
120

Object-Oriented Paradigms for Graphical-Object Modeling in
Computer-Aided Design: A Survey and Analysis

Sandeep Kochhar
Computervision

Abstract

Making graphical-object modeling - the task of creating
graphical objects - easier is one of the most important chal­
lenges facing the CAD and computer graphics community. To
make the modeling task easier, many researchers have focused
on object-oriented techniques, and over the last decade or so,
several object-oriented graphics paradigms have been exam­
ined, with the goal of bringing established benefits of object
technology - reusability, extensibility and maintainability -
to graphical object modeling.

However, while the term "object-oriented graphics" is widely
used, the paradigms developed by researchers differ widely in
terms of the domains to which they are applicable, the tasks
that they are meant to simplify, the amount of extensibility they
offer, and the relationships they have to other subsystems in a
large graphics application.

I provide a comparative description of the approaches used
for object-oriented graphical modeling, especially in the context
of CAD applications since these place the heaviest demands on
graphical-object modeling capabilities. This work serves two
purposes: 1.) to provide a conceptual framework for comparing
existing paradigms, and 2.) provide an analysis of a few key
systems, that can help the practitioner choose among the set of
existing paradigms in specific application scenarios.

eR categories and subject descriptors: 1.3.5 Computational
Geometry and Object Modeling; 1.3.6 Methodology and Tech­
niques; l.3 .m Object-oriented Graphics ; D. I.5 Programming
Techniques - Object-oriented Programming; 1.6 Computer­
Aided Design (CAD).

Additional Keywords: object-oriented graphics, graphics soft­
ware architectures, graphical design and modeling, user inter­
action.

1 Introduction

The task of creating graphical depictions has traditionally
been divided into two tasks : graphical-object modeling (cre­
ating graphical objects to describe the entity to be visualized)
and rendering (creating an image from the model). Most of
the research in computer graphics has focused on the rendering
task, with the explicit goal of creating photo-realistic images.
Recently, however, modeling has begun to receive more atten­
tion since most graphics applications do not provide powerful
modeling paradigms, consequently placing severe demands on
applications.

Author's address: Graphics Technology Group, Computervision R&D, MS
5-2, 14 Crosby Drive, Bedford, MA 01730, USA. Telephone: (617) 275·1800
x 4618. Electronic mail: kochhar@das.harvard .edu .

Modeling support in most traditional graphics systems (GS)
is based on the conventional "structured display file (or list)"
paradigm [I]: a basic structured display file (SDF) typically is a
directed, acyclic graph, with the nodes representing geometric
and attribute information and the edges representing model­
ing and camera transformations. Such systems include those
based on the PHIGS [2] and GKS [3] ISO standards, and other
widely-used systems such as Ithaca Software's HOOPS [4] and
Pixar's RenderMan [5]. These systems are usually well-suited
for general purpose graphics applications, especially those re­
quiring photo-realism (ray-tracing, radiosity, etc.). However,
CAD/CAM applications typically place a much higher demand
on modeling capabilities and require higher-level abstractions.
In addition, the development of new CAD applications in com­
plex domains is often severely hampered by the the lack of
common, reusable modeling components, which can result in
several person-years of development being put into a new graph­
ical modeling component, or in adapting an existing graphical
modeling component.

To make the mode ling task easier, many researchers have
turned to object-oriented (00) technology, with the goal of
bring its proven benefits - reusability, extensibility and main­
tainability - to graphical-object modeling . Over the last
decade or so, several object-oriented graphics systems (OOGS)
and paradigms have been developed, and graphics class libraries
or toolkits are now available, However, while the term "object­
oriented graphics" is widely used to describe all such paradigms,
these paradigms often differ widely in terms of the domains to
which they are applicable, the tasks that they are meant to
simplify, the amount of extensibility they offer, and the re­
lationships they have to other subsystems in a large graphics
application.

CAD applications - with their heavy demands on modeling
capabilities - seem well-suited to benefit from object tech­
nology. Unfortunately, the varying meanings and capabilities
of OOGS and paradigms makes it very difficult to choose the
paradigm that best matches a particular application. For exam­
ple, the requirements of a large mechanical CAD application
are quite different from those of a CAD system for designing
user-interfaces.

Thus, while it seems natural for a research and development
group designing a new graphical-object modeling system to
adopt object-oriented technology and paradigms, it is usually
not obvious - without significant research and analysis -
which aspects of the problem are amenable to (and likely to
benefit from) such techniques . The goal of this paper is to survey
several key systems from the recent literature and examine the
approaches that they have used to apply object technology to
their particular problem domain.

I provide a comparative description and classification of sev­
eral approaches used for object-oriented graphical modeling,

Graphics Interface '94

with an emphasis on their suitability in the CAD application
domain. The audience that I expect this paper to benefit con­
sists principally of two groups: for the practising engineer, this
paper provides a basis for choosing the appropriate complement
of the available OOG approaches when developing new CAD
applications; for the researcher, this study provides a useful
framework for understanding and comparing OOGS.

Background and Relevant Work

My organization produces a large number of CAD/CAM
products, across a wide spectrum of domains, and differing
widely in complexity. One of the goals of my group was to
design the common graphics modeling subsystem for the next
generation of our CAD/CAM products . We began by analyz­
ing the existing graphics capabilities and those needed in the
future to formulate a comprehensive list of requirements for the
graphics modeling subsystem (some of these will be discussed
below). We then decided to use object-oriented technology
for precisely the reasons listed earlier - to obtain the benefits
of reusability, extensibility and maintainability. An analysis
of our CAD/CAM requirements in comparison to the existing,
published literature on OOGS led to the conceptual framework
(described in this paper) for understanding OOGS. In addition,
we formulated the concept of an object-oriented presentation
system and developed a novel OOGS - the Unified Graphics
Subsystem - that I describe later in this paper.

I expect that this work will benefit both researchers and prac­
tising engineers as I mentioned above. Two important themes in
current research on OOGS are the specification of standardized
APls (application programming interfaces) for OOGS, and the
specification of future graphics software architectures. For ex­
ample, the SIGGRAPH '91 panel on "Object-Oriented Graph­
ics" [6] focused on the need for standardization in the area of
class libraries for graphics applications beyond user interface
toolkits, while one of the major themes at the SIGGRAPH '92
panel on "Graphics Software Architecture for the Future" [7]
was the nature of objects in "future" graphics subsystems. Some
of the issues discussed by the panelists in both panels are similar
to ones I use as a basis of classifying OOGS, including the need
for a separation between the application modeling, graphics
modeling and rendering levels, and the need to support multi­
ple application paradigms.

Brief Review of Object-Oriented Terminology

While this paper assumes familiarity with object-oriented
technology, I briefly review some basic terms here (details can
be found in any text on object-oriented design, e.g. [8]). Objects
are discrete, distinguishable entities that encapsulate data and
behavior. A class is an abstraction that describes a collection
of objects with the same data structure (attributes) and behavior
(operations, also known as methods or messages). An object
is said to be an instance of its class. Inheritance allows the
sharing of attributes and operations amongs classes based on
a hierarchical relationship: a subclass inherits attributes and
behavior from a superclass and can selectively refine these,
or add new ones. Polymorphism allows the same operation
to behave differently on different classes, e.g. the triangle
and circle classes in a drawing program may have different

121

behaviors for the drawSelf operation. (In C++, such operations
are known as virtual methods.)

