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Abstract 
Three dimensional scenes are typically modeled using 

a single, fixed resolution model of each geometric ob­
ject. Renderings of such a model are often either slow or 
crude, however: slow for distant objects, where the cho­
sen detail level is excessive, and crude for nearby objects, 
where the detail level is insufficient. What is needed is a 
multiresolution model that represents objects at mUltiple 
levels of detail. With a multiresolution model , a render­
ing program can choose the level of detail appropriate 
for the object's screen size so that less time is wasted 
drawing insignificant detail. The principal challenge is 
the development of algorithms that take a detailed model 
as input and automatically simplify it, while preserving 
appearance. Multiresolution techniques can be used to 
speed many applications, including real time rendering 
for architectural and terrain simulators, and slower, higher 
quality rendering for entertainment and radiosity. This pa­
per surveys existing multiresolution modeling techniques 
and speculates about what might be possible in the future. 

Keywords: multiresolution model , level of detail, ren­
dering, simplification, approximation. 

The first section of thi s paper discusses the goals and 
computational cost of complex scene rendering and ex­
plains why the use of a model with the appropriate level 
of detail is important. Section 2 summarizes the goals of 
multi resolution modeling and section 3 summarizes sev­
eral data structures for achieving these goals. The paper 
concludes with a comparison of these data structures. 

1 Rendering Complex Scenes 

In computer graphics, we would like to render com­
plex scenes such as terrains, cities, building interiors , 
molecules, and biological structures as quickly as possi­
ble. These might contain milli onsof geometric primitives 
(polygons, spheres, etc.). 

1.1 Optimized Rendering 

Early rendering algorithms performed transformation, 
clipping, sorting, and hidden line or hidden surface re­
moval. For a scene of n primitives, such algorithms 
had costs of O(n2 ) or O(n logn). In the late 70's and 
early 80's, flight simulators capable of displaying several 
thousand polygons in real time became available, but at 
a price of several million dollars. Advances in graph­
ics hardware and memory technology have allowed brute 
force algorithms such as the z-buffer to supplant the ear­
lier, sorting-based algorithms. These advances have sped 
rendering dramatically, so that it is now possible to draw 
ten thousand shaded polygons in real time on a $40,000 
workstation . 

The ti me cost of renderi ng a scene of n pri mi ti ves wi th a 
total screen area of ac 1 with a simple z-buffer algorithm is 
0(n+ac )2 . The cost is linear in the number of primitives 
because of transforming and clipping, and linear in the 
screen area due to scan conversion and shading. When 
the scene is very detailed and most surfaces project to an 
area smaller than a pixel , the transformation and clipping 
cost (n) dominates . Algorithms with costs that are linear 
in n are an improvement over earlier algorithms, but they 
are still slower than necessary. 

In highly complex scenes, the user cannot see all of the 
primitives at one time because many of them are either 
off-screen, occluded, or too small to be seen. If a simple 
z-buffer algorithm is used, as described above, then each 
of the primitives in the scene must be transformed and 
clipped, even if it is way off screen , and each on-screen 
primitive must be scan converted and (potentially) shaded, 
even if it is occluded. Off, screen primitives can be culled 
quickly using hierarchical bounding volumes [4] , octrees, 

I a e is the sum of screen areas of clipped primitives, ignoring occlu­
sion. It could be much greater than the number of pixels in the image if 
the depth complex ity is high . 

2 Asymptotic complexity notation : 0 (J (n» is an upper bound, 
0(J (n» is both an upper bound and lower bound . We discuss only 
worst case cost in this paper. 
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Figure I : Three views out a window. a) Building is off-screen. b) Building is on-screen, but occluded by wall. 
c) Building is on-screen, and visible through window. 

or other spatial data structures. 
Occluded objects can be weeded out either with sophis­

ticated visibility analysis techniques [24] or more brute 
force z-buffer pyramids [10]. Together, these optimiza­
tions would reduce the cost of rendering n primitives with 
clipped screen area of ae from 8(n+ae) to 8 (nv +(lv) 
not counting preprocessing, where nv is the number of 
visible primitives, and (Iv is their total screen area. Note 
that 0 ~ nv ~ nand 0 ~ (Iv ~ ae, but the relative sizes 
of these variables are very scene-dependent. 

The third optimization for complex scenes, speedier 
handling of small objects, is employed by few existing 
rendering systems. It is the focus of this paper. 

Figure I shows three views that illustrate the differ­
ences between these optimizations of the z-buffer algo­
rithm. The scene is a building that is (sometimes) visible 
through a window in a wall. Suppose the vis ible facade 
of the building is modeled using n polygons, the wall and 
ground pl ane are modeled using a small , bounded number 
of polygons, and the number of pixels in the image is CL. 

The costs of various z-buffer-based algorithms on these 
three views are: 

I ALGORITHM I Fig I a Fig I b Fig I c I 
unoptimized 0(n +a) 0(n+a) 0( n + a) 
with off-sc reen cu lling 0(a) 0(n+a) 0( n + a) 
with off-screen & visibility 0(a) 0(a) 0(n + a) 
culling 
with off-screen & visibil - 0(a) 0(a) 0( a) 
ity culling. & multiresolu -
tion modeling (projection) 

Figure I a, where the building is off-screen, is optimized 
by simple off-screen culling. Figure I b is more difficult 
to optimize; visibi lity cu lling is required to generate thi s 
picture quickly. Figure I c is the most difficult of all . In 
the case where n ~ a, there are many more polygons 
than necessary to model the building, and they're almost 
all visible, so neither off-screen nor visibi lity culling will 
render this view efficiently. 

