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Abstract 
Network supervisory control systems (such as those 
used in telecommunications) are characterised by very 
large information spaces, highly concurrent activity and 
time-critical response requirements. The user interfaces 
are typically so complex that the task of manipulating 
the interface interferes with the tasks of managing the 
underlying system. This paper presents the intelligent 
zoom, a technique based on a fisheye-Iens paradigm that 
combines dynamic representation aiding with a dis­
torted-view algorithm which permits multiple "focus 
points" while maintaining the overall network context. 
The merge of adaptive data presentation, "detail-in-con­
text" views and direct manipulation provides a more 
seamless path through the information space, and is well 
suited to working with nested levels of detail in network 
displays . A distributed reasoning architecture based on a 
multi-threaded programming style ensures efficient per­
formance. 

Resume 
Les systemes de controle supervisoires de reseau 

sont characterises par de tres grands espaces d'informa­
tion et un grand nombre d 'activites concurrentes . En 
plus , l'operateur est oblige de reagir aux evenements 
sans delai dans les periodes criticales . Les interfaces 
sont souvent si complexes que la navigation et la manip­
ulation de l'espace d'information nuisent a la tache prin­
cipale - la gerance du systeme de controle et du proces . 
Cette oeuvre presente le zoom intelligent, une tech­
nique base sur une deformation "fish-eye" qui combine 
une presentation adaptive avec un algorithme pour creer 
des vues deformees qui permet la visualisation de plu­
sieurs points d'interet meme en maintenant le contexte 
du reseau. L' ensemble d'une presentation adaptive des 
donnees, une vue de details en contexte, et la manipula­
tion directe donne une representation du domaine dans 
laquelle il est plus facile a naviguer, et qui est bien 
adaptee a l'interpretation de plusieurs niveaus de details 
hierarchiques. 
Keywords: graphical user interfaces, adaptive data pre­
sentation, graph visualisation 

Introduction 

Supervisory control systems (henceforth SCS), such 
as those used in network management, are characterised 
by very large information spaces, highly concurrent 
activity and time-critical operator and system response 
requirements . The extent of these systems has grown 
enormously in recent history, and the role of the opera­
tor has evolved from low-level manual control to a high­
level supervisory function . However, the user interfaces 
typically still reflect the physical process at a low level 
of detail. Such "one sensor, one display" interfaces[ 11] 
are overwhelmingly complex; operators are often faced 
with using hundreds of displays and thousands of data 
points in their tasks of monitoring and controlling the 
physical system. 

Problems arise because the task of managing the 
interface (finding the information, interpreting it and 
carrying out the controls in a timely manner) imposes 
sionificant coonitive overhead and impedes the task the 

'" '" interface is supposed to serve: managing the control sys-
tem and physical process . 

Our goal is to provide support for the operator by 
off-loading some interface management, freeing the 
operator to concentrate on his primary function. A sig­
nificant part of the operator's interface manipulation 
task involves amassing suitable information to provide 
proper working context. One way of reducing interface­
imposed overhead is to convey information to the user 
in a context-dependent manner : that is, dynamically 
configuring the display to present information that is 
consistent with current and previous status (alarm) mes­
saoes from the SCS and current and previous user 

'" manipulations of the interface. We take a bifurcate 
approach to building a context-dependent network dis­
play by (a) providing detailed views within the overall 
network view (maintaining both local and global con­
text) , and (b) dynamically determining the most appro­
priate representation for the data at the current detailed 
area of interest given the current system and interface 
state. 
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This paper describes the intelligent zoom (IZ), an 
interactive display technique that utilizes adaptive data 
presentation within a "fisheye view" of the overall net­
work to provide a dynamic, context-dependent network 
display. Fisheye views (such as those reported in [5][12) 
[15][ 16)) show local detail in full while displaying suc­
cessively less detail further from the area of attention 
and have proven effective in easing the "lost in space" 
problem associated with large information spaces(16) . 
The adaptive presentation algorithm is distributed 
across special reasoning agents. While the rules in each 
agent are very simple, they combine to produce the type 
of complex behaviour which normally requires a sophis­
ticated and complete expert system. 