One of the key issues in the design of an OOGS (or any 00
system) is that of extensibility. Extensibility can refer to the ca­
pability to extend the object (class or instance) hierarchy, or to
the capability to interface with new subsystems (e.g., new ren­
derers or geometric modelers). The ability to add new objects
or classes depends heavily on the implementation language.
Three common approaches to extending a class hierarchy are:

• inheritance: an application can inherit (or, subclass) from
the classes or objects in an OOGS and add application­
specific data and methods, as well as override existing
methods (to support polymorphic behavior). Multiple
inheritance - inheriting from two or more classes - is
often required by application objects that perform multiple
roles, as is common at the higher-level subsystems in a
CAD system (explained below).

• layering and delegation: an application can also define
its own class hierarchy, in which a particular class might
include a reference to an object from the OOGS. This is
referred to as layering. In such cases, when an application
object receives messages (method invocations) that are
intended for the OOG subsystem, it simply forwards these
messages to the OOGS object that it references. This is
referred to as delegation.

• callbacks: by allowing the application to specify callbacks
that are invoked when an object is acted upon in a certain
context (e.g. selected or traversed), the OOGS can let
the application extend the functionality provided by the
OOGS (since the application can, at least theoretically, do
"whatever it wants" at that stage).

As I discuss several OOGS in Section 3, I will also indicate
which of the above approaches have been used by those OOGS.

CAD System Architecture and Requirements

Since one of the goals of this paper is to examine OOG
paradigms in the context of CAD systems, I review briefly the
structure of a typical CAD system and the requirements it im­
poses on any OOG subsystems. CAD systems vary widely
in terms of application domains and complexity. At one end
of the complexity scale, a simple drawing editor might only
have a small number of internal modules: rendering, graphi­
cal modeling, and application-specific modeling. At the other
end, a large mechanical CAD system will often have over a
dozen fairly complex subsystems, Figure 1 shows a typical
layered architecture supported by large CAD systems. The
modules comprising the bottom layer in the architecture con­
sists of the core subsystems, such as Database, Geometry
(modeling), User Interface, or Graphics (scene descrip­
tion and rendering). Upwards in the hierarchy are layers of
applications built on top of the core subsystem and on other
application modules. The lower levels of these - for exam­
ple, the Selection, Animation, and Constraint-management
modules use the core subsystems to provide other services for
the next level up. As we move upwards in the layered ar­
chitecture, the modules get more domain-specific: for exam­
ple, a Piping module would be used for AEC (Architectural

~
- . ..,

.~ , .. ;, .. . ' "
.... Graphics Interface '94

122

t
--t-

11 Dr~ng Application
1 AEC 11 ~chanlcal 1 Application CAD •••

...

B 81 Solid 1 Piping Modellng'"

I ·Se~tion 11 Animation 11 conltr.lntll ...

B
GraphicI

Geometry Uler modeler

(Modeler) Interface

renderer

Figure 1: Architecture of a Large Mechanical CAD System

Engineering and Construction) applications; a fairly complex
mechanical CAD package that supported Parametric History
Editing, Feature-Based Design and Variational Geometry
might include Drafting and Solid Modeling applications, along
with the Constraint-management module.

One of the key concepts in CAD/CAM applications is that
of a presentation. A CAD/CAM presentation is a graphical
picture that is intended to convey information about a product
or some part of a product. In the architecture shown in Fig­
ure I , an application typically interacts with the user interface
and geometry subsystems to create a mathematical model of a
product or some part of a product. At each step in this process
the application requests that the graphics subsystem update its
visualization of the product or part being created. Additionally
the application may want to add extra information (annotations,
dimensions, etc .) to the presentation of a model by directly in­
teracting with the graphics subsystem. The user can also select
(or pick) various entities to perform operations on them as a set.

Most CAD/CAM presentations involve a set of common con­
cepts, including: areas (e.g. views, drawings), groupings (e.g.,
layers), view-specific styles (e.g. , fill areas and line fonts that
depend on the viewing context), scale-invariant graphics (e.g.,
surface normal depictions whose size remains constant even
when zooming), picking, style inheritance, persistence, enti­
ties, modeling and camera transforms, highlighting, zooming,
and editing. Supporting these concepts requires that several
decisions be made by the OOGS developers. For example:

• There is usually a mismatch between the capabilities listed
above as requirements and those offered by the underlying
rendering modules. A CAD/CAM graphics subsystem
thus has to map the CAD/CAM-specific concepts onto the
graphical primitives supported by the rendering modules.
A OOGS designer needs to address the issue of how the
application chooses the best mappings to optimize the
display list structure and rendering.

• Should the geometric (modeling) and graphics (scene de­
scription and rendering) subsystems be separate? Co m-

bining them makes it difficult to integrate a different ge­
ometric modeler into the system; separating them com­
pletely can require duplication of product data in both
subsystems, since there is no way to share representa­
tions. For a small graphics application, the choice may
be a matter of expedience; however, both of the above
choices are impractical for large CAD/CAM applications,
and the developers need to design ways of sharing data
between subsystems.

The answers to the above questions are difficult to formulate
in the absence of a coherent framework for understanding the
characteristics of the various 000 paradigms. One ofthe major
goals of this paper is : to assist in this task by clearly delineating
the important issues that make an 000 paradigm suitable or
unsuitable for a variety of graphics applications - from small
drawing editors to large CAD packages .

2 Conceptual Framework

In order to present the conceptual framework for organizing
the 000 paradigms, I first consider the lower levels of Figure 1.
Applications based on an OOOS range from simple systems that
include only the Graphics Modeler and Renderer to complex
applications that include not only the core subsystems from the
figure, but also the Selection, Animation, and Constraint­
management modules. The key difference between the 000
paradigms is based on the organization of the objects in the
OOOS : how much behavior from each of subsystems from
Figure 1 is incorporated into the objects in the OOOS? The two
extreme cases are:

• to have completely stand alone modules (the objects in the
OOOS do not have any behavior or attributes related to
the other modules), and,

• to have completely integrated modules (the objects in the
system include not only graphical capabilities, but also the
capability to interact with the database, respond to selec­
tion queries , satisfy constraints, and change their behavior
over time in order to produce animations).

In Section 3, the 000 paradigms that I discuss fall at various
points between these extremes.

For the purposes of comparing 000 paradigms within the
above conceptual framework, I consider the following issues as
important "dimensions" along which the paradigms differ:

• mode ling level
• selection handling
• temporal (time-dependent) behavior
• event handling and display model
• relationship to geometric modeler
• relationship to rendering subsystem
• relationship to database subsystem
• constraint handling
• extensibility

These dimensions can be viewed as providing a recipe for
choosing the appropriate complement of characteristics when
designing an new OOOS. Let us explain each of them is some
detail.

