25

Multiresolution Tiling

David Meyers
Department of Computer Science and Engineering
University of Washington
Seattle, Washington 98195

Abstract

This paper describes an efficient method for constructing a tiling
between a pair of planar contours. The problem is of interest
in a number of domains, including medical imaging, biological
research and geological reconstructions. Our method, based on
ideas from multiresolution analysis and wavelets, requires O(n)
space and appears to require O(n logn) time for average inputs,
compared to the O(n?) space and O(n? logn) time required by
the optimizing algorithm of Fuchs, Kedem and Uselton [4]. The
results computed by our algorithm are in many cases nearly the
same as those of the optimizing algorithm, but at a small frac-
tion of the computational cost. The performance improvement
makes the algorithm usable for large contours in an interactive
system. The use of multiresolution analysis provides an efficient
mechanism for data compression by discarding wavelet coeffi-
cients smaller than a threshold value during reconstruction. The
amount of detail lost can be controlled by appropriate choice
of the threshold value. The use of lower resolution approxima-
tions to the original contours yields significant savings in the
time required to display a reconstructed object, and in the space
required to store it.

Key Words: Surface reconstruction, tiling, meshes, multireso-
lution analysis, wavelets.

1 Introduction

Reconstruction of surfaces from a set of planar contours such as
those shown in Figure 1 is an important problem in medical and
biological research, geology, and other areas. The problem can
be broken into several subproblems [8], one of which, the tiling
problem, is the subject of this paper.

A solution to the tiling problem constructs a polyhedron from
two planar polygons, using the polygons as two of the faces of
the polyhedron, and triangles constructed from an edge of one
polygon and a vertex of the other as the remaining faces. In Fig-
ure 2, the upper left shows a pair of contours and and the lower
right shows a solution to the tiling problem for those contours.
To be a valid solution to the tiling problem , the polyhedron con-
structed must be simple. O’Rourke and Subramanian [9] have
shown that such a solution is not always possible. They demon-
strated that if the shapes of the contours differ sufficiently, no
simple polyhedron can be constructed subject to the above re-
strictions. In practice, adjacent contours are usually fairly sim-

I This work was supported in part by the National Science Founda-
tion under grant DMS-9103002

Figure 1: A pair of contours obtained from the cerebral cortex
of the human brain. The contours contain 128 (closed dots) and
114 (open dots) vertices.

ilar in shape but there are exceptions. Consider the pair of con-
tours shown in Figure 1, representing adjacent slices through
the cerebral cortex of the human brain. Notice that the shapes
of the contours differ dramatically. In such cases, the shape dif-
ferences may be great enough that no simple polyhedral tiling
can be constructed within the standard definition of the tiling
problem.

Numerous methods have been devised to solve the tiling prob-
lem. A method that computes a tiling optimal with respect to a
certain class of goal functions was devised by Keppel [6], and
later improved by Fuchs, Kedem and Uselton [4]. The goal
function assigns a cost to each triangle of the tiling, and min-
imizes the total cost over the triangles in the tiling. In part be-
cause of the computational cost of their algorithm, numerous
other methods have been devised that do not perform a global
optimization. A discussion of some of the methods can be found
in [8].

This paperdescribes a new method for solving the tiling problem
that represents a significant improvement in both space and time
when compared to the algorithm of Fuchs, Kedem and Usel-
ton [4]. Their algorithm requires O(n? logn) time and O(n?)
space to construct a tiling for a pair of contours each of size n.
In many cases, this performance is acceptable. However, when
the number of vertices in a contour is large, the performance
of the optimizing algorithm becomes unacceptable, particularly
in an interactive environment. Contours containing 1000 ver-
tices or more are encountered in actual data sets. With current
hardware and sufficient memory, the optimizing algorithm takes
approximately 2 minutes to construct a tiling from a pair of con-

Graphics Interface 94 ﬁ

26

Figure 2: The main steps of the multiresolution tiling algorithm.
Upper Left: Input contours. Upper Right: Tiled base-case.
Lower Left: Intermediate stage of single-wavelet reconstruc-
tion. Lower Right: Final tiling.

tours each with 1000 vertices. With insufficient memory, the
time required increases to more than 30 minutes, a problem we
encountered when attempting to tile a pair of 1000 vertex con-
tours on a “normally configured™ DECstation 5000/125 with 20
megabytes memory. The multiresolution tiling algorithm pre-
sented here takes about 1 second to compute atiling for the same
input, on the same machine.

