
Contextual Assistance in User Interfaces to Complex, Time­
Critical Systems: The Intelligent Zoom

Lyn Bartram, Russell Ovans, John Dill, Michael Dyck, Albert Ho and William S. Havens

Centre for Systems Science
Simon Fraser University
Burnaby, BC V5A IS6

Iyn@cs.sfu.ca

Abstract
Network supervisory control systems (such as those
used in telecommunications) are characterised by very
large information spaces, highly concurrent activity and
time-critical response requirements. The user interfaces
are typically so complex that the task of manipulating
the interface interferes with the tasks of managing the
underlying system. This paper presents the intelligent
zoom, a technique based on a fisheye-Iens paradigm that
combines dynamic representation aiding with a dis­
torted-view algorithm which permits multiple "focus
points" while maintaining the overall network context.
The merge of adaptive data presentation, "detail-in-con­
text" views and direct manipulation provides a more
seamless path through the information space, and is well
suited to working with nested levels of detail in network
displays . A distributed reasoning architecture based on a
multi-threaded programming style ensures efficient per­
formance.

Resume
Les systemes de controle supervisoires de reseau

sont characterises par de tres grands espaces d'informa­
tion et un grand nombre d 'activites concurrentes . En
plus , l'operateur est oblige de reagir aux evenements
sans delai dans les periodes criticales . Les interfaces
sont souvent si complexes que la navigation et la manip­
ulation de l'espace d'information nuisent a la tache prin­
cipale - la gerance du systeme de controle et du proces .
Cette oeuvre presente le zoom intelligent, une tech­
nique base sur une deformation "fish-eye" qui combine
une presentation adaptive avec un algorithme pour creer
des vues deformees qui permet la visualisation de plu­
sieurs points d'interet meme en maintenant le contexte
du reseau. L' ensemble d'une presentation adaptive des
donnees, une vue de details en contexte, et la manipula­
tion directe donne une representation du domaine dans
laquelle il est plus facile a naviguer, et qui est bien
adaptee a l'interpretation de plusieurs niveaus de details
hierarchiques.
Keywords: graphical user interfaces, adaptive data pre­
sentation, graph visualisation

Introduction

Supervisory control systems (henceforth SCS), such
as those used in network management, are characterised
by very large information spaces, highly concurrent
activity and time-critical operator and system response
requirements . The extent of these systems has grown
enormously in recent history, and the role of the opera­
tor has evolved from low-level manual control to a high­
level supervisory function . However, the user interfaces
typically still reflect the physical process at a low level
of detail. Such "one sensor, one display" interfaces[11]
are overwhelmingly complex; operators are often faced
with using hundreds of displays and thousands of data
points in their tasks of monitoring and controlling the
physical system.

Problems arise because the task of managing the
interface (finding the information, interpreting it and
carrying out the controls in a timely manner) imposes
sionificant coonitive overhead and impedes the task the

'" '" interface is supposed to serve: managing the control sys-
tem and physical process .

Our goal is to provide support for the operator by
off-loading some interface management, freeing the
operator to concentrate on his primary function. A sig­
nificant part of the operator's interface manipulation
task involves amassing suitable information to provide
proper working context. One way of reducing interface­
imposed overhead is to convey information to the user
in a context-dependent manner : that is, dynamically
configuring the display to present information that is
consistent with current and previous status (alarm) mes­
saoes from the SCS and current and previous user

'" manipulations of the interface. We take a bifurcate
approach to building a context-dependent network dis­
play by (a) providing detailed views within the overall
network view (maintaining both local and global con­
text) , and (b) dynamically determining the most appro­
priate representation for the data at the current detailed
area of interest given the current system and interface
state.

Graphics Interface '94

This paper describes the intelligent zoom (IZ), an
interactive display technique that utilizes adaptive data
presentation within a "fisheye view" of the overall net­
work to provide a dynamic, context-dependent network
display. Fisheye views (such as those reported in [5][12)
[15][16)) show local detail in full while displaying suc­
cessively less detail further from the area of attention
and have proven effective in easing the "lost in space"
problem associated with large information spaces(16) .
The adaptive presentation algorithm is distributed
across special reasoning agents. While the rules in each
agent are very simple, they combine to produce the type
of complex behaviour which normally requires a sophis­
ticated and complete expert system.