Graphics Interface '94

Modeling Level

One of the distinguishing factors between OOG paradigms is
the level at which the paradigm operates: graphical rendering,
graphical modeling, or application modeling:

• By application modeling , I refer to the process of describ­
ing the object model in terms of concepts appropriate
for the application; for example, a mechanical CAD user
would describe a part in terms of assemblies, features, etc .

• By graphical mode ling , I referto the process of describing
the visualization of the object model in terms of traditional
graphical concepts, such as structures (segments), lighting
and appearance attributes, and transformations . J

• By graphical rendering , I refer to the process of convert­
ing the graphical model into a picture (image) suitable for
display on some output medium (CRT, printer, etc.).

OOG paradigms have been developed to address each of the
tasks of rendering, graphical modeling, and application mod­
eling. While the emphasis of this paper is on modeling, for
completeness I include a discussion of OOG paradigms for ren­
dering in Section 3.

Selection Handling

The selection (or picking) operation allows a user to specify a
criteria (for example, enclosure within a 2D region) for creating
a set of subobjects that can then be subject to some common
operation, such as scaling. Internally an OOGS can employ two
distinct strategies to support selections:

• each object in the OOGS can have the capability to re­
spond to selection queries, or,

• a separate selection subsystem can interface between the
user-interface and graphics subsystems to support selec­
tion operations.

I consider the former an input/output OOGS, since it is capa­
ble of handling user-input (in addition to the output of graphical
depictions); I consider the latter an output-only (display-only)
OOGS.

In large CAD/CAM applications, a single graphics subsys­
tem has to be useable by a variety of user-interface subsystems,
each supporting its own user-interaction paradigm. In such
scenarios, the graphics subsystem is used only to display vi­
sualizations of the mechanical parts, and thus is output-only.
In other applications, for example drawing editors and user­
interface builders, it is more natural for the objects (which often
are user-interface entities anyway) to respond to user events, a
task to which an input/output OOGS is better suited.

1 In [9], Kochhar, Marks and Friedell view the graphical-modeling process it­
self as a combination of two different activities: design and anicu/alion . Design
is the more creative aspect of modeling . Articulation is the activity of providing
a precise graphical description of an object conceptualization. However, in this
paper, I treat graphical-object mode ling as a whole when analyzing the OOG
paradigms, si nce currently the design/articulation distinction has not sufficientl y
pervaded object-oriented graphics paradigms to be useful as an important com­
parative factor. I would like to investigate this issue in my future work.

123

Temporal (Time-Dependent) Behavior

Another issue that differentiates among OOG paradigms is
whether the paradigm supports the notion of temporal or time­
dependent behavior in objects:

• Some OOGS allow an application to specify time­
dependent behavior in objects; these objects can render
themselves automatically as the time changes, thereby
producing animations .

• In other OOGS, where objects do not include time­
dependent behavior, animations are produced by allow­
ing the application to vary the structure of the object
instance-hierarchy or vary attributes of objects, and then
re-rendering the scene.

Event Handling and Display Model

Another important issue in the OOG paradigms is

• whether objects in the OOGS should include user­
interaction event handling, or,

• whether events should be handled by an external subsys­
tem (such as the user-interface subsystem), which relies
on the application to manipulate the graphics objects ap­
propriately in response to user actions .

Important user-interaction events are those that relate to di­
rect responses to graphical gestures performed by users (for
example, mouse clicking, dragging, and resizing) - some of
these might imply only a redisplay of portions of the object's
image; others imply that an object change its appearance sig­
nificantly (for example, highlighting itself when the mouse is
clicked within its bounding box).

OOG paradigms that include event handling as part of the ob­
jects facilitate the creation of systems for drawing editors, user­
interface builders, etc.; however, one limitation of this approach
is that the "look and feel" of the user-interaction is controlled
by the objects, and is not easily adapted to the look-and-feel
supported by the overall application or windowing system. In
a large suite of CAD packages that often have to support dif­
fering look-and-feel , this approach is not feasible if the OOGS
is to be reusable by many applications. In this scenario, the
preferable approach is to delegate the user-interaction handling
and customization to the user-interface subsystem.

Relationship to Geometric Modeler

Consider a mechanical part being designed using a CAD
system. The user needs to specify both the geometric represen­
tation and graphical visualization of this part:

• The geometric representation of a part refers to the
application-specific geometric and product data needed
for purposes of analysis and manufacturing.

• The graphical visualization refers to a description of the
graphical structures needed to display the part (or to pro­
duce manufacturing drawings).

~
.- "

... ~.: ;:'
, .

:.' Graphics Interface '94

124

As an example, the product data might include: geomet­
ric descriptions of the sub objects and assemblies; topological
relationships between faces, edges and vertices of subparts;
materials-related information; and, manufacturing tolerances.
The visualization of the same part, on the other hand, might
require a hierarchy of graphical primitives, along with styling,
modeling and viewing information. A key issue that an OOG
paradigm needs to address is whether the objects in the OOGS
incorporate both types of information or only the data needed
for visualizing the product.

Large CAD/CAM applications normally have separate ge­
ometric (modeling) and graphics (scene description and ren­
dering) subsystems. An OOGS that combines geometric and
graphical modeling would usually be impractical for these ap­
plications, since such an OOGS often requires duplication of
product data in the geometry and graphics subsystems, which
results in severe performance overheads (in terms of time, mem­
ory and disk usage).

On the other hand, OOGS that allow the creation of objects
containing both product (geometric) data and visualization data
are useful for small applications, especially when a separate
geometric-modeling subsystem is not easily available or imple­
mentable for pragmatic reasons. This is the case, for example,
in drawing editors and simple drafting packages.

Relationship to Rendering Subsystem

OOG paradigms also need to be concerned with the issue of
separation between the graphical modeling subsystem and the
rendering system:

• Some OOG paradigms rely on a clear separation between
the two subsystems. In this scenario, the rendering subsys­
tem has a well-defined set of primitives that it is capable
of displaying and the OOGS is responsible for convert­
ing objects to be displayed into those primitives . The
main advantages of this approach are that new rendering
techniques can be added without modifying the OOGS,
and that the rendering system can make decisions about
displaying the primitives in the most efficient manner.
A disadvantage of this approach is that the OOGS can
not easily take advantage of newly added rendering prim­
itives, nor of context-specific knowledge about the ef­
ficiency of rendering primitives (for example, a certain
primitive might be slow when rendered on one device and
much faster on another). Some OOGS have addressed
this issue by allowing closer communication between the
two subsystems: the modeling system can query the ren­
dering system for available drawing primitives and the
efficiency of rendering them, and then decide on the best
collection of primitives into which to transform the object
to be visualized.

• Other OOG paradigms incorporate rendering methods into
the objects themselves : thus, each object is capable of
displaying itself in a given graphical context, without re­
quiring the use of a separate rendering subsystem. One
advantage of this approach is that objects can be copied
(or sent via messages) from one application to another,
without the latter knowing how to display the objects
it receives (since these objects are capable of rendering
themselves) - this allows complex objects to be "cut and

pasted" just as easily as is possible with simple objects
like Ascii text. The main disadvantage of this approach is
that when different rendering techniques or primitives be­
come available (for example, on a different display device
or graphical accelerator), every object's implementation
has to be modified.