As Figure 3 shows, even the optimizing algorithm can construct
unacceptable tilings. For that reason, user interaction is a nec-
essary part of a system for reconstructing surfaces from a set of
contours. In an interactive system, delays of the magnitude en-
countered with the optimizing algorithm are unacceptable, and
have led to the use of faster, non-optimizing methods. The algo-
rithm we describe uses methods from multiresolution analysis to
reduce the size of the contours. then uses the optimizing tiling
algorithm of Fuchs, Kedem and Uselton [4] to construct an op-
timal tiling for the reduced problem size, and finally uses mul-
tiresolution reconstruction and local optimization to construct a
final tiling. Our algorithm uses O(n) space and what appears to
be O(n logn) time. Although we do not prove this time bound,
we show experimental results that support it.

2 Multiresolution Analysis

This section provides a brief introduction to multiresolution
analysis and wavelets. The reader is referred to [2] and [7]
for a more detailed treatment. In the following, the notation
x™ is used to denote a discrete signal consisting of 2" samples

(B85, - oon B —q)
Consider a discrete signal ¢, and let
@ =4 v 5 500153005 @ 5 w0}

denote a discrete low-pass filter. A low-resolution version of ¢”
can be obtained by convolving ¢’ with « (treating ¢" as a peri-
odic function), followed by selecting every other sample (often

Graphics Interface *94]

= &

N

O
0O

Figure 3: Tilings computed by Upper: Our single-wavelet al-
gorithm and Lower: The method of Fuchs, Kedem and Uselton,
for the contours in Figure 1. Neither result would be considered
acceptable by a trained anatomist.

i

called downsampling). More formally ¢’* " is obtained from ¢

by
n—1 n
€; = Ap—2,Cp .
l

Clearly. some detail is lost in this filtering process, since ¢" ™"
contains half as many samples as ¢". If « is appropriately cho-
sen, this lost detail can be captured as a detail signal ¢" ™!

—1
di ™" = E bi—aicf'
1

where the filters a« and b = {....b_y.bo.by....} are called
analysis filters. The original signal can be recovered from ¢~
and "~ by convolution with a pair of synthesis filters p and g
according to:

n n—1 n—1
¢ = é [I’:—_’/('/ + (]l—_’[’l[}
l

The process of computing ¢~ and ¢"~! from ¢" is known

as decomposition and its inverse, recovering ¢” from ¢~ and
d" 71, is known as reconstruction. The decomposition process
can be applied recursively to ¢ ~! to form ¢ =2 and " 2 and
so on, forming a filter-bank, illustrated in Figure 4. The result of
applying such a filter-bank to a signal ¢ is the set of sequences
A d?3,

.

Figure 4: Filter-Bank

Since the original signal can be recovered by the set of sequences
®.d°,d""", they can be thought of as a transform of the
original signal, sometimes referred to as a wavelet transform.
Note that the number of elements in the wavelet transform is
the same as in the original sequence ¢". Use of the filter-bank
outlined above makes it possible to compute the wavelet trans-
formation in linear time if the analysis and synthesis filters are
of finite width (or support).

The multiresolution analysis framework developed by Mallat
[7] provides a particularly convenient framework for under-
standing the relationship between the analysis and synthesis fil-
ters mentioned above. Rather than starting with the filters, Mal-
lat’s idea was to associate a function f7(r) with each sequence
¢’ according to

f(r) = Zc{o(;ﬂl — k)
k

where ¢(r) is a function that Mallat called a scaling function.
Scaling functions are required to be refinable; that is, there must
exist unique coefficientsp_1.po, p1, ... such that

o(r) :Z])k(,f)(‘..’l‘—l\‘).
k

As suggested by the notation, the refinement coefficients turn
out to form the synthesis filter p. More formally, given a scaling
function ¢(r), Mallat defines an infinite set of linear spaces 1"/
by

V2= Span(o(2) — k)| ke {....—1,0.1....})

The fact that ¢(x) is refinable implies that these spaces are
nested: V0 Cc Vi V2.