Motivation
Our main goal is the investigation and development

of techniques which produce context-sensitive interface
behaviour without imposing extra overhead upon the
user. The following research issues comprise the focus
for this work:

• Coherent representation of large information spaces :
how to organize the information space to be both
usable and navigable by the user, while maximizing
the use of limited display resources.

• Adaptive presentation: the problem of deciding dis­
play content based on information available at the
time the display is produced; how to reconfigure the
presentation methods on-line as operational condi­
tions change and as the operator manipulates the user
interface. (This is also termed intelligent presenta­
tion (13).)

• Dialogue management: how to best provide assis­
tance in the management of communication between
operator and control system in an environment of
multiple, interrupting tasks.

Problem Statement
The task modelled is that of presenting, navigating,

and interacting with a network of connected nodes ,
much like that encountered in network-based control
systems found in the telecommunications and utility
domains. Displays in such systems are usually orga­
nized as a set of fixed viewing configurations: multiple
views of data are presented in different displays, such
that it is impossible to simultaneously view a trend
graph of one node with a schematic of another in the
context of a unified display(6). We want the interface to
choose the best view of the network given the current
operating context of alarms and user manipulations .
Furthermore, representations should be correlated to
alarm type, e.g., a door ajar alarm suggests a live video

217

representation rather than a device schematic (an
attempt to infer, in some sense, what the SCS is trying to
say.)

We treat context-dependent presentation in a large
information space as a problem of managing limited
operator(user) and system resources (13)[14). Operator
resources are perceptual and cognitive modalities: the
human cannot interpret the entire data space at once.
System resources are the physical aspects of the inter­
face, the most obvious of which is screen space: not all
system data can be portrayed simultaneously. The
demands for these limited resources must be mediated
in an appropriate and timely manner, indicating a need
for active reasoning. But the notoriously slow perfor­
mance of the reasoning architectures used in standard
expert systems (ES) renders them unsuitable candidates
for SCS interfaces: clearly, an alternative approach must
be used.

The Intelligent Zoom
The IZ combines the continuous zoom (CZ) algo­

rithm with dynamic, adaptive representation choices for
data visualization. The continuous zoom is a distorted­
view technique suited to viewing of nested levels of
details in hierarchically-organized network displays. It
evolved from the variable zoom reported in (16) and
extends the fisheye paradigm of (5) and [15) by support­
ing multiple detailed views, or fqcus points. It manages
the display space by allocating more space to certain
areas (nodes in the displayed network diagram) at the
expense of others without removing or occluding the
containing context. However, it is insensitive to the con­
tents of the nodes: it is merely responsible for determin­
ing size and placement of nodes within some thresholds.
In the taxonomy described above, we consider the zoom
algorithm to be a knowledge source which manages and
renders the display space resource.

In the CZ, the user views and navigates through a
hierarchically-structured network of nodes and links,
where nodes are of type either cluster or leaf. Cluster
nodes are top- and intermediate-level in the hierarchy
and contain clusters of children, who are in turn cluster
or leaf nodes. Leaf nodes provide access to system data
in the actual physical or logical points in the network.
Nodes can be opened (showing the contents) or closed.
The size of a node can be altered "continuously": that is,
the user can expand and shrink it smoothly without
opening or closing it. The size of a node depends on the
size of its siblings and the size of its parent. The size of a
parent is quasi-independent of the size of the children.
The user makes a node n larger by:

• opening it;

Graphics Interface '94

218

a b
FIGURE 1. Continuous zoom displays before (a) and after (b) a second focus point is selected

• zooming in on it;

• shrinking/closing its siblings;

• shrinking/closing the siblings of its parent; or

• zooming one of its children beyond the maximum
size that child can be in the current size of the node,
thus causing the parent (n) to grow to accommodate
the child.

