
182

Faster Evaluation of Quadratic Bivariate
DMS Spline Surfaces

Ron Pfeifie and Hans-Peter Seidel
Computer Graphics Group, University of Erlangen
Am Weichselgarten 9, D-91058 Erlangen, Germany

email: {pfeifle.seidel}(hnformatik.uni-erlangen.de

Abstract
We present a scheme for efficient ly evaluating bi­

variate quadratic simplex splines in the context of
the new B-spline scheme developed by Dahmen, Mic­
chelli and Seidel [DMS92] . An algorithm is pre­
sented, which is based on the careful reuse of the
partial results that arise when recursively evaluat­
ing simplex splines. The method is compared with
previous methods. A test implementation written in
"C" is found to execute 2.3 times faster than another
recent implementation not employing this algorithm.

Keywords : Spline Surfaces, Evaluation Algo­
rithms , Control Points, Recursive Evaluation, Mul­
tivariate Splines, Simplex Splines.

1 Introduction

Surface modelling has been an important activity in
CAGD for many years. The most successful sur­
face modelling schemes to date are curve techniques
that have been extended in order to represent sur­
faces, namely the Tensor Product B-spline and Ten­
sor Prod~tct B ezier methods [BBB87, Far93] .

Unfortunately, these extended techniques are not
without flaws . Since the surface patches that emerge
from ~hese schemes are essentially rectangular, it is
difficult to model more complex shapes. Triangu­
lar B ezier patches [Far93] , on the other hand , can
be used to represent more general surface patches.
This method can be used to define surfaces over ar­
bitrarily shaped (polygonal) domains. However, au­
tomatic maintenance of continuity properties is not.
possible under this representation.

Simplex spline methods [DM82, Hi:i182 , DMS92]
overcome these difficulties by being able t.o repre­
sent arbitrarily shaped domains, while automatically
maintaining continui ty properties between different

sections of a surface. The problem that these meth­
ods exhibit is that they are computationally more
expensive.

This paper addresses the computational expense
of evaluating B-spline surfaces built with the help of
simplex splines . We present an algorithm that accel­
erates the evaluation of quadratic simplex spline sur­
faces, by keeping track of partial results and reusing
them later during evaluation when possible.

The first part of the paper describes the mathe­
mat ics involved, and explains our method. Section 2
reviews the definition of simplex splines and that
of the DMS Spline scheme [DMS92, Sei91]. In Sec­
tion 3, we highlight previous methods for the evalu­
ation of simplex splines, explain our new method in
detail, and discuss its advantages and disadvantages
with respect to earlier methods.

The second part of the paper discusses implemen­
tation of the algorithm in theory and in practice.
Section 4 outlines the number of operations involved
in each step of the algorithm, comparing them to a
more naive evaluation algorithm. In Section 5, the
actual CPU usage of this algorithm is compared with
that of a recent implementation that does not use
our method. Finally, we present our conclusions and
suggestions for further work in Section 6.

2 Review
B-splines

of Bivariate

We begin by recalling the definition of the bivariate
simplex spline and its recurrence [Mic79], then we
examine the DMS Spline scheme of [DMS92] in a
bivariate quadratic sett ing. A good introduction to
D lIS Splines can be found in [Sei91].

Graphics Interface '94

2.1 Simplex Splines

Let V = {to , ... , tn+2 }, a collection of knots , and
u, an arbitrary point, be taken from 1R2. Then we
define the simplex spline M(ufV) as follows : For V =
{to , t1, t2},

M(It t t) = X[tll ,t l,t2)(U)
1£ 0 , 1 , 2 21.6. (to , t 1 , t2) I '

where X[tll,tlhl = { ~ if 1£ E [to , t) , t 2)
otherwise

(1)

is the characteristic function on the half-open convex
hull [to , t], t2) 1.

For V = {to, ... , tn+2}, n > 0, select three points
W = {tio' t il , ti2} from V , such that W is affinely
independent . Then

2

M(ltfV) = L Aj(uIW)M(ufV\{tiJ) (2)
j=O

where Aj (1£1 W) are the barycentric coordinates of u
with respect to the points of W. Although W is
almost completely arbitrary, M(ufV) is well-defined .

