer to the capability to extend the object (class or instance) 
hierarchy, or to the capability to interface with new subsystems 
(e.g., new renderers or geometric modelers). While the mech­
anisms of inheritance, layering, and callbacks allow an OOGS 
to be extensible, several pragmatic issues must be addressed 
during the design of a large, extensible OOGS : 
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• One issue is that of knowing in advance which internal 
parts of the OOGS will need to be exposed in order for 
the extensions to be useful. For example, an 00 renderer 
(from the next section) might have several useful objects 
and mechanisms to compute the intersections of a variety 
of objects; if these are not exposed, then extensions to the 
ray-tracing related objects might not be possible. 

• If an OOGS itself relies on the support of an underlying 
subsystem, then capabilities of that subsystem might need 
to be exposed in order for the application to benefit from 
extensibility. For example, an 00 presentation system 
(from the next section) typically uses the services of a 
low-level rendering system. Suppose that this low-level 
rendering system supports a "triangle mesh" primitive, 
but the 00 presentation system does not initially include 
a class that directly corresponds to a triangle mesh. If, 
however, an application is expected to extend this OOGS 
by adding NURBS and complex mesh-based surfaces, 
then the OOGS needs to allow the application to use the 
services of the underlying rendering subsystem, which 
might require exposing the "triangle mesh" primitive. 

• In a callback that an application provides, it is often dif­
ficult to know in advance what context (current state) 
information to provide to the application callback routine 
so that it can perform meaningful operations. As an exam­
ple, if a callback is invoked during display-list traversal , 
the call back would need to be handed the current graphics 
context (and possibly methods for modifying it), output 
device, etc. 

3 Object-Oriented Graphics Paradigms 

I now present several OOG paradigms in the context of the 
conceptual framework described in Section 2: 

• Object-Oriented Rendering 
• Object-Oriented Structed Display File (SDF) 
• Object-Oriented Animation 
• Object-Oriented User-Interface Builder (UIB) 
• Object-Oriented Drawing and Document Editing (DDE) 
• Object-Oriented CAD/CAM Presentation 

The issues from Section 2 will be examined with respect to 
the paradigms. Figure 2 shows the issues that I believe play an 
important role when a developer has to decide on the appropri­
ateness of a particular paradigm for some application system. 
Thus, for example, the interaction between the Selection sub­
system and the OOGS is an important factor in the cases of the 
00 Animation, UIB and Presentation paradigms. 

I also describe some recent OOGS that illustrate the princi­
ples of each paradigm.2 Note that any particular system that 
one might examine is certain to be based on more than one of 

2In each section, besides examining some OOOS, I also li st other references 
that readers interested in those paradigms might wish to pursue. Even though work 
in object-oriented graphical modeling has been going on since the beginning of 
computer graphics (e .g, in Ivan Sutherland 's Sketchpad system [10]), I focus 
on recent systems and references since these often illustrate the most mature 
ideas and research in the field , and form a good starting point for obtaining other 
references. 

125 

the paradigms listed above. For example, an object-oriented 
rendering system is likely to have at least an object-oriented 
structured display list as well. However, I discuss the paradigms 
separately in order to explain the salient issues . 

Object-Oriented Rendering 

At one end of the graphical image-generation process is ren­
dering. I refer to a GS as based on the object-oriented rendering 
paradigm if the main goal of that system is to attempt to im­
prove the quality of rendering software - in terms of better 
maintenance, extensibility, and reuse - by applying object­
oriented techniques . Such systems typically use objects and 
relationships to represent the entities and stages involved in 
the rendering process, for example transformations, clippers, 
colors, lights , scan lines , and ray intersectors. These systems 
also support extensibility via subclassing and polymorphism; 
for example, in a ray tracing system that relies on intersections 
of a ray object with an abstract shape, a new graphical primi­
tive, say tetrahedron might be added as long as it incorporates 
methods to respond to compute-intersection messages. Thus, 
object-oriented rendering is characterized by the following mo­
tivations : 