By definition, the translates of the scaling function o(27(x))
form a basis for V7. Let I1™/ denote the orthogonal complement
of ¥/ in V71, A wavelet is a function v'(r) with the property
that translates of ¢(2/ r) form a basis for 117/,

The analysis filters are formed by the coefficient sequences that
make the following relation hold:

o(2r =10 = Z [ai—2kp(r — k) + bi—2kv(r — k)].

k

Finally, the synthesis filter ¢ is defined to be the sequence satis-
fying
v(r) = Z gro(2r — k).
k

For multiresolution analysis of contours, we use the linear B-
spline (or hat function) as the scaling function ¢(r). For

Graphics Interface 94 =

27

the wavelet function ¢'(x) we use the single knot wavelet of
DeRose, Lounsbery and Warren [3]. To obtain ¥ (), first de-
fine ¢ () to be the projection of ¢(2x —1) € V' into V'°. Then
define ¢ () as

O(x) = ¢(2r — 1) — ¢(x).

This definition of ¢'(x) has an unfortunate consequence: '(r)
has infinite support. For our purposes, it is sufficient to slightly
modify the definition of ¢'(z) so that the support is finite. We
do that by solving for the projection of ¢ (22 — 1) into V'° for
a limited number of non-zero terms. This modification has the
consequence that ¢'(z) is no longer orthogonal to }'°. One im-
plication of this loss of orthogonality is that the sequence ¢" ™"
is no longer the best least squares approximation to ¢” (see [3]
for more detail). By appropriately choosing the number of non-
zero terms in the projection of ¢(2z — 1) into V'°, orthogonal-
ity can be approached as closely as desired. Another approach
to the problem of infinite support is to truncate an infinite se-
quence. That approach maintains orthogonality but sacrifices
the ability to exactly reconstruct because of errors introduced
by truncation. We choose to sacrifice orthogonality in favor of
exact reconstruction.

To apply wavelet analysis to contours, we treat a contour as a
periodic sequence of knots with equally-spaced values of a pa-
rameter ¢{. Each knot has associated values of » and y. We ap-
ply the wavelet transform to » and y independently, each with
respect to the parameter ¢.

Wavelet and Scaling Function

1.00 RbiGs):
ik Phi(x)
0.50
0.60
0.40
0.20

0.00

-0.20

-2.00 -1.00 0.00 1.00 2.00 3.00

Figure 5: The single knot wavelet ¢»(r) and linear B-spline scal-
ing function ¢(r).

The functions ¢(r) and v (r) are plotted in Figure 5. Table 1
shows the non-zero terms of analysis filters « and b and synthesis
filters p and g.

Our choice of ¢ and ¢» was motivated by the fact that a polygon
of n vertices can be considered to be a piecewise linear function
defined on a set of n knots. Thus, the properties of the ¢ and v
we chose are well suited to the nature of the data with which we
are working.

3 Multiresolution Tiling

Multiresolution analysis motivates a new approach to solving
the tiling problem. The first step is to reduce the size of the
problem by using multiresolution analysis to find low-resolution

i a, b7 P '

-4 124 0 0 0

3 -1/12 0 0 1/24
2 -1/8 0 0 1/12
-1 1/3 0 12 -1/8
0 2/3 -1/2 1 -1/3
1 1/3 1 12 2/3
2 -1/8 -1)2 0 -1/3
3 -1/12 0 0 -1/8
4 1/24 0 0 1/12
5 0 0 0 1/24

Table 1: The non-zero terms of the analysis filters « and
b and the synthesis filters p and g

approximations to the original contours (Figure 2). These low
resolution contours are tiled using the optimizing method of
Fuchs, Kedem and Uselton [4]. Detail is then added to the low-
resolution tiling by adding wavelets, inserting edges at newly
added vertices, and improving the tiling by local edge swap-
ping. The resulting tiling is no longer guaranteed to be globally
optimal with respect to the goal function used for computing
the low-resolution tiling, but it can be computed much faster,
particularly for contours with many vertices. Since the tiling be-
gins with an optimized base case and maintains local optimality,
the final tiling constructed is often very nearly identical to that
computed by the optimizing algorithm. Significant differences
between the methods occur most often in areas where the pair
of contours have very different shape, for example. when one
contour has an indentation in an area that the other does not. In
such situations, it is often the case that neither method produces
a result acceptable to a trained human user (see Figure 3).