Motivation 
Our main goal is the investigation and development 

of techniques which produce context-sensitive interface 
behaviour without imposing extra overhead upon the 
user. The following research issues comprise the focus 
for this work: 

• Coherent representation of large information spaces : 
how to organize the information space to be both 
usable and navigable by the user, while maximizing 
the use of limited display resources. 

• Adaptive presentation: the problem of deciding dis­
play content based on information available at the 
time the display is produced; how to reconfigure the 
presentation methods on-line as operational condi­
tions change and as the operator manipulates the user 
interface. (This is also termed intelligent presenta­
tion (13).) 

• Dialogue management: how to best provide assis­
tance in the management of communication between 
operator and control system in an environment of 
multiple, interrupting tasks. 

Problem Statement 
The task modelled is that of presenting, navigating, 

and interacting with a network of connected nodes , 
much like that encountered in network-based control 
systems found in the telecommunications and utility 
domains. Displays in such systems are usually orga­
nized as a set of fixed viewing configurations: multiple 
views of data are presented in different displays, such 
that it is impossible to simultaneously view a trend 
graph of one node with a schematic of another in the 
context of a unified display(6). We want the interface to 
choose the best view of the network given the current 
operating context of alarms and user manipulations . 
Furthermore, representations should be correlated to 
alarm type, e.g., a door ajar alarm suggests a live video 
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representation rather than a device schematic (an 
attempt to infer, in some sense, what the SCS is trying to 
say.) 

We treat context-dependent presentation in a large 
information space as a problem of managing limited 
operator(user) and system resources (13)[14). Operator 
resources are perceptual and cognitive modalities: the 
human cannot interpret the entire data space at once. 
System resources are the physical aspects of the inter­
face, the most obvious of which is screen space: not all 
system data can be portrayed simultaneously. The 
demands for these limited resources must be mediated 
in an appropriate and timely manner, indicating a need 
for active reasoning. But the notoriously slow perfor­
mance of the reasoning architectures used in standard 
expert systems (ES) renders them unsuitable candidates 
for SCS interfaces: clearly, an alternative approach must 
be used. 

The Intelligent Zoom 
The IZ combines the continuous zoom (CZ) algo­

rithm with dynamic, adaptive representation choices for 
data visualization. The continuous zoom is a distorted­
view technique suited to viewing of nested levels of 
details in hierarchically-organized network displays. It 
evolved from the variable zoom reported in (16) and 
extends the fisheye paradigm of (5) and [15) by support­
ing multiple detailed views, or fqcus points. It manages 
the display space by allocating more space to certain 
areas (nodes in the displayed network diagram) at the 
expense of others without removing or occluding the 
containing context. However, it is insensitive to the con­
tents of the nodes: it is merely responsible for determin­
ing size and placement of nodes within some thresholds. 
In the taxonomy described above, we consider the zoom 
algorithm to be a knowledge source which manages and 
renders the display space resource. 

In the CZ, the user views and navigates through a 
hierarchically-structured network of nodes and links, 
where nodes are of type either cluster or leaf. Cluster 
nodes are top- and intermediate-level in the hierarchy 
and contain clusters of children, who are in turn cluster 
or leaf nodes. Leaf nodes provide access to system data 
in the actual physical or logical points in the network. 
Nodes can be opened (showing the contents) or closed. 
The size of a node can be altered "continuously": that is, 
the user can expand and shrink it smoothly without 
opening or closing it. The size of a node depends on the 
size of its siblings and the size of its parent. The size of a 
parent is quasi-independent of the size of the children. 
The user makes a node n larger by: 

• opening it; 
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a b 
FIGURE 1. Continuous zoom displays before (a) and after (b) a second focus point is selected 

• zooming in on it; 

• shrinking/closing its siblings; 

• shrinking/closing the siblings of its parent; or 

• zooming one of its children beyond the maximum 
size that child can be in the current size of the node, 
thus causing the parent (n) to grow to accommodate 
the child. 