• to use object-oriented technology to improve the rendering 
software 

• to allow extensibility via subclassing and polymorphism 

An example of an object-oriented rendering system is 
Melcher and Owen 's RTCPP system for ray tracing [11). 
RTCPP contains geometric objects that derive from an abstract 
base object geo_object that contains virtual methods for cal­
culating intersections with rays, performing euclidean transfor­
mations, and computing shading properties. The core of the 
ray tracing process consists of computing intersections of rays 
and geo_objects. As mentioned above, a new primitive can 
be added as long as it defines the appropriate virtual methods; 
polymorphism allows the rest of the ray tracing code to remain 
unchanged. As another example of object-oriented rendering, 
the GOII system [12] incorporates several object-based render­
ing algorithms - ray tracing, Z-buffer, and painter's algorithm 
- as well as a completely object-based rendering pipeline. 
(This system will be further discussed below.) Other examples 
of object-oriented rendering are presented in [13] and [14). 

Object-Oriented Structed Display File 

An object-oriented structured display file (OOSOF) provides 
modeling support at a higher level than the object-oriented ren­
dering paradigm. This paradigm is based on mapping the tradi­
tional structured display file (that formed the basis of early com­
puter graphics modelers) into a class hierarchy, where classes 
represent both: nodes that contain geometric information, and 
edges that contain modeling and viewing transformations . The 
OOSOF paradigm is characterized by the following properties: 

• the entities that comprise the traditional computer graph­
ics SOF are mapped (almost directly) into classes in the 
OOSOF 

• the major motivation is to bring benefits of 00 technology 
to to graphical modeling software 
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Issue 
Modeling Selection Temporal Event Geometric Database Constraint Extensibility 

Level Handling Behavior Model Modeler Subsystem Handling 
Paradigm Relationship Relationship 
00 Rendering .; ...J 
OOSDF .; .; 
00 Animation .; .; .; .; .; 
00 urn .; .; .; .; .; 
OODDE ...J ...J ...J .; .; 
00 Presentation v' .; .; .; .; .; 7 

Figure 2: Salient Issues for the OOG Paradigms 

Early examples of OOSDFs can be found in systems based 
closely on the GKS and PHIGS standards [IS, 16]. Other ex­
amples ofOOSDFs include Egbert and Kubitz's Grams system 
[17], and Bahrs et. al.'s 0011 system [12]. The Grams system 
attempts to raise the level at which an application performs mod­
eling by separating application modeling, graphical modeling, 
and rendering into subsystems with formally-defined interfaces. 
While these goals are similar to those of the Unified Graphics 
Subsystem described below (under Object-Oriented Presenta­
tion), Grams does not explicitly contain any CAD-specific ap­
plication modeling. 

In the GOIl system, a 3D graphical scene can be repre­
sented by a Scene object that provides the capability to com­
pose graphical objects (3D shapes), lights, and transformations. 
Views of the scene are obtained by specifying appropriate Cam­
era objects. GOIl supports a variety of object-based rendering 
algorithms, as was discussed earlier. Figure 3 shows the class 
hierarchy and rendering pipeline (Boxes I to 6) of GOII. Objects 
are employed throughout the rendering and graphical modeling 
pipeline (annotations below the boxes in the figure list the ob­
jects involved at each stage). The process begins (in Box I) 
with the creation of SDF objects that are then are composed into 
hierarchical scenes (Box 2) and rendering begins once viewing 
information is chosen (Box 3). The specified rendering algo­
rithm is initiated (Box 4), resulting in a 2D hierarchical picture 
(Box 5) consisting of objects that can "draw themselves" in 
response to user interactions (Box 6). 

The OOSDF paradigm is suitable for applications that are 
used to create graphics "scenes" without the need for interaction 
with external geometric modeling systems. The disadvantage 
of this paradigm is that the modeling constructs supported are 
too low-level for complex CAD applications. 