To achieve an overall speedup, the reconstruction and local op-
timization process must be fast. If addition of a single wavelet
coefficient to the reconstruction requires as much as O(n) time.
the overall process will require O(n?) time. Since addition of
a wavelet coefficient to a contour can be done in constant time
using the filter-bank algorithm, it is only necessary to demon-
strate that the additional time required for the addition of edges
and local optimization of the tiling is sufficiently small. It is
possible to imagine a situation in which insertion of an edge or
movement of a vertex could alter a local configuration so that
a previously undesirable edge swap becomes desirable. That
edge swap could conceivably allow a “cascade™ of previously
unswappable edges to become swappable. If such situations are
common, it could take O(n) time to optimize locally after ad-
dition of an edge, or movement of a vertex. Although we offer
no proof of an upper bound for this process, in Section 4 we
present experimental data to support the assertion that for the
average case it is very nearly a constant time operation to opti-
mize a tiling locally after adding a vertex and edge or moving a
vertex (Figure 8, Figure 10).

Graphics Interface 94 -

3.1 Contour Decomposition

Decomposition of a contour into a set of wavelet coefficients and
a lower resolution contour is done using the filter-bank method
described in Section 2. If the number of vertices in a contour is
not a power of 2, we add vertices using the following method:

1. Place the original contouredges into a priority queue based
on their length.

2. Remove and bisect the longest edge in the queue by adding
anew vertex at its midpoint.

3. Insert the two new edges into the queue.

4. Repeat until the required number of vertices have been
added.

Since the number of vertices in a contour is at most doubled by
this process, no more than a constant factor of 2 is added to the
overall complexity of computing a tiling for the resulting con-
tour. With appropriate choice of priority queue implementation,
this addition of vertices requires at most O(n logn) time for a
contour of n vertices.

3.2 Reconstruction

The reconstruction of a contour from its low-resolution version
can be done using several different methods. The filter-bank
algorithm described in Section 2 is one. It is easy to implement,
and reconstruction of a contour from its low-resolution version
requires O(n) time. Another method is to reconstruct by adding
wavelet coefficients one at a time. This method is not as easy to
implement as the filter-bank algorithm, and the reconstruction
of the original contour from its low-resolution version requires
O(n logn) time, but it has some advantages over the filter-bank
approach, discussed below. Local optimization of the tiling is
done after each step of the reconstruction.

3.2.1 Filter-Bank Method

Figure 6: A tiling example. illustrating vertex and edge addition
during reconstruction. Newly added vertices are open circles,
newly added edges connect to a vertex of the opposite contour.

Computing a tiling using the filter-bank method involves the fol-
lowing steps: First, use the filter-bank to decompose each con-
tour into a low-resolution version. Next, compute a tiling for
this pair of low-resolution contours using the optimizing tiling
algorithm. Finally, reconstruct the original contours by repeat-
ing the following steps for each level of the filter-bank:

1. Construct a new polygon for each contour using one level
of the filter-bank. This bisects each edge of both contours,

thereby introducing a new vertex into each triangle of the
tiling from the lower resolution level, so that the former
triangles are now quadrilaterals, with three vertices on one
of the contours and the fourth on the opposite contour.

o

For each new vertex added to a contour, construct an edge
from that vertex to the quadrilateral vertex on the other
contour, splitting the quadrilateral into 2 triangles (see Fig-
ure 6).

(98]

Place all the old cross edges into a list of “suspect” edges.

Locally optimize the tiling as described in Section 3.3.

o B

Repeat until the original resolution is reached (Requires
n — m iterations for a contour of 2" vertices and a low-
resolution contour of 2" vertices).

The filter-bank method is easy to implement and reconstructing
contours from their low-resolution versions requires only linear
time. The cost of locally optimizing the tiling at each level of
the filter bank reconstruction determines the overall cost of the
algorithm. We have collected experimental results by using this
algorithm to construct tilings for contours obtained from the hu-
man brain. These data suggest that optimization after addition
of one vertex and edge to the tiling (Figure 10) requires approx-
imately constant time; the overall cost of the filter-bank tiling
method therefore appears to be O(n logn) (Figure 8).