Relationship to Database Subsystem

This issue is very similar to the previous one. An OOG
paradigm can directly support persistent objects (using an 00
database), can support objects that include archival methods,
or can use the services of a database subsystem (with a well­
defined interface) by converting the objects' attributes and re­
lationships into a form suitable for archival. The retrieval of an
object hierarchy follows the same principles: persistent objects
may be retrieved automatically (by the 00 database manager),
objects may have methods for retrieving their attributes and
relationships, or the OOGS may convert data retrieved by the
database subsystem to recreate the object hierarchy.

Constraint Handling

An object model typically needs to satisfy a variety of con­
straints: graphical (for example, limits on available colors), ge­
ometrical (for example, minimum sizes of faces in a boundary
representation), topological (for example, consistency between
the numbers of faces , edges and vertices in an object), and
product- or domain-specific (for example, minimum and max­
imum stress loads, tolerancing limits). Systems that simulate
physical models also need to take into account constraints that
describe the relationships between interactions of physical ob­
jects in the "real world." The manner in which constraints are
described and satisfied is another distinguishing factor between
the OOG paradigms. Some OOGS directly support "constraint
objects" that incorporate methods to satisfy their conditions, an
approach widely used in constraint-based drawing editors. A
limitation of this approach is that incorporating all the types of
constraints that an object might need to satisfy (as listed above)
can be a difficult task. Moreover, adding new constraint types
can result in significant modifications to the OOGS.

The alternative approach - suitable for large OOGS (e.g.,
a large mechanical CAD package that supported Parametric
History Editing and Variational Geometry) - is to have sep­
arate constraint solvers (for the variety of types of constraints),
which the application can invoke in response to user actions;
these solvers obtain attribute-values for and manipulate the ob­
jects in the OOGS through the defined interfaces. Thus, new
constraint solvers can be added without modification to the
OOGS.

Extensibility

As I mentioned in Section I , extensibility in an OOGS can
refer to the capability to extend the object (class or instance)
hierarchy, or to the capability to interface with new subsystems
(e.g., new renderers or geometric modelers). While the mech­
anisms of inheritance, layering, and callbacks allow an OOGS
to be extensible, several pragmatic issues must be addressed
during the design of a large, extensible OOGS :

Graphics Interface '94

• One issue is that of knowing in advance which internal
parts of the OOGS will need to be exposed in order for
the extensions to be useful. For example, an 00 renderer
(from the next section) might have several useful objects
and mechanisms to compute the intersections of a variety
of objects; if these are not exposed, then extensions to the
ray-tracing related objects might not be possible.

• If an OOGS itself relies on the support of an underlying
subsystem, then capabilities of that subsystem might need
to be exposed in order for the application to benefit from
extensibility. For example, an 00 presentation system
(from the next section) typically uses the services of a
low-level rendering system. Suppose that this low-level
rendering system supports a "triangle mesh" primitive,
but the 00 presentation system does not initially include
a class that directly corresponds to a triangle mesh. If,
however, an application is expected to extend this OOGS
by adding NURBS and complex mesh-based surfaces,
then the OOGS needs to allow the application to use the
services of the underlying rendering subsystem, which
might require exposing the "triangle mesh" primitive.

• In a callback that an application provides, it is often dif­
ficult to know in advance what context (current state)
information to provide to the application callback routine
so that it can perform meaningful operations. As an exam­
ple, if a callback is invoked during display-list traversal ,
the call back would need to be handed the current graphics
context (and possibly methods for modifying it), output
device, etc.

3 Object-Oriented Graphics Paradigms

I now present several OOG paradigms in the context of the
conceptual framework described in Section 2:

• Object-Oriented Rendering
• Object-Oriented Structed Display File (SDF)
• Object-Oriented Animation
• Object-Oriented User-Interface Builder (UIB)
• Object-Oriented Drawing and Document Editing (DDE)
• Object-Oriented CAD/CAM Presentation

The issues from Section 2 will be examined with respect to
the paradigms. Figure 2 shows the issues that I believe play an
important role when a developer has to decide on the appropri­
ateness of a particular paradigm for some application system.
Thus, for example, the interaction between the Selection sub­
system and the OOGS is an important factor in the cases of the
00 Animation, UIB and Presentation paradigms.

I also describe some recent OOGS that illustrate the princi­
ples of each paradigm.2 Note that any particular system that
one might examine is certain to be based on more than one of

2In each section, besides examining some OOOS, I also li st other references
that readers interested in those paradigms might wish to pursue. Even though work
in object-oriented graphical modeling has been going on since the beginning of
computer graphics (e .g, in Ivan Sutherland 's Sketchpad system [10]), I focus
on recent systems and references since these often illustrate the most mature
ideas and research in the field , and form a good starting point for obtaining other
references.

125

the paradigms listed above. For example, an object-oriented
rendering system is likely to have at least an object-oriented
structured display list as well. However, I discuss the paradigms
separately in order to explain the salient issues .

Object-Oriented Rendering

At one end of the graphical image-generation process is ren­
dering. I refer to a GS as based on the object-oriented rendering
paradigm if the main goal of that system is to attempt to im­
prove the quality of rendering software - in terms of better
maintenance, extensibility, and reuse - by applying object­
oriented techniques . Such systems typically use objects and
relationships to represent the entities and stages involved in
the rendering process, for example transformations, clippers,
colors, lights , scan lines , and ray intersectors. These systems
also support extensibility via subclassing and polymorphism;
for example, in a ray tracing system that relies on intersections
of a ray object with an abstract shape, a new graphical primi­
tive, say tetrahedron might be added as long as it incorporates
methods to respond to compute-intersection messages. Thus,
object-oriented rendering is characterized by the following mo­
tivations :

• to use object-oriented technology to improve the rendering
software

• to allow extensibility via subclassing and polymorphism

An example of an object-oriented rendering system is
Melcher and Owen 's RTCPP system for ray tracing [11).
RTCPP contains geometric objects that derive from an abstract
base object geo_object that contains virtual methods for cal­
culating intersections with rays, performing euclidean transfor­
mations, and computing shading properties. The core of the
ray tracing process consists of computing intersections of rays
and geo_objects. As mentioned above, a new primitive can
be added as long as it defines the appropriate virtual methods;
polymorphism allows the rest of the ray tracing code to remain
unchanged. As another example of object-oriented rendering,
the GOII system [12] incorporates several object-based render­
ing algorithms - ray tracing, Z-buffer, and painter's algorithm
- as well as a completely object-based rendering pipeline.
(This system will be further discussed below.) Other examples
of object-oriented rendering are presented in [13] and [14).