Object-Oriented Animation 

The object-oriented animation paradigm moves beyond 3D 
graphical modeling and adds a fourth dimension - time -
by allowing the specification of temporal behavior in graphi­
cal objects . Animations are produced by sending the objects 
messages to render themselves ; the objects modify their appear­
ance (thereby changing the graphical image) as a function of 
time. Important concerns in any 00 animation system (espe­
cially those for simulating physical systems) are constraint­
satisfaction (since without constraints subparts of the scene 
can not be modified in a coherent manner) and constraint-

representation (since a constraint typically involves more than 
one graphical object and cannot be part of a single object). Usu­
ally constraints are specified as classes that form relationships 
between graphical objects, along with methods to satisfy the 
constraint relationship. Thus, the following properties charac­
terize the object-oriented animation paradigm: 

• objects incorporate temporal behavior 

• constraints are represented as relationships between ob­
jects 

• efficient constraint-satisfaction has to be incorporated 

Any of the other OOG paradigms discussed in this section 
is amenable to object-oriented animation. For example, an 00 
rendering system might support simple animations based on 
color- and light-manipulation, while an 00 CAD/CAM pre­
sentation system (discussed below) might support sophisticated 
animations based on the satisfaction of kinematic constraints, or 
on the evolution of a design created using variational-geometry 
techniques (Section I). 

Several object-oriented animation systems have been devel­
oped by researchers [18 , 19,20, 21 , 22,23,24,25]. One recent 
example is an animation system presented by Zeleznik et. al. 
[26. 27]. This system provides objects that encapsulate behav­
ioral properties - such as gestural controls and spring constants 
- as well as a variety of constraint solvers (based on inverse 
kinematics. dynamics and finite-element techniques). The ani­
mation is described through message passing between objects. 
The messages that an object receives describe how the object 
should change over time; these messages can cause objects to 
be transformed. deformed. colored. shaded and dynamically 
moved. As an example. a message might specify the location 
in 3D of an object as a function of time; as the time changes. 
rerendering the scene creates a new depiction. 

The strength of an 00 animation systems lies in the fact 
that animations can be produced more simply and elegantly 
than with conventional animation systems. since the temporal 
behavior is encapsulated in objects. (thereby simplifying the 
structure of the animation controller). The main disadvantages 
of this approach are that fairly sophisticated controllers and 
constraint solvers need to be tightly integrated with the objects 
in the system, and that predicting the effect of a user action 
can be difficult since since the temporal behavior is spread over 
each object. 
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Figure 3: GOII Class Hierarchy and Rendering Pipeline (reproduced with permission from [12]) 

Object-Oriented User-Interface Builder 

An object-oriented user-interface builder (OOUIB) allows a 
designer to construct a user-interface, which can then be linked 
into an application. In an OOUIB, the graphical objects are 
the user-interaction components, for example buttons, sliders 
and dialog boxes . The process of constructing a user-interface 
typically involves choosing components from a palette, placing 
them on application windows, establishing constraints between 
the layouts (for example, alignments and spacing between com­
ponents), establishing communication paths between them (for 
example, passing the result computed by one object to another), 
and establishing connections ("hooks") between the objects and 
the application modules (for example, setting callbacks). More­
over, all OOUIBs allow the designer to switch between "design" 
and "test" modes; in the latter, the objects become "live" and re­
spond to user-interaction events as they would in the completed 
application. As the above description shows, the graphical 
objects in an OOUIB need to be fairly autonomous in their be­
havior and interaction with other objects and the application. In 
addition, the objects need to be selectable and displayable in a 
variety of contexts. Thus, the following properties characterize 
the OOUIB paradigm: 

• objects incorporate event-handling, rendering and selec­
tion handling 

• geometric (layout) constraint handling is an important re-

. , . 

quirement 

Examples of OOUIBs include the NeXTSTEP Interface­
Builder [28], the Interviews ibuild application [29], and the 
Andrews toolkit [30] . 