3.2.2 Single-Wavelet Method

The filter-bank reconstruction process doubles the resolution of
each contour at each step, and requires that wavelet coefficients
be added in the inverse of the order they were found during anal-
ysis. By adding wavelet coefficients one at a time, it is possi-
ble to use them in any desired order, and to avoid using them
if their magnitude is below some threshold value. It is particu-
larly useful to reconstruct by adding the wavelet coefficients in
decreasing order of their magnitude.

Adding wavelets in decreasing order has two benefits. First,
it allows for data compression. Reconstruction using only
wavelets with coefficient magnitude larger than some thresh-
old value can reduce the number of vertices in a contour while
preserving as much detailed structure as is consistent with the
reduced number of vertices. Second, reconstruction by addi-
tion of wavelets in order of decreasing magnitude causes the
contours to approach their original shape as rapidly as possible.
Intuitively, it seems plausible that a better tiling should result,
because the local optimization process operates on a close ap-
proximation of the final shape as early as possible. In practice,
this approach seems to produce a better tiling than the method
of Section 3.2.1.

The initial steps in computing a tiling using the single-wavelet
method are the same as those in the filter-bank method.

Figure 7 illustrates addition of a wavelet to a one-dimensional
function f(¢). For a two-dimensional contour, the + and y co-
ordinates of a vertex are modified respectively by the » and y
components of the wavelet coefficient. Starting from a tiled pair
of low-resolution contours, the single-wavelet method proceeds
as follows:

Graphics Interface '94

29

Wavelet

4 12

o 8 o

Result of
adding
wavelet to
function

Figure 7: Illustration of Single-Wavelet reconstruction in one
dimension. The wavelet has intrinsic knots at ¢ valuesof 1, 3, 5,
6,7,9, 11. The function initially has knots with ¢ values 0, 4, 8,
12. After addition of the wavelet, the function will have knots
attvalues0,1,3,4,5,6,7,8,9, 11, 12. Open circles indicate
knots added to the function and wavelet for which values must
be interpolated before adding the wavelet to the function.

1. Select a wavelet to add. The method we use is to alternate
contours ateach iteration, and use the wavelets in descend-
ing order of the magnitude of the vector formed by their =
and y coefficients.

2. Merge the set of knots intrinsic to the wavelet and the set
of knots present in the region of the contour influenced by
the wavelet so that the wavelet and contour knot vectors
match. After this step, both the wavelet and the region of
the contour influenced by the wavelet contain the union of
the intrinsic wavelet knots and the knots originally present
in the region of the contour influenced by the wavelet.

3. Interpolate values for any newly inserted knots of either
the wavelet or the contour. Values for knots inserted into
the contour are computed by linear interpolation. Values
for knots inserted into the wavelet are computed by lin-
ear interpolation after the intrinsic knot values have been
scaled by the wavelet coefficient values.

4. Update the positions of the vertices affected by the wavelet
by adding the values of r and y at the wavelet knots to the
corresponding r and y values of the contour knots at each
knot in the wavelet knot sequence.

5. Place all edges incident on any vertex influenced by addi-
tion of the wavelet onto a list of suspect edges.

6. Locally optimize the tiling by the method described in Sec-
tion 3.3.

7. Repeat until all wavelets have been added, or until the co-
efficients of the remaining wavelets are below a threshold
value.

In contrast to the filter-bank method, reconstruction of a polygon
using this single-wavelet algorithm requires O(n logn) time.
The main reason for using single-wavelet reconstruction is to
gain the benefits associated with adding wavelets in sorted or-
der. Because sorting requires O(n logn) time, this inefficiency

[

30

relative to the filter-bank reconstruction is not a major cause for
concern.

3.3 Local Optimization

Local optimization of the tiling after addition of a wavelet in-
volves identifying a subset of suspect edges, examining them to
determine if the local geometry allows an edge swap, and if it
does, swapping the edge orientation if doing so reduces the goal
function. Only edges connecting vertices on different contours
need to be considered, since contour edges cannot be swapped.
The basic idea is that edges must be examined if the connectivity
or geometry has changed in their immediate surroundings.