Simplex splines possess a number of properties
useful for geometric modelling:

• Piecewise Polynomial: Simplex splines are
piecewise polynomials of degree n.

• Locality : For points u outside the convex hull
of V , M(ufV) = O.

• Non-negativity : M (ufV) :::: o.

• Smoothness: For vertices ti E V in general po­
sition, M (ufV) exhibits Cn- 1 continuity.

2.2 The DMS Spline Scheme

The DMS Spline scheme described in [DMS92l makes
use of selected simplex splines over a triangulation in
order to form smooth piecewise polynomial surfaces.

Let T = {.6.(I) = [t ill' til ' ti2l11 = (io , i 1 , i 2) E
I c zt} be an arbitrary triangulation of 1R2 or some
bounded domain D C 1R2. Then given two domain
triangles I , J C I , we have that .6.(I)n.6.(J) is ei­
ther empty, or is a common vertex or edge of .6.(1)
and .6.(J).

1 A point u is in the half-open convex hull of {to , t l , t2} , if
there exists E > ° such that the set {u+s1]+t(I s , t > 0 , s+t <
E} lies entirely within the convex hull of those points , where (
is the horizontal unit vector in JR.2 and 1] a vector with positive
slope .

183

To each vertex ti is assigned a sequence of ver­
tices ti, l, ' .. ,ti,n, called its knot cloud, with t"o =
ti. They are assigned such that if domain trian­
gle .6. = .6.(1) has vertices to,t1,t2, then each set
{to ,i , tl,j, t2 ,d is affinely independent for all i,j,k =
0, . .. , n. Each vertex ti,l will generally be referred
to as a knot.

From these knots , we build simplex splines
M(uIV6 k) for each domain triangle .6. , and multi-

1. ,],

index i , j, k, where i + j + k = n , and

v; ~ le = {to 0 , ... , to i , t 1 0 , .. . , t 1 j, t2 0, ... , t2 k}
, , ' " " , (3)

for i,j,k:::: O.
The normalized B-splines are then defined as

N ,'j,k(U) = d~j,k M(ulV;~,k) ' with d~j,k > 0 being
twice the area of .6.(to ,i, t1 ,j, t2,k)' They form a global
partition of unity.

A surface F of degree n over the triangulation T
with knot net K = {ti,l li E Z, I = 0, ... ,n} is then
defined as

F(u) = L L c~j,kNi'j,k(U), (4)
6 ETi+j+k=n

where c6 k E 1R3 individually are the control points,
t,) ,

and collectively form the control net of the surface
F.

B-spline surfaces satisfy the following properties:

• Affine Invariance: In order to transform the en­
tire surface affinely (rotation , translation , scal­
ing, etc ...), we need only transform its control
points.

• Convex Hull Property : F(u) lies within the con­
vex hull of the control points.

• Local Control: Altering the position of C~j,k
only affects the parts of the surface defined over
.6. and immediately surrounding triangles.

• Piecewise Polynomial Representation: All
piecewise polynomia ls of degree n over the tri­
angulation T can be represented this way, giving
us a large set of functions with which to model
surfaces .

3 The Evaluation Algorithm

A number of methods for evaluating simplex splines
based on the recurrence formula (2) are found in the
literature. We begin with a review of them and then
present our method in detail.

Graphics Interface '94

184

3.1 Previous Methods

T he recurrence formula provides a means for evalu­
ating individual simplex splines at a point u in the
t riangulated domain . Each simplex spline can be
expressed as a sum of three simplex splines of lower
degree, themselves defined over fewer knots. Each of
these, in turn , can also be recursively evaluated unt il
we finally arrive at piecewise const ant functions over
groups of three knots.

At each stage of the recursion, we are free to
choose any three knots t i, tj and t k of the set of knots
to, . . . , tn of M (u lto, .. . , tn +2) in order to form the
recursion when t he t riangle formed by t i. t j and tl.:

is not degenerate.
One import.ant. quest. ion is which three knot.s we

should choose a t. each stage of the recursion . This
question is compounded when we consider various
spline spaces, where the basis functions for a spline
space are constructed from simplex splines t. ha t share
many knots [DM82, H6182, DMS92] .