Whenever a node is resized, it affects the size of
other nodes in the network display. A node grows by
claiming space from other nodes, thus causing them to
shrink; the inverse is of course also true. The space is
reclaimed from the siblings of the node, until the node
has grown to its maximum within the parent ; then the
parent is expanded at the cost of its siblings, and so on
until the top level is reached. There is a limit on how
small a node can become, imposing an implicit upper
bound on how big a node can be (since a node cannot
cause its siblings to become too small). This ensures that
a detailed view of one node does not remove the overall
context: there is always a "complete" view, which may
consist of mixed hierarchical levels of detail (Figure 1).

While it takes only one user action , opening a node
actually affects two aspects of the node's visual state: it
becomes transparent, so that its contents are visible, and
it becomes larger. The aspect ratio of a leaf node is fixed
to that of its current representation; the aspect ratio of
cluster nodes varies.

Our example network has 45 leaf-level nodes and 3
hierarchical layers using 17 intermediate cluster nodes.
Leaf nodes are considered to be the actual locations of
interest to the operator/user (in that they represent actual
physical or logical points in the network which the oper­
ator monitors) ; cluster nodes provide a convenient

abstraction and a source of summary information . In this
first version we were only concerned with leaf-level rep­
resentation aiding.

Seven representation types were arbitrarily chosen
as possible visualisations of the information in the leaf
nodes :

I. schematic (a diagram of the devices and layout
of the particular node);

2. a bar chart of analog values;
3. a trend diagram (a yt plot) ;
4. video (currently a bit map);
5. text ;
6. icon ; and
7. closed.

Each representation has a minimum resource
requirement and is more appropriate for certain condi­
tions than other representations. Examples of resources
are hardware/software (e.g., there can only be one video
display at a time) ; cognitive (i .e ., the demands on the
user's comprehension and perception when interpreting
combinations of representations) and display (e .g .,
colour and spatial requirements).

Reasoning: The "Intelligent Agents"
Adaptive presentation (specifically, suggesting a

representation for each open node that the user has not
explicitly specified) is the task of special reasoning
agents (henceforth IAs) . The reasoning task is difficult
because interface resources are limited . In order to
effectively solve this problem an interface must provide
explicit support for the allocation of limited interface
resources and for representation aiding [19] ; i.e ., choos­
ing a contextually appropriate representation for data .
We have proposed intelligent mediation (lM) [13] as an
architecture and methodology for context-sensitive pre-

Graphics Interface '94

sentation that encompasses both resource allocation and
representation aiding.

IM identifies the allocation of limited interface and
human cognitive resources as the key problem in inter­
face design. Specifically, IM:

• enforces a local encapsulation of knowledge particu­
lar to resource allocation, with separate and specific
classes of mediators for each limited resource;

• specifies behaviour akin to a "semantic spreadsheet",
such that resources are redistributed in response to
change, rather than reallocated from scratch (reason­
ing is on-line rather than batch); and

• provides a framework for representation aiding. We
treat representations as a limited resource; IM per­
mits a mechanism for choosing appropriate represen­
tations given current operating context.

In the intelligent zoom, leaf nodes must compete for
a limited set of representations. During this competition,
we prefer that the more important nodes receive the best
choices. That is, the representations mediator should use
the degree-of-interest (001) [5] as a mechanism for set­
tling resource contention: nodes with the higher 001
receive the representations most appropriate for their
state. Nodes with a low 001 receive whatever resources
are left.

A 001 is calculated for each node in the network.
The 001 is a function of four things: the node's a priori
importance, alarm state, connectivity to other important
nodes, and the perceived user interest in the node. The
latter is determined by user actions to open (increases
001) and close (decreases 001). Funke et al. describe a
similar formula for calculating the importance of a tiled
window in an intelligent window management sys­
tem[4].