Filter-bank reconstruction proceeds in levels that double the res-
olution of the contour at each step. Initializing a suspects list
for this reconstruction method is straightforward: all edges con-
necting a vertex from one contour to a vertex from the other
contour in the tiling from the previous level are adjacent to a
newly added edge, and so are placed onto the suspects list.

The initialization of the list of suspect edges for the single-
wavelet reconstruction differs from that used in filter-bank re-
construction. Single-wavelet reconstruction adds a variable
number of vertices to a contour at each step (The number can
range from O to 7 in our implementation). The maximum de-
pends on the number of non-zero terms in the analysis and re-
construction filters. If no vertices are inserted during addition
of a wavelet, maintenance of a suspects list based on adjacency
to new edges would not place any edges into the suspects list.
That is not a good strategy, since any of the vertices within the
range of the wavelet may have moved. The strategy we use is
to insert into the suspects list all edges incident on any vertex
within the range of the added wavelet. Once the suspects list
has been initialized, optimization proceeds in the same manner
used for filter-bank reconstruction.

After the list of suspect edges has been initialized, optimization
proceeds by removing an edge from the suspects list and exam-
ining it to determine whether a swap of its orientation reduces
the goal function, performing the swap if it does. If a swap is
performed, edges adjacent to the swapped edge are placed onto
the suspects list. The optimization process terminates when the
list is empty.

The amount of time required for this local optimization is criti-
cal to the complexity of our algorithm. We have not been able to
prove an upper bound for the process, but data collected in tests
using contours ranging in size from 16 to 1024 vertices sug-
gest that the number of edges examined per vertex added during
reconstruction is very nearly constant for contours ranging in
size from 128 to 1024 vertices (see Fig 10). These data imply
an expected performance for the filter-bank reconstruction of
O(n) and for the single-wavelet reconstruction of O(n logn).
Since addition of vertices to the original contour can require
O(n logn) time, the expected complexity implied by our data
is O(n logn) for both the filter-bank and single-wavelet meth-
ods.

Graphics Interface '94 -

3.4 Choice of Base-case Size

The base-case is a pair of low-resolution contours computed by
performing a filter-bank decomposition of the original contours.
An optimal tiling is computed for the base-case using the algo-
rithm of Fuchs, Kedem and Uselton [4] in step 2 of our algo-
rithm. The size of this base-case needs to be chosen to balance
overall execution time and quality of the resulting tiling. Since
the base-case is cf constant size, its tiling can be computed in
constant time.

The smallest possible base-case is a pair of quadrilaterals. Re-
ducing the original contours to this size should result in the max-
imum speedup of the multiresolution tiling method over that of
[4]. However, the quality of tiling constructed is likely to de-
pend on how different the shape of the base-case is from that of
the original contours. Constructing an initial optimal tiling from
a pair of contours that contain most of the key shape features of
the originals is likely to produce a better final tiling than con-
structing the initial tiling from a base-case that contains few of
the shape features of the original.

One option is to allow the user to specify the base-case size. In
that manner the user can make the tradeoff between acceptable
tiling result and execution time. In a non-interactive environ-
ment, a base-case size of 64 seems to work well (Figure 9). For
contours of that size, the execution times of the Fuchs algorithm
and the sorted single-wavelet algorithm are approximately equal
(see Figure 8). Contours containing 64 or fewer vertices can be
tiled using the Fuchs, Kedem, Uselton algorithm without sig-
nificant loss of performance since a base-case that size can be
computed in roughly the same time it would take to reconstruct
from a smaller base-case.

4 Results

We have implemented both the filter-bank and single-wavelet re-
construction versions of the algorithm described above. To eval-
uate their performance we timed execution on pairs of contours
obtained from the “Digital Anatomist Project”, in the Depart-
ment of Biological Structure, at the University of Washington.
In those data, contour size ranges from 20 to over 1000 vertices.
Each timing run computed a tiling using the Fuchs algorithm and
atiling using one of the multiresolution methods. Various statis-
tics were gathered by counting the number of times certain key
pieces of code were executed. The resulting tilings were com-
pared with respect to the goal function optimized by the Fuchs
algorithm. The results of these tests are shown in Figures 8, 9,
and 10.