Because the basis functions in each of these
splines spaces share so many knots with each other ,
the recurrence formula (2) encourages the conviction
that many partial result.s could be reused, given a
clever choice of knots for recursion. This observat.ion
has the potent ial of speeding up a recursive evalua­
tion scheme.

The naive approach does not consider part.ial re­
sult reuse: For some suitable choice of knots, all sub­
splines are completely re-evaluated at each stage of
the recursion, regardless of whether or not t. hese val­
ues have already been computed.

Grandine [Gra8?] discusses the reuse of partial
result in connection with the spline space described
in [DM82, H6182]. He charac t.erizes which splines
of lower degree cont ribute t.o more t.han one spline
of higher degree. Unfor tunately, Grandine discov­
ered that t he bookkeeping costs involved in storing
and retrieving already computed results were higher
than simply recomputillg them. Grandine attribu tes
this to the difficulty in "naming" par t. ial resul t.s­
essentially, a sub-spline is identified by the many
knots over which it is defined.

Gmelig Meyling [GM86] also discusses the reuse
of partial results in connection with the same spline
space, for the quadratic bivaria te case. The algo­
rithm defined there only performs one st.ep of t.he
recursion , evaluat ing the linear simplex splines di­
rectly rather than by using t. he recurrence. T his
method t.akes not.e of which part ial results can be
reused, and does so when possible. Gmelig Meyling
also exploits the exist.ence of a region within a do-

Figure 1: Filling a fi ve-sided hole.

main t riangle where a special form of the recurrence
may be used. This special recurrence only uses sub­
splines that are evalua ted more than once.

3.2 A New Method

Here we examine t.he possibility of reusing partial
results for the quadratic bivariate splines defi ned in
Section 2.2. In order to simplify the upcoming dis­
cussion, we will consider only a single domain tri­
angle b. = b. (1', s, t), with knot clouds {1'0, 1'1, 1'd ,
{ so, SI , S2 } , and {to , t l , t2 } '

Part of our goal will be to assign multi-indices
t.o each simplex spline that we use. These multi­
indices guide the selection of knots during recursive
evaluation.

Let us first define Mi,j,k(U) == M(u IVi,j,i.;}; for
example, M 2 ,o,o(v.) = M (lll1'o, 1'1,1'2, so, to). Thus we
have N;,),d u) = d;,j ,I.:Mi,j,l.: (u),

After hav ing int roduced indices that ident ify our
simplex splines, it. becomes t.empting to rewrite
Equa t.ion 2 in terms of index reduct ion, t.ha t is, in
the form

M . ,.(1£) ',J,')'o(u IWi, j,dMi-l,j,du) + (5)

),du IWi ,j,dM i ,j -l ,I.:(U) +
), 2 (u l Wi ,j,l.:)1\1i,j,l.:-l (u)

where W"j,k = {l 'i ,j,h Si,j,/";' t i,j,d C Vi ,j ,l.:' If we
assume for t.he moment that sets Vi ,j, k and W i,j,l.:
can be appropriately defined , then it. is clear which
part ial resul ts can be reused. In fact , this leads to
the pattern of reuse shown in Figures 2 and 3.

When i . j and k are positive, this formula does
indeed hold t rue; every set Vi,j, k is well-defined and

Graphics Interface '94

Wi ,j ,k = { Ti , Sj, td· Nevertheless, negative indices
appear very quickly; consider the recursive evalua­
tion of M 2,0 ,0 by this definition. Thus, we are left
with the problem of defining, in a consistent fashion ,
t he sets Vi ,j ,k and W i, j ,k when one or more of i , j
and k are not positive.

Vv"e will concern ourselves with the definition of
appropriate sets Vi ,j,k . Once these have been deter­
mined , the sets W i,j,k can be found using the equa­
tions:

{ Ti ,j,d

{s . k} 1.,) ,

{t i ,j, k }

Vi, j, k \ V i-],j,k ,

V i,j ,k \ Vi ,j- I, k ,

Vi ,j,k \ Vi ,j,k-I .