The knowledge encapsulated within the reasoning
agents is therefore:

I. how to calculate the 001, i.e.,what constitutes
importance from the standpoint of the domain
and user interaction ;

2. the appropriate mapping from alarm state to
node representation ;

3. constraints on the allocation of interface re­
sources to node representations; and,

4. how to best suggest a representation for an
opened node given the knowledge of 1-3.

Intelligent Zoom = Continuous Zoom +
Intelligent Agents

The interface is affected by two sources : the SCS
and the user. SCS information comes as either status (for
example, alarms) or data. The user changes the interface
by enacting VI controls on cluster and leaf nodes. There

219

are five atomic user actions to control the interface:
1. open a node (all) - turns the node transparent,

enlarges it, and displays its contents. In the case
of a leaf node, the contents will be in the repre­
sentation suggested by the reasoning agents;

2. open as a specific representation (leaf) - opens
the specified representation and resizes as in
(1);

3. close a node (all) - opacifies and shrinks the
node;

4. make a node larger (zoom in); and
5. make a node smaller (zoom out) .

While the system recommends representation strate­
gies, we don't force these on the user. The system does
not change the pri mary representations of the nodes
without the user's explicit permission - hence the dis­
tinction between (1) and (2) above.

A new DOl will result if either the system state of
the node (according to status from the control system
and domain reasoning components) or its user state (as
when the user opens or closes it) changes . In cases
where opening a node involves resource mediation
(such as in the command open, or in the example of the
user requesting more than one video representation
when only one may be active at a time), the interface
must determine an appropriate substitute representation,
and suggest it. Note that of course there are pathological
cases where the requirements cannot be satisfied with
respect to space, and the interface has to prompt the user
to free up some space, indicating the most likely (i .e.,
lowest 001) candidate nodes to be closed or reduced.

Because of the way the zoom works, any change in a
node's size results in changes to other nodes' sizes as
well. The interface detects when any node representa­
tion falls below a minimum size threshold and suggests
an alternate representation.

There are thus two loosely-coupled tracks of concur­
rent behaviour in the IZ. User actions cause recalcula­
tions of the DOls ,and representations subsequently
suggested by the system; changing DOls (from system
status) and the indication thereof will suggest certain
user actions (such as opening or closing nodes) . The
resulting "feel" is one of symbiotic (user and system)
effort in the task of manipulating the complex data envi­
ronment.

Agent Dialogues
The objective is to provide the user with the most

appropriate representation for a node based on domain
information, user and system resources . As stated
above, the IAs evaluate both the state of domain , user
and system resources , and the interface context; then a
representation for each node is suggested to the graphics

Graphics Interface '94

220

agent. The zoom software constitutes the graphics agent
(henceforth GA): it maintains the screen space and
attempts to satisfy the requests for representation. These
agents negotiate until an acceptable solution is reached,
basing decisions on the DOl, as follows.

1. The IAs send the 001 and representation values
for each node whose 001 and/or suggested rep­
resentation has changed since the last communi­
cation.

2. The GA sorts all nodes on their assigned DOIs,
and then attempts to render the representations
suggested starting from the highest 001. Note
that its sole criterion for satisfying the request is
whether the minimum space requirements of the
representation can be allocated to the node:
thus, the GA is the agent controlling the space
resource.

3. If the GA cannot allocate enough space to the
node, it requests another representation.

In this way all agents use the 001 as a basis for
resource allocation.

For each (leaf) node, the IAs calculate a 001 and the
(first choice) representation, and communicate this to
the GA. Only the GA has any notion of hierarchy and
the intermediate cluster nodes : the IAs reason only
about the actual logical nodes representing monitored
points in the controlled physical system. The GA keeps
track of all DOls : leaf node DOls are explicitly sent ,
while intermediate nodes " inherit" the 001 of their most
interesting (highest 001) child. The GA sorts the list
of all nodes on their relative DOIs and attempts to sat­
isfy the spatial requirements of the suggested represen­
tation for each node. It does so by working "down" the
list (from most to least important) , first allotting space to
the most important node, and then gradually reclaiming
space for each successive candidate from the space allo­
cated to the preceding more important nodes until either
the current node gets sufficient space or the representa­
tion spatial needs of a more important node would be
breached. If there is insufficient screen space to render
the representation the GA " fails", requesting another
representation suggestion for the node in question. Since
there is always a representation that can fit into the min­
imum size of a node, and because the procedure does
not backtrack to preceding nodes in the list, this imple­
ments a tractable algorithm for allocating screen space.