InterfaceBuilder is a tightly-integrated OOUIB that forms 
part of the NeXTSTEP development environment (on NeXT 
workstations and IBM-PC compatibles). InterfaceBuilder re­
lies heavily on layering and delegation to support extensibil­
ity. Figure 4 shows an example of using InterfaceBuilder 
to build the user-interface for a simple temperature converter 
and square root calculator. The window on the top left (titled 
"Palettes") displays the available user-interface components ; 
these can be selected and dragged onto the application win­
dow (titled "Universal CalCulator") and menu (top right, titled 
"Calculator/Calculations"). As menu items are added to the 
application menu, they can be bound to methods on specified 
objects. The bottom left window allows the user to graphi­
cally browse through the available objects (which can include 
Sound and Image objects) and instance them in the application, 
as well as create new object types (for example, Calculatorln­
stance). The bottom right window allows object attributes and 
methods to be modified. Currently, the user has just added the 
"Calculate" button on the application window, added sound 
and an image to it, and has just bound it to the calculate 
method on the Calculatorlnstance object (as shown by the 
dimple next to the calculate method on the bottom right win-
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Figure 4: Example of Using the NeXTSTEP InterfaceBuilder 

dow). Once the interface is completed, the InterfaceBuilder 
will save the source files on disk, to which one can add the 
actual temperature/square-root conversion code. 

The ibuild OOUIB is part of the Interviews toolkit. One 
interesting aspect of ibuild is the support for layout constraints 
in the style of the Knuth's text formatter 1FX[31]. Andrew - a 
toolkit written in the Class language - provides a set of basic 
components that can be combined easily to build user interfaces 
for multi-media applications. Other examples of the OOUIB 
paradigm can be found in [32, 33, 34, 35]. 

An OOUIB has the advantages that adding a new object (e.g., 
a new type of slider) is simplified since most of the behavior 
of the new object is specified within the object's methods and 
does not affect other objects. The major disadvantage is that the 
objects often need to incorporate a large amount of platform­
specific and window-system-specific information, since they 
need to "understand" how to handle user interactions and how 
to communicate with the windowing system and other objects. 

Object-Oriented Drawing and Document Editing 

Similar to an OOUIB, object-oriented drawing and document 
editing (OODDE) systems employ autonomous objects that are 
capable of displaying themselves in different contexts and of 
interacting with other objects . However, there is one important 
difference between the two: while objects in an OOUIB need to 
include methods to respond to user-interaction events, objects 
in an OODDE do not have this requirement. In an OODDE 
system, usually the application is responsible for handling user­
interface events and manipulating the graphical objects appro­
priately. For example, the application might intercept a mouse 
click, make selection queries to find out which object were se­
lected, and then highlight these objects by changing their color. 
Thus, the OODDE paradigm is characterized by these proper­
ties : 

• objects include rendering methods 
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Figure 5: Text Object in Unidraw (reproduced with permission 
from [38]) 

• objects need methods to handle select queries 

Examples of the OODDE paradigm include Unidraw [36] 
and IRIS Inventor [37]. Unidraw is a framework for creat­
ing 2D graphical, object-oriented editors that can be tailored 
to specific application domains . An example of an OODDE 
systems constructed using the Unidraw distribution is the doe 
document editor [38,39] . Doe uses objects ("glyphs") to repre­
sent individual characters in a document; thus, every character 
in a document is capable of responding to select queries and 
display requests. Figure 5 shows a simple text string contain­
ing glyphs. The text object contains a TB Box; which tiles its 
subcomponents top-to-bottom. The TBBox contains LRBoxes, 
which tile their components left-ro-right. Each LRBox contains 
a Character glyph object. Once the text object is created, it 
is rendered by invoking the draw method on the top TBBox, 
which recursively invokes the draw method on its subcompo­
nents. Both LRBox and TBBox respectively insert horizontal 
and vertical "glue" (stretchable space) between their subcom­
ponents and use algorithms similar to Tpc to arrange and align 
components (e.g., text justification). 

IRIS Inventor is an object-oriented, 3D toolkit that is useful 
for describing 3D scenes and interactive applications. Inven­
tor 's objects include an event model and selection handling, 
which allows them to be used to build 3D drawing editors. Other 
examples of the OODDE paradigm can be found in [40,41). 
The advantages and disadvantages of the OODDE paradigm are 
similar to those shared by the OOUIB paradigm. 