We start by extending our notation for collections
V ;',j,k (Equation 3) to include indices with value -l.
If an index is equal to -1 , then no knots from the cor­
responding knot cloud appear in the collection Vi ,) ,k '

For example, V 2 ,0 ,- 1 = {TO, 1'1 , 1'2, So }. Although this
is an arbitrary choice, it is a natural extention of our
notation and allows us to consistently use Equa tion 5
to recurse from quadra tic to linear simplex splines.

In order to recurse from linear to piecewise con­
stant splines , we must now define Vi,j,k for i + j + k =
o and i,j, k >= -2. The specific cases we need to
consider in order to complete our recursion scheme
are (up to a permutation of the indices) V o,o,o, V 1,-1,0

V 2, - I ,- I , V1,1, -2 a nd V2 ,-2 ,0. Of these, Vo,o ,o , V 1 ,-1 ,0

V 2,- I ,-1 have already been defined , leaving V 1,1,-2

and V2 ,-2,0.

1 V1,1, - 2 1 This set must be defined in order to evalu­

ate the linear simplex spline M 1,1,-1 (see Figure 3).
.1111,1,- 1 has the knot set V 1,1,-1 = { TO, 1'1 , So , s d .

The sets V O,I ,-1 and V 1,0,-] are formed by delet­
ing from VI ,I ,_ I the knots 1'] and S I , respectively.
In order that W I ,I ,_ I be properly defined , V I ,] ,-2

must either be the set { T I , so,s d or {ro,T] ,sd. We
choose to "steal" a knot from the cloud correspond­
ing to the index "previous" 2 to the negative index,
t hat is, we will drop So from V] ,] ,_] , giving V1,1,-2 =
{ TO , 1'] , S I} .

1 V2 ,-2,0 1 Simila rly to the previous case, we find tha t

V 2,- 2,0 is constrained to be eit her the set {TO, 1'2, to}

185

i, j , k W i,j,k Vi ,j ,k

2 0 0 T2,SO,tO 1'0 ,1'] ,1'2, SO, t o

0 2 0 TO ,S2, t O TO,SO,S],S2, to

0 0 2 TO, SO, t 2 TO , SO, t o,t I , t 2

0 1 1 TO, S] , t] TO , SO,S I ,tO, t]

1 0 1 T] , SO,t] 1'0 , 1'] , SO , to , t]

1 1 0 T] ,S], t o 1'0 , 1'] , SO, S] , t o

Table 1: The sets W i,j,k and Vi ,j,k for the quadratic
simplex splines .

i,j, k W i,j ,k Vi,j,k

0 2 -1 TO, S2 , So TO, So , S] , S2

-1 2 0 So, S2, t o sO,S],S2, t O

1 1 -1 TI , S] ,SO TO, T] , SO , S]

0 1 0 TO, S] , t o TO ,SO,S] , t o

-1 1 1 t o,s] , t] SO,S I , tO , t]

2 0 -1 T2,SO, TO 1'0,1'] , 1'2, So

1 0 0 TJ , So , t o 1'0 , 1'] , So, t o

0 0 1 TO , So , t] TO , So, to , t]

- 1 0 2 t o , So, t 2 so, t O, t] , t 2

2 -1 0 1'2, TO, to 1'0,1'1, 1'2, to

1 -1 1 1'] ,1'0, tl TO , 1'] , t o, t I

0 - 1 2 TO, t o, t 2 TO, to , t l , t 2

Table 2: T he sets W i,j ,k and Vi,j,k for the linear sim­
plex splines.

The knot sets for all other piecewise constant
M i,j ,k'S can be defined analogously. For example,
V- 2 ,2,0 = { SI, S2, t o } · Tables 1,2 and 3 give the con­
tents of the various W i,j,k and Vi ,j,k sets .