Whenever a node is resized, it affects the size of 
other nodes in the network display. A node grows by 
claiming space from other nodes, thus causing them to 
shrink; the inverse is of course also true. The space is 
reclaimed from the siblings of the node, until the node 
has grown to its maximum within the parent ; then the 
parent is expanded at the cost of its siblings, and so on 
until the top level is reached. There is a limit on how 
small a node can become, imposing an implicit upper 
bound on how big a node can be (since a node cannot 
cause its siblings to become too small). This ensures that 
a detailed view of one node does not remove the overall 
context: there is always a "complete" view, which may 
consist of mixed hierarchical levels of detail (Figure 1). 

While it takes only one user action , opening a node 
actually affects two aspects of the node's visual state: it 
becomes transparent, so that its contents are visible, and 
it becomes larger. The aspect ratio of a leaf node is fixed 
to that of its current representation; the aspect ratio of 
cluster nodes varies. 

Our example network has 45 leaf-level nodes and 3 
hierarchical layers using 17 intermediate cluster nodes. 
Leaf nodes are considered to be the actual locations of 
interest to the operator/user (in that they represent actual 
physical or logical points in the network which the oper­
ator monitors) ; cluster nodes provide a convenient 

abstraction and a source of summary information . In this 
first version we were only concerned with leaf-level rep­
resentation aiding. 

Seven representation types were arbitrarily chosen 
as possible visualisations of the information in the leaf 
nodes : 

I. schematic (a diagram of the devices and layout 
of the particular node); 

2. a bar chart of analog values; 
3. a trend diagram (a yt plot) ; 
4. video (currently a bit map); 
5. text ; 
6. icon ; and 
7. closed. 

Each representation has a minimum resource 
requirement and is more appropriate for certain condi­
tions than other representations. Examples of resources 
are hardware/software (e.g., there can only be one video 
display at a time) ; cognitive (i .e ., the demands on the 
user's comprehension and perception when interpreting 
combinations of representations) and display (e .g ., 
colour and spatial requirements). 

Reasoning: The "Intelligent Agents" 
Adaptive presentation (specifically, suggesting a 

representation for each open node that the user has not 
explicitly specified) is the task of special reasoning 
agents (henceforth IAs) . The reasoning task is difficult 
because interface resources are limited . In order to 
effectively solve this problem an interface must provide 
explicit support for the allocation of limited interface 
resources and for representation aiding [ 19] ; i.e ., choos­
ing a contextually appropriate representation for data . 
We have proposed intelligent mediation (lM) [13] as an 
architecture and methodology for context-sensitive pre-
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sentation that encompasses both resource allocation and 
representation aiding. 

IM identifies the allocation of limited interface and 
human cognitive resources as the key problem in inter­
face design. Specifically, IM: 

• enforces a local encapsulation of knowledge particu­
lar to resource allocation, with separate and specific 
classes of mediators for each limited resource; 

• specifies behaviour akin to a "semantic spreadsheet", 
such that resources are redistributed in response to 
change, rather than reallocated from scratch (reason­
ing is on-line rather than batch); and 

• provides a framework for representation aiding. We 
treat representations as a limited resource; IM per­
mits a mechanism for choosing appropriate represen­
tations given current operating context. 

In the intelligent zoom, leaf nodes must compete for 
a limited set of representations. During this competition, 
we prefer that the more important nodes receive the best 
choices. That is, the representations mediator should use 
the degree-of-interest (001) [5] as a mechanism for set­
tling resource contention: nodes with the higher 001 
receive the representations most appropriate for their 
state. Nodes with a low 001 receive whatever resources 
are left. 

A 001 is calculated for each node in the network. 
The 001 is a function of four things: the node's a priori 
importance, alarm state, connectivity to other important 
nodes, and the perceived user interest in the node. The 
latter is determined by user actions to open (increases 
001) and close (decreases 001). Funke et al. describe a 
similar formula for calculating the importance of a tiled 
window in an intelligent window management sys­
tem[4]. 