Object-Oriented CAD/CAM Presentation 

In Section I, I discussed the requirements for an OOGS 
suitable for large CAD/CADM applications, and used the term 
presentation to refer to a graphical picture that is intended to 
convey information about a product or some part of a product. 
The object-oriented presentation (OOPR) paradigm is intended 
to support exactly those requirements. The OOPR paradigm 
moves beyond general graphical modeling to CAD-specific ap­
plication modeling. Moreover, it avoids duplication of product 
data between the graphics and geometry subsystems by defin­
ing a clear separation and communication protocol between 
them. The OOPR paradigm is characterized by the following 
properties: 

• there is a clear separation between the OOGS and the 
geometric modeling systems 

- .... 

--
LN ---. r.d 

HURlle-, 
c .... 
." .... -.... , _ . 

... -HUAII.utt.c. 

129 

le) Q,."/c. E"tm. 

Figure 6: Subset of UGS Schemas (portions reproduced with 
permission from [42]) 

• the classes in an OOPR system are tuned to CAD-specific 
requirements 

• display list management and optimization is performed 
separately from the task of describing a presentation 

An example of an OOPR system is the Unified Graphics 
System (UGS) [42], which is intended to be the next generation 
graphics system for all CAD/CAM applications developed at 
my organization. An application describes the picture to be 
presented to the user in terms of a presentation hierarchy - a 
collection of instances of UGS objects (such as views, draw­
ings, layers, and styles) and relationships (such as modeling 
transformations and viewing projections) between them. The 
application manipulates the presentation hierarchy in response 
to user actions, such as requests for selection, geometric ma­
nipulation, or animation. UGS performs several display list 
and rendering optimizations (transparently to the application), 
for example spatially organizing entities in an octree for fast 
rejection during clipping and selection. 

The more than 200 classes available in UGS can be organized 
into five sections or schemas:3 

I. The presentation organization schema (Figure 6(a» de­
fines the classes required to describe the basic structure of 
a CAD presentation - in terms of presentation units and 
their relationships. Presentation units can be graphical 

3 Some of these schemas were originally derived from similar schemas in the 
PDES/STEP [43J presentation model. 
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Figure 7: Example of Using UGS 

primitives, display regions, or groups of other units. Rela­
tionships between units can specify modeling transforma­
tions, projections (viewing operations), occlusions (e.g., 
"in-front-of '), and inclusions (used in assembly model­
ing). Portions of a presentation hierarchy can be output 
to various 2D and 3D graphics devices. An example of 
CAD-specific support in UGS is the Drawing Manager, 
shown in Figure 6(b). Thus, application developers can 
think in terms most natural to many CAD/CAM systems, 
for example, drawings, views and layers. 

2. The presentation entity schema contains classes used in 
the visual depiction of geometric entities or annotations . 
Figure 6(c) lists some of the presentation entities avail­
able in UGS. An application constructs a model of a part 
(entity) using a geometric modeler. The UGS entity-level 
interface [44] extracts the relevant information from the 
part database to create a visualization of the part using 
presentation entities . This mechanism allows UGS to be 
used with a wide variety of geometry subsystems, with­
out having to "know" their specific representation formats 

and without having to duplicate the data representing the 
entities . In addition, applications may add annotations 
(for example, title boxes and labels) to the presentation of 
a model by directly using UGS presentation entities. 

3. The presentation appearance schema contains classes re­
quired to control entity appearance - for example, line 
weights and dash patterns, hatch patterns, surface re­
flectance parameters , text font , etc. UGS objects to control 
appearance can be associated to any presentation unit in a 
hierarchy; appearance attributes inherit down the presen­
tation hierarchy. In addition, the application of appearance 
objects may be restricted to particular contexts - for ex­
ample, a line may be dashed only in a particular view or 
layer, or a coordinate triad might be shown in different 
colors depending on whether the axes are going into the 
screen or out towards the viewer, or text labels on di­
mensions may only be shown within a particular range of 
view angles. I am aware of no other OOGS that provides 
such extensive context-sensitive styling capabilities that 
are required for any large CAD/CAM application. 
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Figure 8: UGS Instance Hierarchy Corresponding to Example 
in Figure 7 

4. The presentation resource schema contains general utility 
classes, including color definitions , light source tables, 
character and symbol font libraries and the camera model 
definitions . 