Figure 8 shows the timing results obtained for each of the Fuchs,
Filter-Bank, and Single Wavelet algorithms using a base-case
size of 8. For n = 1024 the Filter-Bank algorithm is 70 times
faster than the Fuchs algorithm. The Fuchs algorithm takes
nearly 80 seconds of CPU time, while the Filter-Bank method
takes slightly over one second.

Figure 9 shows how the selection of base-case size affects the
quality of the tiling for the set of contours shown in Figure 1.
Notice that larger base-case size improves tiling quality (mea-
sured as the ratio between the cost of the optimal tiling and the

Execution Time (seconds)
80.00 +

Filter-Bank

60.00

40.00

20.00

0.00

0.00 200 400 600 800 1000 N

Figure 8: Execution time versus N for the Fuchs, Kedem, Usel-
ton algorithm and the filter-bank and single-wavelet multireso-
lution algorithms.

Area Ratio (Opt/MRTile)
1.00

—
Single-Wavelet
[esceesiasnsses

0.95 Filter-Bank

0.90

-+

80.00 120.00
Figure 9: Tiling quality as a function of base-case size for the
contours of Figure 1.

cost of the multiresolution tiling), and that a base-case size of
64 seems to be at the point on the curve where further increase
in base-case size only marginally improves the final result.

Figure 10 shows the number of edges examined during the local
optimization phase of reconstruction for the single-wavelet and
filter-bank reconstruction methods. Contour size ranges from
16 to 1024 vertices. After an initial rise in the number of edges
considered per contour vertex, the number per vertex remains
nearly constant for contours ranging in size from 64 to 1024
vertices. These data suggest that for average inputs, a nearly
constant number of edges needs to be considered per contour
vertex during local optimization.

The contours shown in Figure 1 represent a difficult instance of
the tiling problem, obtained from the human cerebral cortex. A
trained anatomist would recognize that each of the 7 indenta-
tions on each contour should be linked to a corresponding in-
dentation on the other contour by edges at their inner extrema.
Figure 3 shows tilings produced for those contours by the op-
timizing algorithm and by the multiresolution algorithm. Note
that there are areas in both tilings that may not be acceptable
according to the criterion that the indentations should be linked.
The lower tiling, computed by the optimizing algorithm, con-

Graphics Interface 94 =

31

Edges Examined/N
20.00 T

P i L R LR a
- L
- p-" Bemmeemeeenean
o Single-Wavelet
—
16.00 + _ Filter-Bank
&
12.00 +:
3
8.00 ¢+
4.00 1 r
N
o] 256 512 1024

Figure 10: Number of edges examined per vertex during the
optimization process for contours ranging in size from 16 to
1024 vertices by the filter-bank and single-wavelet reconstruc-
tion methods. A base-case size of 8 was used.

nects the long indentation on the right side of the smaller contour
to the center of the edge of an indentation on the larger contour,
which probably is not what happens in the real object. In the
other tiling, computed by our single-wavelet algorithm, the in-
dentation in the smaller contour is connected to an indentation
of the larger contour, but it is unclear whether or not the “cor-
rect” connection has been found. Simply put, the “correct” tiling
in this region is ambiguous, and depends on the nature of the
material from which the contours were derived. No algorithm
is likely to yield results always acceptable to a trained human
user. In this case, the multiresolution algorithm connected 6 of
7 indentations, compared to 5 of 7 connected by the optimizing
algorithm.

We computed tilings for the contours shown in Figure 1 us-
ing the linear-time “greedy” methods of Ganapathy and Den-
nehy [5] and of Christiansen and Sederberg [1]. Both methods
construct a tiling beginning from a start vertex on each contour.
They sequentially advance along either the upper or lower con-
tour, connecting the current vertex on one contour to the next
vertex on the other. The Christiansen-Sederberg algorithm at-
tempts to minimize the sum of edge lengths by always select-
ing the shorter of the two possible edges at each step. The
Ganapathy-Dennehy algorithm always selects the edge that min-
imizes the difference in normalized arc length traversed between
the upper and lower contours. Figure 11 shows the results. Each
of the algorithms gets “confused” by a local configuration that
is not well modeled by its heuristic. The resulting tilings are
significantly worse than those of either the optimizing or mul-
tiresolution algorithm.