The knowledge encapsulated within the reasoning 
agents is therefore: 

I. how to calculate the 001, i.e.,what constitutes 
importance from the standpoint of the domain 
and user interaction ; 

2. the appropriate mapping from alarm state to 
node representation ; 

3. constraints on the allocation of interface re­
sources to node representations; and, 

4. how to best suggest a representation for an 
opened node given the knowledge of 1-3. 

Intelligent Zoom = Continuous Zoom + 
Intelligent Agents 

The interface is affected by two sources : the SCS 
and the user. SCS information comes as either status (for 
example, alarms) or data. The user changes the interface 
by enacting VI controls on cluster and leaf nodes. There 
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are five atomic user actions to control the interface: 
1. open a node (all) - turns the node transparent, 

enlarges it, and displays its contents. In the case 
of a leaf node, the contents will be in the repre­
sentation suggested by the reasoning agents; 

2. open as a specific representation (leaf) - opens 
the specified representation and resizes as in 
(1); 

3. close a node (all) - opacifies and shrinks the 
node; 

4. make a node larger (zoom in); and 
5. make a node smaller (zoom out) . 

While the system recommends representation strate­
gies, we don't force these on the user. The system does 
not change the pri mary representations of the nodes 
without the user's explicit permission - hence the dis­
tinction between (1) and (2) above. 

A new DOl will result if either the system state of 
the node (according to status from the control system 
and domain reasoning components) or its user state (as 
when the user opens or closes it) changes . In cases 
where opening a node involves resource mediation 
(such as in the command open, or in the example of the 
user requesting more than one video representation 
when only one may be active at a time), the interface 
must determine an appropriate substitute representation, 
and suggest it. Note that of course there are pathological 
cases where the requirements cannot be satisfied with 
respect to space, and the interface has to prompt the user 
to free up some space, indicating the most likely (i .e., 
lowest 001) candidate nodes to be closed or reduced. 

Because of the way the zoom works, any change in a 
node's size results in changes to other nodes' sizes as 
well. The interface detects when any node representa­
tion falls below a minimum size threshold and suggests 
an alternate representation. 

There are thus two loosely-coupled tracks of concur­
rent behaviour in the IZ. User actions cause recalcula­
tions of the DOls ,and representations subsequently 
suggested by the system; changing DOls (from system 
status) and the indication thereof will suggest certain 
user actions (such as opening or closing nodes) . The 
resulting "feel" is one of symbiotic (user and system) 
effort in the task of manipulating the complex data envi­
ronment. 

Agent Dialogues 
The objective is to provide the user with the most 

appropriate representation for a node based on domain 
information, user and system resources . As stated 
above, the IAs evaluate both the state of domain , user 
and system resources , and the interface context; then a 
representation for each node is suggested to the graphics 
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agent. The zoom software constitutes the graphics agent 
(henceforth GA): it maintains the screen space and 
attempts to satisfy the requests for representation. These 
agents negotiate until an acceptable solution is reached, 
basing decisions on the DOl, as follows. 

1. The IAs send the 001 and representation values 
for each node whose 001 and/or suggested rep­
resentation has changed since the last communi­
cation. 

2. The GA sorts all nodes on their assigned DOIs, 
and then attempts to render the representations 
suggested starting from the highest 001. Note 
that its sole criterion for satisfying the request is 
whether the minimum space requirements of the 
representation can be allocated to the node: 
thus, the GA is the agent controlling the space 
resource. 

3. If the GA cannot allocate enough space to the 
node, it requests another representation. 

In this way all agents use the 001 as a basis for 
resource allocation. 