Architecture
Traditional architectures for intelligent user inter­

faces have centred around what we call the two mono­
liths approach. In this case , the interface is comprised of
two sharply delineated components : an expert system
(ES) and a graphical user interface[I][3][14][17J . The

two are separate processes that communicate via some
arbitrary protocol. The ES is often implemented using a
commercial. rule-based shell and populated with human
factors knowledge about interface configuration; this
knowledge base determines the GUI content while the
system is running. The popularity of this approach likely
resulted from a convergence of AI and GUI practitio­
ners, but without a resulting unification of approach :
appending an ES to a GUI seemed easier than develop­
ing a new paradigm. t Related approaches to context­
sensitive GUls have large constraint solvers embedded
in the GUI code itself, making the GUI difficult to main­
tain and extend, and limiting the reasoning functionality
to that which can produce a tolerable response
time[8][lOJ.

Such architectures result in systems where the ES -
in response to external events - is continually queried
about the state of the GUI. The ES is an attempt at a
complete theory of the GUI ; a repository of everything
known about how the interface should be configured in
any given situation . Constructing such a knowledge
base requires an extensive knowledge engineering and
knowledge validation effort .

The two monoliths approach has many shortcom­
ings . The severest of the se problems is timeliness :
because the reasoning is in the form of a backtracking
search procedure, a guaranteed response time is either
impossible or costly in terms of solution quality. Since
interactive time-critical systems (like SCS 's) are prima­
rily driven by external events (user and process).
responsiveness is fundamental. One might therefore ask,
is search appropriate at all? Perhaps the AI paradigm of
"problem solving is search" is entirely inappropriate.

There are other problems with the two monoliths:
I. Redundancy of representation : both the ES and

the GUI require a model of the domain and a
model of the interface, which are therefore re­
dundantly represented and updated in both com­
ponents.

2. Cost: expert system shells - particularly those
that claim to support real-time reasoning - can
be very expensive. As well, their astonishing
appetite for memory and CPU cycles can dictate
a necessity for distribution to a separate work­
station, thus doubling the hardware costs.

3. Delineation of task: systems built upon this ap­
proach will tend to place all reasoning within
the ES , regardless of whether or not it is more
appropriate to leave some of the reasoning to

t Borenstein describes this phenomenon as the result of Al researchers

looking to Hel as an outlet for their view of AI without any real

concern for the problem itself[21.

Graphics Interface '94

Simulfi{or.
1I111t11111l11t_

8ReP

.

S

"
;f

. ~ .,......,.."",;.:.:;s,.:-#~ .~":

DomainMessage InterfaceMessage

221

FIGURE 2. The Architecture of the Intelligent Zoom.

the GUI itself. For example, 2D layout of inter­
face components is best reasoned about using
the graphics algorithms within the GUl.

4. The ES artifact: the event-query-response cycle
- whereby an event occurs, the ES reasons
about it, and then the interface changes - reveals
the ES as an obvious artifact of the interface.
(Explicit menus of "ES suggestions" are an ex­
treme example of this phenomenon.) This often
results in the effect of "clumsy automa­
tion"[19], where the interface complexity is ex­
acerbated by the need to manoeuvre around the
extra functionality.

We believe that the first step towards a graceful
adaptive interface is to make the expert system disap­
pear. This requires substantial re-thinking of the two
monoliths paradigm. Rather than encapsulate complete
knowledge of the interface in a separate reasoning com­
ponent , we argue that "intelligence" should be embed­
ded within the graphics techniques and distributed as
independent processes that manipulate the objects com­
prising the interface.