Object-Oriented Structed Display File

An object-oriented structured display file (OOSOF) provides
modeling support at a higher level than the object-oriented ren­
dering paradigm. This paradigm is based on mapping the tradi­
tional structured display file (that formed the basis of early com­
puter graphics modelers) into a class hierarchy, where classes
represent both: nodes that contain geometric information, and
edges that contain modeling and viewing transformations . The
OOSOF paradigm is characterized by the following properties:

• the entities that comprise the traditional computer graph­
ics SOF are mapped (almost directly) into classes in the
OOSOF

• the major motivation is to bring benefits of 00 technology
to to graphical modeling software

Graphics Interface '94

126

Issue
Modeling Selection Temporal Event Geometric Database Constraint Extensibility

Level Handling Behavior Model Modeler Subsystem Handling
Paradigm Relationship Relationship
00 Rendering .; ...J
OOSDF .; .;
00 Animation .; .; .; .; .;
00 urn .; .; .; .; .;
OODDE ...J ...J ...J .; .;
00 Presentation v' .; .; .; .; .; 7

Figure 2: Salient Issues for the OOG Paradigms

Early examples of OOSDFs can be found in systems based
closely on the GKS and PHIGS standards [IS, 16]. Other ex­
amples ofOOSDFs include Egbert and Kubitz's Grams system
[17], and Bahrs et. al.'s 0011 system [12]. The Grams system
attempts to raise the level at which an application performs mod­
eling by separating application modeling, graphical modeling,
and rendering into subsystems with formally-defined interfaces.
While these goals are similar to those of the Unified Graphics
Subsystem described below (under Object-Oriented Presenta­
tion), Grams does not explicitly contain any CAD-specific ap­
plication modeling.

In the GOIl system, a 3D graphical scene can be repre­
sented by a Scene object that provides the capability to com­
pose graphical objects (3D shapes), lights, and transformations.
Views of the scene are obtained by specifying appropriate Cam­
era objects. GOIl supports a variety of object-based rendering
algorithms, as was discussed earlier. Figure 3 shows the class
hierarchy and rendering pipeline (Boxes I to 6) of GOII. Objects
are employed throughout the rendering and graphical modeling
pipeline (annotations below the boxes in the figure list the ob­
jects involved at each stage). The process begins (in Box I)
with the creation of SDF objects that are then are composed into
hierarchical scenes (Box 2) and rendering begins once viewing
information is chosen (Box 3). The specified rendering algo­
rithm is initiated (Box 4), resulting in a 2D hierarchical picture
(Box 5) consisting of objects that can "draw themselves" in
response to user interactions (Box 6).

The OOSDF paradigm is suitable for applications that are
used to create graphics "scenes" without the need for interaction
with external geometric modeling systems. The disadvantage
of this paradigm is that the modeling constructs supported are
too low-level for complex CAD applications.

Object-Oriented Animation

The object-oriented animation paradigm moves beyond 3D
graphical modeling and adds a fourth dimension - time -
by allowing the specification of temporal behavior in graphi­
cal objects . Animations are produced by sending the objects
messages to render themselves ; the objects modify their appear­
ance (thereby changing the graphical image) as a function of
time. Important concerns in any 00 animation system (espe­
cially those for simulating physical systems) are constraint­
satisfaction (since without constraints subparts of the scene
can not be modified in a coherent manner) and constraint-

representation (since a constraint typically involves more than
one graphical object and cannot be part of a single object). Usu­
ally constraints are specified as classes that form relationships
between graphical objects, along with methods to satisfy the
constraint relationship. Thus, the following properties charac­
terize the object-oriented animation paradigm:

• objects incorporate temporal behavior

• constraints are represented as relationships between ob­
jects

• efficient constraint-satisfaction has to be incorporated

Any of the other OOG paradigms discussed in this section
is amenable to object-oriented animation. For example, an 00
rendering system might support simple animations based on
color- and light-manipulation, while an 00 CAD/CAM pre­
sentation system (discussed below) might support sophisticated
animations based on the satisfaction of kinematic constraints, or
on the evolution of a design created using variational-geometry
techniques (Section I).

Several object-oriented animation systems have been devel­
oped by researchers [18 , 19,20, 21 , 22,23,24,25]. One recent
example is an animation system presented by Zeleznik et. al.
[26. 27]. This system provides objects that encapsulate behav­
ioral properties - such as gestural controls and spring constants
- as well as a variety of constraint solvers (based on inverse
kinematics. dynamics and finite-element techniques). The ani­
mation is described through message passing between objects.
The messages that an object receives describe how the object
should change over time; these messages can cause objects to
be transformed. deformed. colored. shaded and dynamically
moved. As an example. a message might specify the location
in 3D of an object as a function of time; as the time changes.
rerendering the scene creates a new depiction.

The strength of an 00 animation systems lies in the fact
that animations can be produced more simply and elegantly
than with conventional animation systems. since the temporal
behavior is encapsulated in objects. (thereby simplifying the
structure of the animation controller). The main disadvantages
of this approach are that fairly sophisticated controllers and
constraint solvers need to be tightly integrated with the objects
in the system, and that predicting the effect of a user action
can be difficult since since the temporal behavior is spread over
each object.

Graphics Interface '94

Tr'''''Of.lllO''1
C , ..
lUll"

'" El
+
~
+

,., AlII III Will.,.. .

1'."""1
1r ••• lOflll

VII.I!!lICTtON
ICINI It:lfCT'OH
"'NOI'UNO ITnl

'lclllfl
IDH'.,.,Uy

10 """,IIUI

127

,le. "11111, •••• .,.

1' u U ...

cll"III,
, "tlo(.

I .. ~I <11/1",

,,, ••• ,IIYClIcIlIll • ...,

•• ft •• ",'"'

"eel"'''''',,,,,,,'
DiIIltcIHhlll".

Figure 3: GOII Class Hierarchy and Rendering Pipeline (reproduced with permission from [12])

Object-Oriented User-Interface Builder

An object-oriented user-interface builder (OOUIB) allows a
designer to construct a user-interface, which can then be linked
into an application. In an OOUIB, the graphical objects are
the user-interaction components, for example buttons, sliders
and dialog boxes . The process of constructing a user-interface
typically involves choosing components from a palette, placing
them on application windows, establishing constraints between
the layouts (for example, alignments and spacing between com­
ponents), establishing communication paths between them (for
example, passing the result computed by one object to another),
and establishing connections ("hooks") between the objects and
the application modules (for example, setting callbacks). More­
over, all OOUIBs allow the designer to switch between "design"
and "test" modes; in the latter, the objects become "live" and re­
spond to user-interaction events as they would in the completed
application. As the above description shows, the graphical
objects in an OOUIB need to be fairly autonomous in their be­
havior and interaction with other objects and the application. In
addition, the objects need to be selectable and displayable in a
variety of contexts. Thus, the following properties characterize
the OOUIB paradigm:

• objects incorporate event-handling, rendering and selec­
tion handling

• geometric (layout) constraint handling is an important re-

. , .

quirement

Examples of OOUIBs include the NeXTSTEP Interface­
Builder [28], the Interviews ibuild application [29], and the
Andrews toolkit [30] .