For each (leaf) node, the IAs calculate a 001 and the 
(first choice) representation, and communicate this to 
the GA. Only the GA has any notion of hierarchy and 
the intermediate cluster nodes : the IAs reason only 
about the actual logical nodes representing monitored 
points in the controlled physical system. The GA keeps 
track of all DOls : leaf node DOls are explicitly sent , 
while intermediate nodes " inherit" the 001 of their most 
interesting (highest 001) child. The GA sorts the list 
of all nodes on their relative DOIs and attempts to sat­
isfy the spatial requirements of the suggested represen­
tation for each node. It does so by working "down" the 
list (from most to least important) , first allotting space to 
the most important node, and then gradually reclaiming 
space for each successive candidate from the space allo­
cated to the preceding more important nodes until either 
the current node gets sufficient space or the representa­
tion spatial needs of a more important node would be 
breached. If there is insufficient screen space to render 
the representation the GA " fails", requesting another 
representation suggestion for the node in question. Since 
there is always a representation that can fit into the min­
imum size of a node, and because the procedure does 
not backtrack to preceding nodes in the list, this imple­
ments a tractable algorithm for allocating screen space. 

Architecture 
Traditional architectures for intelligent user inter­

faces have centred around what we call the two mono­
liths approach. In this case , the interface is comprised of 
two sharply delineated components : an expert system 
(ES) and a graphical user interface[I][3][14][17J . The 

two are separate processes that communicate via some 
arbitrary protocol. The ES is often implemented using a 
commercial. rule-based shell and populated with human 
factors knowledge about interface configuration; this 
knowledge base determines the GUI content while the 
system is running. The popularity of this approach likely 
resulted from a convergence of AI and GUI practitio­
ners, but without a resulting unification of approach : 
appending an ES to a GUI seemed easier than develop­
ing a new paradigm. t Related approaches to context­
sensitive GUls have large constraint solvers embedded 
in the GUI code itself, making the GUI difficult to main­
tain and extend, and limiting the reasoning functionality 
to that which can produce a tolerable response 
time[8][lOJ. 

Such architectures result in systems where the ES -
in response to external events - is continually queried 
about the state of the GUI. The ES is an attempt at a 
complete theory of the GUI ; a repository of everything 
known about how the interface should be configured in 
any given situation . Constructing such a knowledge 
base requires an extensive knowledge engineering and 
knowledge validation effort . 

The two monoliths approach has many shortcom­
ings . The severest of the se problems is timeliness : 
because the reasoning is in the form of a backtracking 
search procedure, a guaranteed response time is either 
impossible or costly in terms of solution quality. Since 
interactive time-critical systems (like SCS 's) are prima­
rily driven by external events (user and process ). 
responsiveness is fundamental. One might therefore ask, 
is search appropriate at all? Perhaps the AI paradigm of 
"problem solving is search" is entirely inappropriate. 

There are other problems with the two monoliths: 
I. Redundancy of representation : both the ES and 

the GUI require a model of the domain and a 
model of the interface, which are therefore re­
dundantly represented and updated in both com­
ponents. 

2. Cost: expert system shells - particularly those 
that claim to support real-time reasoning - can 
be very expensive. As well, their astonishing 
appetite for memory and CPU cycles can dictate 
a necessity for distribution to a separate work­
station, thus doubling the hardware costs. 

3. Delineation of task: systems built upon this ap­
proach will tend to place all reasoning within 
the ES , regardless of whether or not it is more 
appropriate to leave some of the reasoning to 

t Borenstein describes this phenomenon as the result of Al researchers 

looking to Hel as an outlet for their view of AI without any real 

concern for the problem itself[21. 
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FIGURE 2. The Architecture of the Intelligent Zoom. 

the GUI itself. For example, 2D layout of inter­
face components is best reasoned about using 
the graphics algorithms within the GUl. 

4. The ES artifact: the event-query-response cycle 
- whereby an event occurs, the ES reasons 
about it, and then the interface changes - reveals 
the ES as an obvious artifact of the interface. 
(Explicit menus of "ES suggestions" are an ex­
treme example of this phenomenon.) This often 
results in the effect of "clumsy automa­
tion"[ 19], where the interface complexity is ex­
acerbated by the need to manoeuvre around the 
extra functionality. 