In this approach, " intelligence" takes the form of a
collection of simple, autonomous knowledge sources
(also called agents, or tasks or processes because of their
natural correspondence to multiprocessing entities) .
Effective behaviour results from the sum of the parts,
not because of one single part . This type of design falls
into the category of AI blackboard systems [7] and is
consistent with modem approaches to real-time operat­
ing systems[18]. There are three components to black­
board architectures : blackboards, knowledge sources,
and schedulers . A blackboard is a globally accessible
data structure. Blackboards are read from and written to

by knowledge sources. A knowledge source is an inde­
pendent task that encapsulates some small piece of pro­
cedural or declarative intelligence. The knowledge
sources only communicate with each other through
changes to the blackboard(s). A scheduler is responsible
for serializing the inherently parallel execution of the
system. Schedulers invoke knowledge sources, act as
semaphores for the blackboards , and ensure real-time
response. A task is only scheduled if a technique it sup­
ports is presently active and if the message content will
be of interest. The scheduler must also decide the order
in which the tasks are executed, and, in the face of
increased system activity, whether to execute certain
(slower) tasks at all

The knowledge sources are independent tasks that
read from and write to this collection of blackboards.
The key concept is that each GUI technique is encapsu­
lated as a set of tasks that together render the technique,
capture user interaction, and reason about its inter-con­
textual presentation.

The advantage of the blackboard approach is the
resulting unified view of graphics and intelligence sim­
ply as tasks interacting with common data structures. A
simplified software development environment results .
The strict delineation of tasks and the ES artifact are
gone : knowledge is free to reside where appropriate .
Efficient performance is achieved as the schedulers can
gracefully degrade the activation of less critical tasks
during high tempo operation. Moreover, it is relatively
easy to reconfigure the behaviour of the interface as it
simply requires a change to a task, the removal of a task,
or the addition of a task. Since the tasks are isolated and
independent , the problem of interfering and inconsistent
knowledge endemic to large rule-based expert systems

Graphics Interface '94

222

can be, if not defeated, at least axiomatised.

Implementation
The implementation of the intelligent zoom incorpo­

rates the continuous zoom in the graphics agent and an
intelligent mediation (lM) approach using the black­
board architecture described above. In the first develop­
ment phase the tools we needed were unavailable on a
single platform: graphics development was done on an
SGI, while the reasoning components were realised on
an HP720, where the best multitasking support resided.

Figure 2 shows the current architecture, where ovals
represent tasks, rounded boxes are blackboards and
rectangles procedural modules.

The graphics agent of the IZ is a single Unix process
with two concurrent "threads". User actions directly
manipulate the zoom and affect the state of the interface;
the lA events set the 001 and representations which are
then used to reconfigure the parts of the interface not
directly controlled by the user.

When Rendering is invoked, it asks the Zoom Algo­
rithm to redistribute the space such that the most impor­
tant nodes get "first crack" at their desired
representations. If it cannot, the GA fails and sends a
message back to the GUI Handler, requesting another
representation suggestion for the node in question. Since
display changes are usually close to incremental
(changes are not requested for every leaf node at each
message or user request) , the GA need only sort the 001
table, compare current representation assignments with
the requested, and pick up in the 001 list at the point
where these diverge, since it does not backtrack to the
preceding node allocations. This contributes to efficient
performance.

Together with the GA , the Reps and 001 tasks
embody the "intelligence" in the IZ. The Reps task is
responsible for mediating the representations allocated
to the leaf nodes in the IZ. This task essentially embod­
ies the mediation of representations, for it views repre­
sentations as a limited interface resources . The Reps
task is scheduled for execution whenever the user opens
or closes a leaf node ; that is , whenever representation
resources are demanded or released.