We have succeeded in defining M i,j ,k for i + j + k
from 0 to 2. In order to evalua te the basis functions
Ni ,j,k a t a point u , we first compute the piecewise
constant simplex splines at tha t point (Equation 1).
Those results a re used to compute the linear simplex
splines, which in turn are combined to evaluate the
quadra tic simplex splines. This tabula tion of par­
t ial results and later reuse is a form of the famili a r
dynamic programming paradigm [AHU74, pages 67-
69].

or { T I , T2 , t O} . Both choices are consistent: We
choose to define V 2,-2 ,0 as { T] , 1'2, t o } . 3.3 Discussion

2T here are two equiva lent ways of defining "previous". Let
r <l s rep resent ' r is prev ious t.o s'. T hen t he two formulat ions
are,. <l s <l t <l rand r <l t <l s <l r . We arb i trarily choose to
use t he first fo rmulation .

It is worth discussing some of the advantages and dis­
advantages of t his method in comparison wi t h other
schemes:

~
"'''' < .

~
.: .: '~\.

,.' "

: .- Graphics Interface '94

186

M M
0,2,-1 -1 ,2 ,0

~M/
0,2,0

M " k I,j , linear spline

M M t M

M " k I,}, quadratic spline

1,1,-1 0,1,0 - 1,1,1

~M ~M /
1,1,0 0, 1,1

M Mt Mt M
2,0 ,-1 1,0 ,0 0,0,1 -1 ,0,2

~M~M~M/
2, 0,0 1,0,1 0,0,2

t t t
M

2,-1,0
M

1,-1 ,1
M

0,-1 ,2

Figure 2: Constructing quadratic simplex splines from linear ones, reusing part ial results wh enever possible.

i ,j, k Vi ,j,k i, j , k Vi ,j,k

0 2 -2 1'0, 8], 82 -1 0 1 8 0 , to , t]

-1 2 -1 8 0 ,8] ,82 -2 0 2 80 , t] , t 2

-2 2 0 8] ,82, t o 2 -1 - 1 1'0, 1'] ,1'2

1 1 - 2 1"0 , 1'], 8] 1 -1 0 1"0, 1'] , t o

0 1 -1 1'0 ,80 ,8] 0 - 1 1 "/'0 , to , t]

-1 1 0 80,81, t o -1 -1 2 to , t] , t 2

-2 1 1 80,8 1 , tl 2 -2 0 1" [,1'2, t o

2 0 -2 1"] ,1"2,80 1 -2 1 1'] , to , t)

1 0 - 1 1"0, 1"[,80 0 -2 2 1"0, t l , t 2

0 0 0 1'0 ,80, t o

Table 3: The sets Vi ,j,k for the piecewise constant
simplex splines

Determin ism

Grandine and Gmelig Meyling spend considerable ef­
fort selecting knots at each level of the recurrence.
Their choice of knots depends on the location of
the parameter point 11, within the parameter domain .
Our scheme, which fixes the choice of knots, evalu­
ates the recurrence without the penalty of run-time
knot selection , This has the disadvantage that the
barycentric coeffi cients computed can be negative,
which could lead to a loss of precision ,

Grandine's difficulty with the storage and re­
t rieval of sub-calcula tions is ameliora ted by our
method , because our partial results can always be
identified by their mul ti-index.

This scheme also provides a way for part ial resul ts

. . .-

to be shared between adjacent triangles, Ma ny lower
order simplex splines evaluated by this technique use
knots from only two of the three knot clouds avail­
able for consideration . These knot clouds are shared
by neighbouring domain triangles.

If the vertices of neighbouring tria ngles are ori­
ented in opposite directions , then the "previous" re­
lationship described above will be preserved for their
common vertices, and some partial results used in
evaluating simplex splines in one tria ngle can be
reused in neighbouring ones, Note, however , that
it is generally not possible to consistently orient a
triangulation globally such that neighbouring trian­
gles have opposite orienta tions.

Knot Placement

Our method is designed to compute the normalized
B-splines where knots are in general position. Note
that the new method breaks down in cases where sev­
eral knots become collinear , because some of the sets
W i,J, k or the knot. sets V = {t o ,t] , t 2} used in eval­
uating the piecewise constant simplex splines may
not be affinely independent . Thus, a more compli­
cat.ed evaluat ion scheme must be employed if knot
lllultiplicities are used,

Generalizing to H igher D egree Splines

The success of this indexing scheme seems to rely on
the fact that bivaria te quadratics a re being calcu­
latpd, The choice of having an index of -1 repre ent

~
.... " . ..".