InterfaceBuilder is a tightly-integrated OOUIB that forms
part of the NeXTSTEP development environment (on NeXT
workstations and IBM-PC compatibles). InterfaceBuilder re­
lies heavily on layering and delegation to support extensibil­
ity. Figure 4 shows an example of using InterfaceBuilder
to build the user-interface for a simple temperature converter
and square root calculator. The window on the top left (titled
"Palettes") displays the available user-interface components ;
these can be selected and dragged onto the application win­
dow (titled "Universal CalCulator") and menu (top right, titled
"Calculator/Calculations"). As menu items are added to the
application menu, they can be bound to methods on specified
objects. The bottom left window allows the user to graphi­
cally browse through the available objects (which can include
Sound and Image objects) and instance them in the application,
as well as create new object types (for example, Calculatorln­
stance). The bottom right window allows object attributes and
methods to be modified. Currently, the user has just added the
"Calculate" button on the application window, added sound
and an image to it, and has just bound it to the calculate
method on the Calculatorlnstance object (as shown by the
dimple next to the calculate method on the bottom right win-

~
"" """' ''.;.

, " "
.... Graphics Interface '94

128

Figure 4: Example of Using the NeXTSTEP InterfaceBuilder

dow). Once the interface is completed, the InterfaceBuilder
will save the source files on disk, to which one can add the
actual temperature/square-root conversion code.

The ibuild OOUIB is part of the Interviews toolkit. One
interesting aspect of ibuild is the support for layout constraints
in the style of the Knuth's text formatter 1FX[31]. Andrew - a
toolkit written in the Class language - provides a set of basic
components that can be combined easily to build user interfaces
for multi-media applications. Other examples of the OOUIB
paradigm can be found in [32, 33, 34, 35].

An OOUIB has the advantages that adding a new object (e.g.,
a new type of slider) is simplified since most of the behavior
of the new object is specified within the object's methods and
does not affect other objects. The major disadvantage is that the
objects often need to incorporate a large amount of platform­
specific and window-system-specific information, since they
need to "understand" how to handle user interactions and how
to communicate with the windowing system and other objects.

Object-Oriented Drawing and Document Editing

Similar to an OOUIB, object-oriented drawing and document
editing (OODDE) systems employ autonomous objects that are
capable of displaying themselves in different contexts and of
interacting with other objects . However, there is one important
difference between the two: while objects in an OOUIB need to
include methods to respond to user-interaction events, objects
in an OODDE do not have this requirement. In an OODDE
system, usually the application is responsible for handling user­
interface events and manipulating the graphical objects appro­
priately. For example, the application might intercept a mouse
click, make selection queries to find out which object were se­
lected, and then highlight these objects by changing their color.
Thus, the OODDE paradigm is characterized by these proper­
ties :

• objects include rendering methods

Graphics Interface '94

Character

LRBox

TBBox

Figure 5: Text Object in Unidraw (reproduced with permission
from [38])

• objects need methods to handle select queries

Examples of the OODDE paradigm include Unidraw [36]
and IRIS Inventor [37]. Unidraw is a framework for creat­
ing 2D graphical, object-oriented editors that can be tailored
to specific application domains . An example of an OODDE
systems constructed using the Unidraw distribution is the doe
document editor [38,39] . Doe uses objects ("glyphs") to repre­
sent individual characters in a document; thus, every character
in a document is capable of responding to select queries and
display requests. Figure 5 shows a simple text string contain­
ing glyphs. The text object contains a TB Box; which tiles its
subcomponents top-to-bottom. The TBBox contains LRBoxes,
which tile their components left-ro-right. Each LRBox contains
a Character glyph object. Once the text object is created, it
is rendered by invoking the draw method on the top TBBox,
which recursively invokes the draw method on its subcompo­
nents. Both LRBox and TBBox respectively insert horizontal
and vertical "glue" (stretchable space) between their subcom­
ponents and use algorithms similar to Tpc to arrange and align
components (e.g., text justification).

IRIS Inventor is an object-oriented, 3D toolkit that is useful
for describing 3D scenes and interactive applications. Inven­
tor 's objects include an event model and selection handling,
which allows them to be used to build 3D drawing editors. Other
examples of the OODDE paradigm can be found in [40,41).
The advantages and disadvantages of the OODDE paradigm are
similar to those shared by the OOUIB paradigm.

Object-Oriented CAD/CAM Presentation

In Section I, I discussed the requirements for an OOGS
suitable for large CAD/CADM applications, and used the term
presentation to refer to a graphical picture that is intended to
convey information about a product or some part of a product.
The object-oriented presentation (OOPR) paradigm is intended
to support exactly those requirements. The OOPR paradigm
moves beyond general graphical modeling to CAD-specific ap­
plication modeling. Moreover, it avoids duplication of product
data between the graphics and geometry subsystems by defin­
ing a clear separation and communication protocol between
them. The OOPR paradigm is characterized by the following
properties:

• there is a clear separation between the OOGS and the
geometric modeling systems

-

--
LN ---. r.d

HURlle-,
c
." -.... , _ .

... -HUAII.utt.c.

129

le) Q,."/c. E"tm.

Figure 6: Subset of UGS Schemas (portions reproduced with
permission from [42])

• the classes in an OOPR system are tuned to CAD-specific
requirements

• display list management and optimization is performed
separately from the task of describing a presentation

An example of an OOPR system is the Unified Graphics
System (UGS) [42], which is intended to be the next generation
graphics system for all CAD/CAM applications developed at
my organization. An application describes the picture to be
presented to the user in terms of a presentation hierarchy - a
collection of instances of UGS objects (such as views, draw­
ings, layers, and styles) and relationships (such as modeling
transformations and viewing projections) between them. The
application manipulates the presentation hierarchy in response
to user actions, such as requests for selection, geometric ma­
nipulation, or animation. UGS performs several display list
and rendering optimizations (transparently to the application),
for example spatially organizing entities in an octree for fast
rejection during clipping and selection.

The more than 200 classes available in UGS can be organized
into five sections or schemas:3

I. The presentation organization schema (Figure 6(a» de­
fines the classes required to describe the basic structure of
a CAD presentation - in terms of presentation units and
their relationships. Presentation units can be graphical

3 Some of these schemas were originally derived from similar schemas in the
PDES/STEP [43J presentation model.

Graphics Interface '94

130

urawing.: flCS uemo

Vie",d: Car

View 3: Valve View 4: Valve

Figure 7: Example of Using UGS

primitives, display regions, or groups of other units. Rela­
tionships between units can specify modeling transforma­
tions, projections (viewing operations), occlusions (e.g.,
"in-front-of '), and inclusions (used in assembly model­
ing). Portions of a presentation hierarchy can be output
to various 2D and 3D graphics devices. An example of
CAD-specific support in UGS is the Drawing Manager,
shown in Figure 6(b). Thus, application developers can
think in terms most natural to many CAD/CAM systems,
for example, drawings, views and layers.