During initialization of this task, a mediator for each
representation is created with an indication of how
many allocations are permitted, e.g., one for video, four
for schematic, etc. During program execution, each
mediator maintains a list of all nodes presently consum­
ing the representation (maximum length equal to the
number of permitted allocations) , and a list of all nodes
wishing to consume the representation . Both lists are
sorted by DOL A new request for a representation is
granted if the resource is still available (i.e ., not all

instances are allocated) or if the requesting node has a
greater 001 than any currently using the representation.
In the latter case, the representation is "taken away"
from the lower-DOl node and the negotiation phase
restarted for its alternate representation.

The Reps task also contains knowledge in the form
of a mapping from node state to a sorted list of the most
suitable representations. This list is consulted during the
negotiation process when a node is first opened, or when
a node must be assigned a new representation during a
reallocation phase. This declarative knowledge ideally
belongs in a user model given that it reflects an operator
preference for certain representations under certain
alarm conditions.

The IZ is therefore reasoning about representation
allocation with respect to interface resources (hardware
and screen space) and a limited set of user resources
(where we restrict the number of representations cur­
rently visible based on guidelines of screen density).

The 001 task is responsible for calculating a 001 for
each leaf node in the IZ. The 001 formula is encapsu­
lated within this task. Because a node's 001 depends on
its neighbours' 001 , changes must be propagated
through the network, which is done using an arc consis­
tency algorithm [9]. Because a node's DOl is dependent
on its alarm state and user interest (i .e. , has the user just
opened or closed it), this task is scheduled for execution
whenever a message from the GUI or the Simulator is
received by the respective schedulers.

Discussion

The first version of the intelligent zoom is prototypi­
cal in nature and as such does not contain the extent of
knowledge one would expect in a real system. Nonethe­
less , it serves to illustrate how effective active contex­
tual assistance can be in a complex, information-rich
graphical interface. The marriage of maintaining overall
context in the continuous zoom display while assisting
in the preparation of local detailed context using adap­
tive presentation illustrates how a symbiosis of operator
and system involvement can reduce the effort required
to use a large information space. Specifically, the intelli­
aent zoom addresses the research problems initially dis-C>

cussed:

• It provides a new way of visualizing and navigating
large information spaces, especially well suited for
hierarchical information organisation and concur­
rent , disparate operator and system activity.

• The IZ is a framework for the development of alter­
native representations for data in the context of mul­
tiple displays and concurrent, real-time interrupting
tasks, and for the development of knowledge in

Graphics Interface '94

guiding the dynamic choice of best display technique
given current operator, system, and interface state. It
succeeds in context sensitive presentation because
the interface is able to reason about its own context
as well as about that of the SCS and user prefer­
ences.

• The IZ is a framework for mediating dialogues
between the SCS and operator (likewise between the
user interface and operator) as it mediates the alloca­
tion of resources to concurrently active focus points.

The architecture is not the completely unified
approach advocated above, and as such it suffers from
the problem of redundant data structures and context
across two machines. However, it avoids the worst pit­
falls of the two monoliths approach. Response is quick
and the interaction is graceful: there is no sense of wait­
ing until the system "makes up its mind".We have run
the IZ on a variety of network configurations, both
locally (both machines at SFU) and remotely (one
machine at SFU, and one in Calgary) . Practice has
shown performance to be well within user tolerance
(within several frame times running on two local
machines, and within a half-second across provincial
boundaries) .

Studies are underway to examine the use of active
context-based assistance in the IZ under varying work­
load control room conditions. Planned and in the design
stage are studies to test the IZ against other network
navigation techniques and to determine the level of
adaptivity operators prefer.

Acknowledgements
This research is part of the Intelligent Graphic Inter­

face (lGI) project sponsored by the PRECARN Associ­
ates consortium of Canadian industrial and research
organizations, and we are indebted to the contributions
of our colleagues on the IGI Industrial Prototype Team
at MPR TelTech Ltd. We gratefully acknowledge the
generous support of the govenments of Canada, the
Province of British Columbia, and of PRECARN Asso­
ciates.

References
[1] Yigal Arens, Lawrence Miller, and Norman Sond­
heimer. "Presentation Design Using an Integrated
Knowledge Base." In Joseph W. Sullivan and Sherman
W. Tyler, eds. Intelligent User Interfaces. New York:
ACM Press, 1991, pp. 241-258.