"'~" ""': '
: . - Graphics Interface '94

187

M 0,2,-2 ~1,2,-1 M_2,2,O

~M ~M / Mi,i,k
0,2,-1 -1,2,0

piecewise
constant spline

t t M~k
M M M M

linear spline

1,1,-2 0,1,-1 -1,1,0 -2,1,1

~M~M~M/
1, 1,-1 0,1,0 -1.1 , 1

M Mt Mt Mt M
2,0,-2 1,0,-1 0,0,0 -1,0,1 -2,0,2

~M~M~M~M/
2,0,-1 1,0,0 0,0,1 - 1,0,2

Mt Mt Mt Mt
2,-1,- 1 1,-1,0 0,-1 ,1 -1,-1 ,2

~M~M~M/
2,-1,0 1,- 1, 1 0,-1,2

Mt Mt Mt
2,-2,0 1,-2,1 0,-2,2

Figure 3: Constructing linear simplex splines from piecewise constant ones, reusing part ial results whenever
possible.

the absence of any knots from a particular knot cloud
leads to a consistent indexing scheme for quadratic
surfaces. It is unclear , however, that this choice
forms an appropriate starting point for surfaces of
greater degree . Without such a starting point , one
must develop a much larger set of arbitrary rules in
order to define, for example, the sets V3 ,- 2,- 1 and
V1 ,-3,2, which arise in the case of a cubic surface.

Other Enhancements

Gmelig Meyling makes use of the existance of a re­
gion wi thin each domain triangle where a faster eval­
uation algorithm can be employed to evalua te the
basis functions of the [DM82, Hbl82j scheme. The
DMS Spline scheme exhibi ts a similar region , where
a variant of the "de Boor" algorithm can be used to
evaluate the surface .

4 Computation Costs

We wish to describe the number of opera­
tions involved ill computing a linear combination
L i+j+k=2 Ci,j,k N i ,j ,d u) using the technique outlined
above, over a single domain triangle. We defer to
Section 5 discussion of the CP U usage of an actual
im plementation .

Here is an accounting of the operations required
by this method:

• Computing the area of each piecewise constant
knot set requires the evaluation of a determi­
nant. This must be done for each of the 19 piece­
wise constant splines , but need only be done
when the knot locations are established , and not
each time a point is evaluated .

• The characteristic function x[) must be cal­
culated for each of the 19 piecewise constant
splines, which is essent ially the computa tion of
a set of barycentric coordinates3 .

• For each of the 12 linear and 6 quadra tic splines,
the algorithm calculates a set of barycent ric co­
ordinates for u.

• For each of the 6. normalized B-splines, a nor­
malization factor is calcula ted (one determi­
nant). These normalizing factors are fixed for
a given set of knots , and can be pre-calcula ted .

Therefore, once pre-calculation is done, (6 + 12 +
19 =) 37 sets of barycentric coordinates are calcu­
lated for each evaluated point 1L . If a normal vector
at F(u) is also desired , this can be found with an
additional two barycentric coordinates calcula tions,
since t he derivative evaluation formula for simplex

3For a point u ly ing direct ly on t he bounda ry of t he t r iangle
~ , more work needs to be done to determine if u is wi t hi n the
ha lf-open convex hull.

Graphics Interface '94

188

Figure 4: A chess piece composed of over 250 patches
with control net.

splines makes use of the same partial results as the
recursion scheme [FS93].

In contrast to this are the results for the naive
approach. The naive approach calculat.es a set of
barycentric coordinates for each of t.he 6 quadrat.ic
splines, a set of barycentric coordinates for each of
the 18 linear sub-splines defined by recursion , and
the x[) function for each of the 54 subsequent piece­
wise constant sub-splines, for a total of 78.

5 Numerical Results

Now we compare the actual CPU usage of an im­
plementation in "COl of this a lgorithm, as com­
pared with the evaluation algorithm implemen t.ed in
[Fon92, FS93], over a single domain triangle.