We believe that the first step towards a graceful 
adaptive interface is to make the expert system disap­
pear. This requires substantial re-thinking of the two 
monoliths paradigm. Rather than encapsulate complete 
knowledge of the interface in a separate reasoning com­
ponent , we argue that "intelligence" should be embed­
ded within the graphics techniques and distributed as 
independent processes that manipulate the objects com­
prising the interface. 

In this approach, " intelligence" takes the form of a 
collection of simple, autonomous knowledge sources 
(also called agents, or tasks or processes because of their 
natural correspondence to multiprocessing entities) . 
Effective behaviour results from the sum of the parts, 
not because of one single part . This type of design falls 
into the category of AI blackboard systems [7] and is 
consistent with modem approaches to real-time operat­
ing systems[18]. There are three components to black­
board architectures : blackboards, knowledge sources, 
and schedulers . A blackboard is a globally accessible 
data structure. Blackboards are read from and written to 

by knowledge sources. A knowledge source is an inde­
pendent task that encapsulates some small piece of pro­
cedural or declarative intelligence. The knowledge 
sources only communicate with each other through 
changes to the blackboard(s). A scheduler is responsible 
for serializing the inherently parallel execution of the 
system. Schedulers invoke knowledge sources, act as 
semaphores for the blackboards , and ensure real-time 
response. A task is only scheduled if a technique it sup­
ports is presently active and if the message content will 
be of interest. The scheduler must also decide the order 
in which the tasks are executed, and, in the face of 
increased system activity, whether to execute certain 
(slower) tasks at all 

The knowledge sources are independent tasks that 
read from and write to this collection of blackboards. 
The key concept is that each GUI technique is encapsu­
lated as a set of tasks that together render the technique, 
capture user interaction, and reason about its inter-con­
textual presentation. 

The advantage of the blackboard approach is the 
resulting unified view of graphics and intelligence sim­
ply as tasks interacting with common data structures. A 
simplified software development environment results . 
The strict delineation of tasks and the ES artifact are 
gone : knowledge is free to reside where appropriate . 
Efficient performance is achieved as the schedulers can 
gracefully degrade the activation of less critical tasks 
during high tempo operation. Moreover, it is relatively 
easy to reconfigure the behaviour of the interface as it 
simply requires a change to a task, the removal of a task, 
or the addition of a task. Since the tasks are isolated and 
independent , the problem of interfering and inconsistent 
knowledge endemic to large rule-based expert systems 
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can be, if not defeated, at least axiomatised. 

Implementation 
The implementation of the intelligent zoom incorpo­

rates the continuous zoom in the graphics agent and an 
intelligent mediation (lM) approach using the black­
board architecture described above. In the first develop­
ment phase the tools we needed were unavailable on a 
single platform: graphics development was done on an 
SGI, while the reasoning components were realised on 
an HP720, where the best multitasking support resided. 

Figure 2 shows the current architecture, where ovals 
represent tasks, rounded boxes are blackboards and 
rectangles procedural modules. 

The graphics agent of the IZ is a single Unix process 
with two concurrent "threads". User actions directly 
manipulate the zoom and affect the state of the interface; 
the lA events set the 001 and representations which are 
then used to reconfigure the parts of the interface not 
directly controlled by the user. 

When Rendering is invoked, it asks the Zoom Algo­
rithm to redistribute the space such that the most impor­
tant nodes get "first crack" at their desired 
representations. If it cannot, the GA fails and sends a 
message back to the GUI Handler, requesting another 
representation suggestion for the node in question. Since 
display changes are usually close to incremental 
(changes are not requested for every leaf node at each 
message or user request) , the GA need only sort the 001 
table, compare current representation assignments with 
the requested, and pick up in the 001 list at the point 
where these diverge, since it does not backtrack to the 
preceding node allocations. This contributes to efficient 
performance. 

Together with the GA , the Reps and 001 tasks 
embody the "intelligence" in the IZ. The Reps task is 
responsible for mediating the representations allocated 
to the leaf nodes in the IZ. This task essentially embod­
ies the mediation of representations, for it views repre­
sentations as a limited interface resources . The Reps 
task is scheduled for execution whenever the user opens 
or closes a leaf node ; that is , whenever representation 
resources are demanded or released. 