[2] Nathaniel S. Borenstein. Programming As If People
Mattered: Friendly Programs, Software Engineering,
and Other Noble Delusions. Princeton, N.J.: Princeton
University Press, 1991.

223

[3] M. H. Chignell and P. A. Hancock. "Intelligent
Interface Design." In M. Helander, ed. Handbook of
Human-Computer Interaction. Elsevier Science Pub­
lishers, 1988, pp. 969-995.

[4] Douglas J. Funke, Jeannette G. Neal, and Rajendra
D. Paul. "An Approach to Intelligent Automated Win­
dow Management." Int. Journal of Man-Machine Stud­
ies (1993), 38, pp. 949-983.

[5] G.W. Furnas. "Generalized Fisheye Views". Pro­
ceedings of the ACM CHI '86 Conference on Human
Factors in Computing Systems. pp. 16-23.

[6] W.E. Gilmore, DJ. Gertman, and H.S. Blackman.
User-Computer Interfaces in Process Control: A Human
Factors Engineering Handbook. Academic Press, San
Diego, 1989.

[7] V. Jagannathan, Rajendra Dodhiawala, and
Lawrence S. Baum, eds. Blackboard Architectures and
Applications. Boston: Academic Press, Inc., 1989.

[8] S. Kochhar. "A Prototype System for Design Auto­
mation via the Browsing Paradigm". Proceedings of
Graphics Interface 1990, pp. 156-166.

[9] Alan K. Mackworth. "Consistency in Networks of
Relations." Artificial Intelligence, 8, pp. 99-118.

[10] David L. Maulsby, lan H. Witten and Kenneth
A.Kittlitz. "MetaMouse: Specifying Graphical Proce­
dures by Example." Computer Graphics, 23(3), pp. 127-
137.

[11] C.M. Mitchell. "GT-MSOCC: A Domain for
Research on Human-Computer Interaction and Decision
Aiding in Supervisory Control Systems." IEEE Trans­
actions on Systems, Man, and Cybernetics, 17(4), pp.
553-572.

[12] E.G Noik. "Layout-independent Fisheye Views of
Nested Graphs". Proceedings of the 1993 IEEE Sympo­
sium on Visual Languages, Bergen, 1993, pp. 336-341.

[13] Russell Ovans and WilIiam S. Havens. "Intelligent
Mediation: An Architecture for the Real-lime Alloca­
tion ofInterface Resources ." Proceedings of the 1993
International Workshop on Intelligent User Interfaces,
Orlando, 1993, pp. 55-61.

[14] William B. Rouse, Norman D. Geddes, and Ren­
wick E. Curry. "An Architecture for Intelligent Inter­
faces: Outline of an Approach to Supporting Operators
of Complex Systems." Human-Computer Interaction,
1987-88,3,pp.87-122.

[15] Manojit Sarkar and Marc H. Brown. "Graphical
Fisheye Views of Graphs". Proceedings of ACM CHI
'92 Conference on Human Factors in Computing Sys-

Graphics Interface '94

224

terns, pp. 83-92.

[16] Doug Schaffer, Zhengping Zuo, Lyn Bartrarn, John
Dill, Shelli Dubs, Saul Greenberg and Mark Roseman.
"Comparing fisheye and full-zoom techniques for navi­
gation of hierarchically clustered networks". Proceed­
ings of Graphics Interface 1993, pp. 87-97.

[17] Doree Duncan Seligmann and Steven Feiner.
"Automated Generation of Intent-Based 3D Illustra­
tions." Computer Graphics, 25 (4), pp. 123-132.

[18] Andrew S. Tanenbaum. Modern Operating Sys­
tems, Prentice-Hall, N.J., 1992.

[19] David Woods. "The Price of Flexibility." Proceed­
ings of the 1993 International Workshop on Intelligent
User Interfaces, Orlando, 1993, pp. 19-25.

G raphics In terface '94