The computer system used for measurement was
the IRIX 4.0.5H operating sys tem, running on a Sil-

Algorithm 30056 one
points point

Fong 10.41 s 346 J.LS
New 4.47s 149 J.LS

Table 4: CPU usage for both algorithms.

icon Graphics Indigo XS24-4000.
104 points from an equally spaced triangular grid

(lying completely within the domain triangle) were
evaluated by both algorithms, repeated so that a to­
t.al of 30056 point evaluations were performed, and
CPU usage was measured. This was repeated 10
times, and the average taken. The results given in
Table 4 show that the new method is roughly 2.3
times faster than t.he previous implementation.

6 Conclusions
Work

and Further

We have presented an algorithm for efficiently evalu­
at ing quadratic bivariate B-splines, whose knots are
in general position, by careful reuse of partial results
during calculation. It compares favourably with pre­
vious techiques in terms of number of operations per­
formed per evaluation. Moreover, when compared
in implementat ion against another technique, this
method ran roughly 2.3 times faster.

There are a number of a reas discussed where fur­
t.her investigation is warranted . One is the investiga­
t.ion into whether there exists some extension of this
technique that will work in the evaluation of higher
degree splines. Another is the search for a means
of altering this t.echnique so that it will work with
the more general knot configurations permitted un­
der the DMS Spline scheme. A fin al direction would
be to establish exactly which partial results for B­
splines defined over one triangular domain could be
reused by overlapping B-splines defined over neigh­
bouring triangles .

Acknowledgements

\"le would like to thank our anonymous referees for
t.heir helpful comments and crit.i cisms.

References

[AHU74] A.V. Aho, J.E. Hopcroft , and J .D. Ullman.

Graphics Interface '94

The Design and Analysis of Computer Al­
gorithms. Addison-Wesley, 1974.

[BBB87] R.H . Bartels, J .C. Beatty, and B.A.
Barsky. A n Introduction to Splines for
tLSe in ComptLter Graphics and Geometric
M odeling. Morgan Kaufmann Publishers,
1987.

[DM82] W. Dahmen and C. A. Micchelli . On
the linear independence of multivariate
B-splines, 1. triangulations of simploids.
SIAM J. Numer. Ana!. , 19(5):993- 1012 ,
October 1982.

[DMS92] W . Dahmen, C. A. Micchelli , and H.-P.
Seidel. Blossoming begets B-spline bases
built better by B-patches. M athematics of
Computation, 1(1):97- 115, July 1992.

[Far93] G .E. Farin. Curves and Surfaces for Com­
puter A ided Geometric Design. Academic
Press, 3. edition , 1993.

[Fon92] P . Fong. Shape control for multiva riate
B-spline surfaces over arbitrary triangula­
tions. Master 's thesis, University of Wa­
terloo, 1992.

[FS93] P . Fong and H.-P. Seidel. An implemen­
tation of triangular B-spline surfaces over
arbitrary t ria ngulations. Computer A ided
Geometric Design, 10:267- 275, 1993.

[GM86] R. H. J . Gmelig Meyling. Polynomial
Spline Approximation in Two Variables.
PhD thesis, University of Amsterdam,
1986.

[G ra87] T . A. Grandine. The computational cost of
simplex spline functions. SIAM J. Numer.
A nal., 24(4):887- 890 , August 1987.

[H6l82] K. H6llig. Multivariate splines. SIAM J.
Numer. A nal., 19(5): 1013- 1031 , October
1982 .

[Mic79] C. A. Micchelli. On a numerically effi ­
cient method for computing multivariate
B-splines. In W. Schempp and I<. Zeller ,
editors, Multivariate Approximation The­
ory. Birkhauser, Basel, 1979.

[Sei91] H.-P. Seidel. Polar forms and t riangular B­
Spline surfaces . In Blossoming: The N ew
P olar- Form Approach to Spline CtLrVes

Graphics Interface '94

189

and Surfaces S IGGRAPH '91 COtLrSe
Notes # 26. ACM SIGGRAPH, 1991.