2. The presentation entity schema contains classes used in
the visual depiction of geometric entities or annotations .
Figure 6(c) lists some of the presentation entities avail­
able in UGS. An application constructs a model of a part
(entity) using a geometric modeler. The UGS entity-level
interface [44] extracts the relevant information from the
part database to create a visualization of the part using
presentation entities . This mechanism allows UGS to be
used with a wide variety of geometry subsystems, with­
out having to "know" their specific representation formats

and without having to duplicate the data representing the
entities . In addition, applications may add annotations
(for example, title boxes and labels) to the presentation of
a model by directly using UGS presentation entities.

3. The presentation appearance schema contains classes re­
quired to control entity appearance - for example, line
weights and dash patterns, hatch patterns, surface re­
flectance parameters , text font , etc. UGS objects to control
appearance can be associated to any presentation unit in a
hierarchy; appearance attributes inherit down the presen­
tation hierarchy. In addition, the application of appearance
objects may be restricted to particular contexts - for ex­
ample, a line may be dashed only in a particular view or
layer, or a coordinate triad might be shown in different
colors depending on whether the axes are going into the
screen or out towards the viewer, or text labels on di­
mensions may only be shown within a particular range of
view angles. I am aware of no other OOGS that provides
such extensive context-sensitive styling capabilities that
are required for any large CAD/CAM application.

~
... .-. "

.~.< .. ,. ; , ..
, . , . . :.:.

::' . Graphics Interface '94

Figure 8: UGS Instance Hierarchy Corresponding to Example
in Figure 7

4. The presentation resource schema contains general utility
classes, including color definitions , light source tables,
character and symbol font libraries and the camera model
definitions .

5. Finally, the selection schema (Figure 6(d» defines an in­
terface to support three types of user interaction: I) Screen
selection (selecting entities based on user-specified 2D lo­
cations on a window), 2) Model selection (selecting en­
tities based on 3D locations), and, 3) Location selection
(projecting a user-specified 2D location on a window onto
a construction plane). To unambiguously specify the set
of selected entities, complete paths are made available
to the application (e.g., a line may have been selected in
a particular layer or view). The selection mechanism
also supports a variety of operations - including filter­
ing, boo lean operations and application callbacks - to
limit and combine select queries in ways that are needed
in most large CAD/CAM applications.

Figure 7 shows an example of a presentation created using
UGS; Figure 8 shows the UGS instance hierarchy that was used
to describe the presentation. The presentation consists of a
drawing that contains four views and some annotation text (the
label "Drawing: UGS Demo"). The drawing is associated to
(and hence displayed on) a UGS X-window object. (Note that
by associating the drawing to a UGS Clipboard object, one
could also "paste" its image directly into a document process­
ing application). Each view contains annotation text (the view
labels) and some part geometry. View] and view2 depict the
model of a racing car model (which contains over 550 NURB
curves and 3300 NURB surfaces), while view3 and view4 de­
pict the model of a valve (which also contains several hundred
NURB curves and surfaces). Each view has associated cam­
eras that allow the application to adjust the view of the part
geometry and annotations based on user actions; for example,
the user is being shown a zoomed-in view of the car in view2.
By setting surface shading style attributes on view] and view3,
shaded images of the car and valve, respectively, are obtained
in those views; by setting hidden line removal style attributes
on view2 and view4, hidden-line-removed images of the car and
valve, respectively, are obtained in those views.

4 Summary and Concluding Remarks

This survey of object-oriented paradigms for modeling
graphical objects shows that each has its own very different

131

characteristics, strengths and weaknesses. As we have seen, an
OOG paradigm can exist between the two extremes:

• objects (in the OOGS) include only the graphical attributes
necessary to render them, or,

• objects (in the OOGS) include not only the graphical
attributes necessary to render them, but also the com­
plete geometric modeling information, user-interaction
handling, display methods, constraint satisfaction and an­
imation methods .

Both of the above are, in general , too extreme to be useful
in CAD applications. A realistic OOGS has to be designed by
choosing the appropriate combination of properties to incorpo­
rate into objects, the best combination being dependent on the
specific domain and application. In this paper, I have attempted
to examine the issues that need to be understood in order to
make such decisions, as well as give examples of the particular
choices made by some recent OOGS.

As examples, consider two scenarios:

• suppose one is designing a MacDraw-like drawing (or
text) editor, and would like to employ object technology.
From the discussion of Section 3, one would conclude
that the separation of object behavior across several sub­
systems might not be worth the extra development and
code maintenance; rather, it would be expedient to incor­
porate graphical, database, and geometric behavior within
objects.

• suppose one is designing a large mechanical CAD/CAM
system, and would like to employ object technology.
From the discussion of Section 3, one would conclude that
the geometric, graphical, database, and other behavior of
objects in the system need to be split across appropriate
subsystems, both to ease the development of these subsys­
tems and to allow these subsystems to be used in a variety
of application settings.

In addition, this paper would also provide pointers to the
appropriate systems that one might examine for comparison in
each case.

In this paper, I have analyzed and compared what I consider
to be mature object-oriented graphics paradigms. Researchers
are pursuing several other directions in object-oriented graph­
ics : time-critical computing, distributed objects, "live links"
between objects, and multi-media. Currently, many of these
are the subject of debate in the graphics research community,
while others are being standardized through consortiums (e.g.
the Object-Management group's CORBA standard, or ISO's
PREMO standard for multi-media). I expect that in a few years,
these techniques will become mature enough to be subject to an
analysis similar to the one presented in this paper.

References

[I] Foley, J. , Van Dam, A., Feiner, S., and Hughes,J. 1990. Computer
Graphics Principles and Practice. Addison-Wesley, Reading,
MA.

[2] PHIGS: Programmer's hierarchical interactive graphics system.
1985. ISO TC97/SC211N819.

Graphics Interface '94

132

[3] GKS: Graphics kernel system. 1985. ISO 7942.

[4] HOOPS Graphics software. 1991. Ithaca Software, Alameda,
CA.

[5] Upstill, S. 1990. The RenderMan Companion. Addison-Wesley,
Reading, MA.

(6) Object-oriented graphics. 1991. SIGGRAPH '91 Panel (Com­
puter Graphics 25 (4)).

(7) Graphics software architecture for the future. 1992. SIGGRAPH
'92 Panel (Computer Graphics 26 (2».

(8) Rumbaugh, J., B1aha, M., Premerlani, w., Eddy, E, and Lorensen,
W. 1991. Object-Oriented Modeling and Design. Prentice Hall,
New Jersey.

(9) Kochhar, S., Marks, J., and Friedell, M. 1991. "Interaction
paradigms for human-computer cooperation in graphical-object
modeling," in Proceedings of Graphics Interface '91, pages
180-191, Calgary, Canada, June 3-7 1991. Morgan Kaufmann
Publishers, Palo Alto, CA.

(10) Sutherland, I. E. 1963. Sketchpad: A man-machine graphical
communication system. In Proceedings of the Spring Joint Com­
puter Conference. Spartan Books, Baltimore, MD.

(11) Melcher, K. and Own, G. 1992. "Object-oriented ray tracing:
A comparison of C++ versus C implementations," in Cunning­
ham et. al. (Eds.), Computer Graphics Using Object-Oriented
Programming. Wiley, New York.