Figure 12 shows a series of reconstructions of single contours
using the single-wavelet multiresolution method. In each tiling,
coefficients smaller than a threshold value were discarded. The
number of vertices in the contours decreases significantly, while
the overall shapes of the contours retain much of the original
detail. For many purposes, the resolution of the tiling shown on
the right may be adequate. The low-resolution version requires
significantly less space to store, and less time to display.

Figure 11: Tilings computed by Upper: The algorithm of Chris-
tiansen and Sederberg and Lower: The algorithm of Ganapa-
thy and Dennehy, for the contours in Figure 1. Compare to the
tilings shown in Figure 3.

5 Conclusions

We have described a multiresolution approach to improving the
performance of a well-known optimizing algorithm for solving
the tiling problem, that of Fuchs, Kedem and Uselton [4].

A problem with all known tiling algorithms is that they can pro-
duce unacceptable tilings. For that reason, a practical system
for reconstructing surfaces from contours must be interactive.
The computational cost of the optimizing algorithm has caused
implementors of practical systems to use linear-time “greedy”
methods. The method we present in this paper is dramatically
faster than the optimizing algorithm. Though it does not guaran-
tee a globally optimal tiling, in many cases the tilings it produces
are equivalent to the optimal tilings. In general, the optimal
tiling differs significantly from the multiresolution results only
in complex cases for which neither algorithm produces a com-
pletely acceptable result, but for which both methods produce
results superior to those of linear-time “greedy” methods. The
multiresolution algorithm represents an improvement in quality
over the greedy methods, and is fast enough for interactive use,
even with contours containing well over 1000 vertices.

Multiresolution tiling provides a fast way to produce tilings at
reduced resolution, resulting in significant savings both in time
required to display a reconstruction and in the space required to
store it.

Graphics Interface '94 -

. (’v. /

L\

Figure 12: Tilings of the contours in Figure 1 using the single-
wavelet algorithm with threshold values of Left: 0.001, Center:
0.0025, and Right: 0.005. The threshold value multiplied by
the magnitude of the largest wavelet coefficient determines the
magnitude of the smallest coefficient used.

6 Acknowledgements

The author would like to thank Tony DeRose for the suggestion
that multiresolution analysis might be profitably applied to the
tiling problem, and for many helpful discussions along the way.

References

[1] H.N. Christiansen and T.W. Sederberg. Conversion of com-
plex contour line definitions into polygonal element mo-
saics. Computer Graphics, 12(2):187-192, August 1978.

S

Charles K. Chui. An Introduction To Wavelets. Academic
Press, Inc., 1992.

[3] Tony D. DeRose, Michael Lounsbery, and Joe Warren. Mul-
tiresolution analysis for surfaces of arbitrary topological
type. Technical Report 93-10-05, University of Washing-
ton, Dept. of Computer Science and Engineering, 1993.

[4] H. Fuchs, Z.M. Kedem, and S.P. Uselton. Optimal surface
reconstruction from planar contours. Communications of
the ACM, 20(10):693-702, October 1977.

[5] S. Ganapathy and T.G. Dennehy. A new general triangu-
lation method for planar contours. Computer Graphics,
16(3):69-75, July 1982.

[6] E. Keppel. Approximating complex surfaces by triangula-
tion of contour lines. /BM J. Res. Develop., 19:2—11, Jan-
uary 1975.

[7] Stephane Mallat. A theory for multiresolution signal de-
composition: The wavelet representation. [EEE Trans-
actions on Pattern Analysis and Machine Intelligence,
11(7):674-693, July 1989.

[8] David Meyers, Shelley Skinner, and Kenneth Sloan. Sur-
faces from contours. ACM Transactions on Graphics,
11(3):228-258, July 1992.

Joseph O’Rourke and Vinita Subramanian. On reconstruct-
ing polyhedra from parallel slices. Technical Report TR
008, Smith College Department of Computer Science,
Northampton, MA 01063, June 20, 1991.

9