During initialization of this task, a mediator for each 
representation is created with an indication of how 
many allocations are permitted, e.g., one for video, four 
for schematic, etc. During program execution, each 
mediator maintains a list of all nodes presently consum­
ing the representation (maximum length equal to the 
number of permitted allocations) , and a list of all nodes 
wishing to consume the representation . Both lists are 
sorted by DOL A new request for a representation is 
granted if the resource is still available (i.e ., not all 

instances are allocated) or if the requesting node has a 
greater 001 than any currently using the representation. 
In the latter case, the representation is "taken away" 
from the lower-DOl node and the negotiation phase 
restarted for its alternate representation. 

The Reps task also contains knowledge in the form 
of a mapping from node state to a sorted list of the most 
suitable representations. This list is consulted during the 
negotiation process when a node is first opened, or when 
a node must be assigned a new representation during a 
reallocation phase. This declarative knowledge ideally 
belongs in a user model given that it reflects an operator 
preference for certain representations under certain 
alarm conditions. 

The IZ is therefore reasoning about representation 
allocation with respect to interface resources (hardware 
and screen space) and a limited set of user resources 
(where we restrict the number of representations cur­
rently visible based on guidelines of screen density). 

The 001 task is responsible for calculating a 001 for 
each leaf node in the IZ. The 001 formula is encapsu­
lated within this task. Because a node's 001 depends on 
its neighbours' 001 , changes must be propagated 
through the network, which is done using an arc consis­
tency algorithm [9]. Because a node's DOl is dependent 
on its alarm state and user interest (i .e. , has the user just 
opened or closed it), this task is scheduled for execution 
whenever a message from the GUI or the Simulator is 
received by the respective schedulers. 

Discussion 

The first version of the intelligent zoom is prototypi­
cal in nature and as such does not contain the extent of 
knowledge one would expect in a real system. Nonethe­
less , it serves to illustrate how effective active contex­
tual assistance can be in a complex, information-rich 
graphical interface. The marriage of maintaining overall 
context in the continuous zoom display while assisting 
in the preparation of local detailed context using adap­
tive presentation illustrates how a symbiosis of operator 
and system involvement can reduce the effort required 
to use a large information space. Specifically, the intelli­
aent zoom addresses the research problems initially dis-C> 

cussed: 

• It provides a new way of visualizing and navigating 
large information spaces, especially well suited for 
hierarchical information organisation and concur­
rent , disparate operator and system activity. 

• The IZ is a framework for the development of alter­
native representations for data in the context of mul­
tiple displays and concurrent, real-time interrupting 
tasks, and for the development of knowledge in 
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guiding the dynamic choice of best display technique 
given current operator, system, and interface state. It 
succeeds in context sensitive presentation because 
the interface is able to reason about its own context 
as well as about that of the SCS and user prefer­
ences. 

• The IZ is a framework for mediating dialogues 
between the SCS and operator (likewise between the 
user interface and operator) as it mediates the alloca­
tion of resources to concurrently active focus points. 

The architecture is not the completely unified 
approach advocated above, and as such it suffers from 
the problem of redundant data structures and context 
across two machines. However, it avoids the worst pit­
falls of the two monoliths approach. Response is quick 
and the interaction is graceful: there is no sense of wait­
ing until the system "makes up its mind".We have run 
the IZ on a variety of network configurations, both 
locally (both machines at SFU) and remotely (one 
machine at SFU, and one in Calgary) . Practice has 
shown performance to be well within user tolerance 
(within several frame times running on two local 
machines, and within a half-second across provincial 
boundaries) . 

Studies are underway to examine the use of active 
context-based assistance in the IZ under varying work­
load control room conditions. Planned and in the design 
stage are studies to test the IZ against other network 
navigation techniques and to determine the level of 
adaptivity operators prefer. 
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