(12) Bahrs, P., Dominick, w., and Moreau, D. 1992. "GOII: An
object-oriented framework for computer graphics," in Cunning­
ham et. al. (Eds.), Computer Graphics Using Object-Oriented
Programming. Wiley, New York.

(13) Youssef, S. 1986. "A new algorithm for object oriented ray
tracing," Computer Vision , Graphics and Image Processing,
34(2):125-137, May.

(14) Schneider, B. 1988. "A processor for an object-oriented render­
ing system," Computer Graphics Forum, 7(4) :301-310, Decem­
ber.

(15) Wisskirchen, P. 1990. Object-Oriented Graphics: From GKS
and PHIGS to Object-Oriented Systems. Springer-Verlag, New
York.

(16) Czech, M. 1990. "GKS in an object-oriented environment,"
Computers and Graphics, 14(3/4):373-375.

(17) Egbert, P. and Kubitz, W. 1992. "Application graphics modeling
support through object orientation," IEEE Computer, 25(10):84-
91 , October.

(18) Breen, D. E., Getto, P. H., Apodaca, A. A., Schmidt, D. G ..
and Sarachan, B. D. 1987. "The clockworks : An object-oriented
computer animation system," in Marechal, G ., editor, Eurograph­
ics '87, pages 275-282. North-Holland, August.

(19) Chmilar, M. and Wyvill, B. 1989. "A software architecture for
integrated modelling and animation," in Eamshaw, R. and Wyvill,
B. , editors, New Advances in Computer Graphics. Proceedings of
CG International '89, pages 257-276. Springer-Verlag.

[20] Fiume, E., Tsichritzis, D., and Dami, L. 1987. "A temporal
scripting language for object-oriented animation," in Marechal,
G. , editor, Eurographics '87, pages 283-294. North-Holland, Au­
gust.

(21) Kuehn, V. and Muller, W. 1991. "Advanced object-oriented
methods and concepts for simulation of multi-body systems," in
Eurographics Workshop on Animation and Simulation.

(22) Lorensen, W. and Yarnron, B. 1989. "Object-oriented computer
animation," in Proceedings of the IEEE 1989 National Aerospace
and Electronics Conference NAECON 1989, pages 588-595 .

(23) Maiocchi , R. and Pernici , B. 1990. "Directing an animated scene
with autonomous actors," in Magnenat-Thalmann, N. and Thal­
mann, D., editors, Computer Animation '90 (Second workshop on
Computer Animation), pages 41-60, April. Springer-Verlag.

(24) Mahieddine, M. and Lafon, J. C. 1990. "An object-oriented ap­
proach for modelling animated entities," in Magnenat-Thalmann,
N. and Thalmann, D., editors, Computer Animation '90 (Sec­
ond workshop on Computer Animation), pages 177-187, April.
Springer-Verlag.

(25) Baker, M. 1992. "An object-oriented approach to animation
control," in Cunningham et. al. (Eds.), Computer Graphics Using
Object-Oriented Programming. Wiley, New York.

(26) Zeleznik, R. c., Conner, D. B., Wloka, M. M., Aliaga, D. G.,
Huang, N. T., Hubbard, P. M., Knep, B., Kaufman, H., Hughes,
J. E, and van Dam, A. 1991. "An object-oriented framework for
the integration of interactive animation techniques," Computer
Graphics (Proceedings of A CM SIGGRAPH '91}, 25(4):105-112,
July.

(27) Zeleznik, R. c., Herndon, K. P. , Robbins, D. c., Huang, N.,
Meyer, T., Parker, N., and Hughes, J. E 1993. "An interac­
tive 3D toolkit for constructing 3D widgets," Computer Graphics
(Proceedings of A CM SIGGRAPH '93), 27(4):81-84,August.

(28) Garfinkel, S. L. and Mahoney, M. K. 1993. NeXTSTEP Program­
ming. Springer-Verlag, New York, New York.

(29) Linton, M., Vlissides, J., and Calder, P. 1989. "Composing user
interfaces with Interviews," IEEE Computer, 22(2), February.

(30) Howard,J. 1988. "An overview of the Andrew File System," Pro­
ceedings of the 1988 USENIX Winter Conference, Dallas, Texas,
February 9-12.

(31) Knuth, D. E. 1984. The TFJ(book. Addison-Wesley, Reading,
Massachusetts.

(32) Barth, P. S. 1986. "An object-oriented approach to graphical
interfaces," ACMTransactionson Graphics, 5(2): 142-172, April.

(33) Coutaz, J. 1987. "The construction of user interfaces and the
object paradigm," in Proceedings of ECOOP '87, pages 135-
144, June.

(34) Szekely, A. and Myers, B. 1988. "A user interface toolkit based
on graphical objects and constraints," in Proceedings of ACM
OOPSv. '88, pages 36-45.

(35) Hubner, W. and de Lancastre, M. 1989. "Towards an object­
oriented interaction model for graphics user interfaces," Computer
Graphics Forum, 8(3):207-217, September.

(36) Vlissides, J. and Linton, M. 1989. "Unidraw: A framework
for building domain-specific graphical editors ," Proceedings of
the ACM SIGGRAPH Symposium on User Interface Software and
Technology, October.

[37) Strauss, P. S. and Carey, R. 1992. "An object-oriented 3D
graphics toolkit," Computer Graphics (Proceedings of ACM SIG­
GRAPH '92), 26(2):341-349, Chicago, July 26-31 .

[38) Calder, P. and Linton, M. 1990. "Glyphs: Ayweight objects for
user interfaces," Proceedings of the ACM S1GGRAPH Symposium
on User Interface Software and Technology, October.

[39) Calder, P. and Linton, M. 1992. "The object-oriented implemen­
tation of a document editor," Proceedings ofOOPSV. '92 (ACM
SIGPlAN Notices 27 (lO)) , pages 154-165, October, Vancouver,
Canada.

[40) Fellner, W. and Kappe, E 1990. "EDEN - An editor environ­
ment for object-oriented graphics editing," in Vandoni, C. and
Duce, D., editors. Eurographics '90, pages 425-437, September.
North-Holland.

[41) Roseman, D. 1992. "Design of a mathematicians' drawing pro­
gram," in Cunningham et. al. (Eds.), Computer Graphics Using
Object-Oriented Programming. Wiley, New York.

[42) Kochhar. S. and Hall, J . 1992. "An object-oriented CAD/CAM
presentation system," Proceedings of the Third Eu/'ographics
Workshop on Object-Oriented Graphics, October 28-30, Cham­
pery, Switzerland.

[43) PDES: Product Definition Exchange using STEP. 1990. ISO CD
10303-42. (STEP = Standard for Exchange of Product Model
Data).

[44) Koifman. M .. Hall, J .. and Lindgren , T. 1992. "A framework for
object oriented CAD/CAM graphics : An application view," Pro­
ceedings ofthe Third Eurographics Workshop on Object-Oriented
Graphics, October 28-30. Champery, Switzerland.

Graphics Interface '94