5. Finally, the selection schema (Figure 6(d» defines an in­
terface to support three types of user interaction: I) Screen 
selection (selecting entities based on user-specified 2D lo­
cations on a window), 2) Model selection (selecting en­
tities based on 3D locations), and, 3) Location selection 
(projecting a user-specified 2D location on a window onto 
a construction plane). To unambiguously specify the set 
of selected entities, complete paths are made available 
to the application (e.g., a line may have been selected in 
a particular layer or view). The selection mechanism 
also supports a variety of operations - including filter­
ing, boo lean operations and application callbacks - to 
limit and combine select queries in ways that are needed 
in most large CAD/CAM applications. 

Figure 7 shows an example of a presentation created using 
UGS; Figure 8 shows the UGS instance hierarchy that was used 
to describe the presentation. The presentation consists of a 
drawing that contains four views and some annotation text (the 
label "Drawing: UGS Demo"). The drawing is associated to 
(and hence displayed on) a UGS X-window object. (Note that 
by associating the drawing to a UGS Clipboard object, one 
could also "paste" its image directly into a document process­
ing application). Each view contains annotation text (the view 
labels) and some part geometry. View] and view2 depict the 
model of a racing car model (which contains over 550 NURB 
curves and 3300 NURB surfaces), while view3 and view4 de­
pict the model of a valve (which also contains several hundred 
NURB curves and surfaces). Each view has associated cam­
eras that allow the application to adjust the view of the part 
geometry and annotations based on user actions; for example, 
the user is being shown a zoomed-in view of the car in view2. 
By setting surface shading style attributes on view] and view3, 
shaded images of the car and valve, respectively, are obtained 
in those views; by setting hidden line removal style attributes 
on view2 and view4, hidden-line-removed images of the car and 
valve, respectively, are obtained in those views. 

4 Summary and Concluding Remarks 

This survey of object-oriented paradigms for modeling 
graphical objects shows that each has its own very different 
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characteristics, strengths and weaknesses. As we have seen, an 
OOG paradigm can exist between the two extremes: 

• objects (in the OOGS) include only the graphical attributes 
necessary to render them, or, 

• objects (in the OOGS) include not only the graphical 
attributes necessary to render them, but also the com­
plete geometric modeling information, user-interaction 
handling, display methods, constraint satisfaction and an­
imation methods . 

Both of the above are, in general , too extreme to be useful 
in CAD applications. A realistic OOGS has to be designed by 
choosing the appropriate combination of properties to incorpo­
rate into objects, the best combination being dependent on the 
specific domain and application. In this paper, I have attempted 
to examine the issues that need to be understood in order to 
make such decisions, as well as give examples of the particular 
choices made by some recent OOGS. 

As examples, consider two scenarios: 

• suppose one is designing a MacDraw-like drawing (or 
text) editor, and would like to employ object technology. 
From the discussion of Section 3, one would conclude 
that the separation of object behavior across several sub­
systems might not be worth the extra development and 
code maintenance; rather, it would be expedient to incor­
porate graphical, database, and geometric behavior within 
objects. 

• suppose one is designing a large mechanical CAD/CAM 
system, and would like to employ object technology. 
From the discussion of Section 3, one would conclude that 
the geometric, graphical, database, and other behavior of 
objects in the system need to be split across appropriate 
subsystems, both to ease the development of these subsys­
tems and to allow these subsystems to be used in a variety 
of application settings. 

In addition, this paper would also provide pointers to the 
appropriate systems that one might examine for comparison in 
each case. 

In this paper, I have analyzed and compared what I consider 
to be mature object-oriented graphics paradigms. Researchers 
are pursuing several other directions in object-oriented graph­
ics : time-critical computing, distributed objects, "live links" 
between objects, and multi-media. Currently, many of these 
are the subject of debate in the graphics research community, 
while others are being standardized through consortiums (e.g. 
the Object-Management group's CORBA standard, or ISO's 
PREMO standard for multi-media). I expect that in a few years, 
these techniques will become mature enough to be subject to an 
analysis similar to the one presented in this paper. 
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