What is needed are methods for simplifying an object 
that has been modeled with excessive detail so that arbi­
trary views can be rendered quickly, ideally with a cost 

(not counting preprocessing) proportional to the number 
of pixels, but independent of scene complexity. Such an 
algorithm would be optimal on a computer where writ­
ing CL pixel s takes 8(a) time3 . For any particular view, 
this goal is trivially achievable, since the scene could be 
modeled as a plane tiled with one rectangular polygon per 
screen pixel. The challenge is to find a model that works 
for any viewpoint, while remaining fast and compact. 

2 Multiresolution Modeling 

Geometric models typically describe each shape in a scene 
with a si ngle representation. The scale or level of detail 
at which each object is modeled is fixed. Such a model 
is called a fixed resolution model. When rendering with 
a perspective projection, distant objects project to a small 
screen area and nearby objects project to a large area. 
In a complex scene, the dynamic range of these screen 
areas can be very great. Rendering such a scene using 
a fixed resolution model can be very inefficient, as seen 
with figure I c. 

The best method for optimizing the rendering of small 
and distant objects is multi resolution modeling: the de­
scription of geometry and surface attributes such as color 
and texture at a variety of scales. Depending on the screen 
size of a given object or cluster of objects, the appropriate 
level of detail within the model would be chosen [4] . The 
appropriate level for a given view is the coarsest level that 
looks the same as the finest level. Thus, nearby objects 
would be rendered using a detailed model , wh ile di stant 
objects would be rendered using a coarse model. 

2.1 Applications 

Multiresolution modeling has many applications. The pri­
mary one is fast display, both for real-time rendering and 
for high quality images that might take minutes or hours 

.10n a paralle l machine with 0( a ) processors . we might be able to 
render in constant time. 
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of compute time. Architectural walkthroughs, Aight sim­
ulators, scientific visualization, computer-aided design, 
movie special effects, and virtual reality are natural ap­
plications. 

In the past, the person who models a 3-D scene has often 
been the one who runs the renderer. Since this person 
knows what the camera will see, he or she can model the 
scene appropriately, including only those details that will 
be seen . 

For 3-D animation, objects that are seen at widely vary­
ing scales are often modeled at two or more levels of de­
tail: a "fine" model for c10seups and a "coarse" model 
for distant shots. As the object recedes into the distance 
during animation, the scene description will often be man­
ually altered to switch from the fine model to the coarse 
model. This procedure can be automated by including 
both the coarse and fine models in the scene description, 
and using a measure of screen size, such as the area of 
the projected bounding volume of the object, to choose 
between the levels of detail. 

In Aight simulators and virtual reality, the person 
preparing the model is not the person choosing the view­
points (i .e. the pilot) . For these applications, the model er 
must include enough detail that the user can move through 
the whole scene without losing the illusion of reality. 

Multiresolutionmodeling is also useful in radiosity and 
other global illumination algorithms. In rendering, we de­
termine the visible surfaces within a viewing pyramid and 
create a picture of them, while in radiosity, we determine 
the visible surfaces within a hemisphere and integrate 
them. These tasks are very similar. 

Radiosity algorithms subdivide each input polygon into 
many elements. Early radiosity algorithms had a cost that 
was quadratic in the number of elements because they 
used a fixed subdivision and they calculated the amount 
of light reflected between each pair of elements. These 
algorithms wasted most of their time computing insignifi­
cant light transfers between distant objects. The hierarchi­
cal radiosity algorithm uses adaptive subdivision instead : 
when gathering light into each element, it subdivides dis­
tant polygons coarsely and nearby polygons finely [11]. 
With this improvement, the algorithm's cost is linear in 
the number of elements, but it is still quadratic in the num­
ber of polygons, since pairwise subdivision starts with the 
given polygons. Thus, the algorithm is fast only for sim­
ple scenes consisting of a few large polygons. This is 
unacceptable for complex scenes. 

The quadratic cost term of hierarchical radiosity could 
be eliminated, yielding an algorithm whose complexity 
would be linear in the number of polygons or better, if 
multiresolution modeling were used, clustering distant 
objects and treating them as a single unit. Rushmeier 
et al. have recently employed multiresolution models 
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for radiosity, but their model creation system was not 
automated [20]. 

2.2 Model Use 

Selection of the appropriate level of detail during render­
ing is easy, requiring only hierarchical bounding volumes 
and fast estimates of screen area. If levels of detail are se­
lected discretely, however, this will cause visible artifacts 
in the spatial or temporal continuity of images. Experi­
ence has shown that consistency is often more important 
than correctness in computer graphics . Level-switching 
artifacts can be eliminated by smoothing the transitions 
using linear interpolation of geometry and color. 

2.3 Model Creation 

Creation of a multiresolution model is quite difficult. Al­
though multiresolution modeling is an old idea, most 
existing such databases have been created by hand. In 
Aight simulator and architectural walkthrough systems 
that employ multiresolution modeling, laborious manual 
database preparation is still required, to the best of our 
knowledge [29, 9, 8]. Renderman can render multireso­
lution models but it supplies no automatic tools for gen­
erating them [26] . 

The principal challenge of multiresolution modeling is 
to find a set of algorithms that can take a complex scene 
description as input, including both geometry and surface 
attributes such as color and texture, and automatically 
generate data structures that allow rapid rendering of the 
scene from any viewpoint. For greatest flexibility, the 
system should allow arbitrary input (e.g. a set of polygons 
with no topological information) and not assume that the 
input comes with a hierarchy. It is most important that 
the rendering be fast and the appearance of the scene be 
preserved, but it is also desirable that the preprocessing 
time and memory requirements be low. 

2.4 Preservation of Appearance 

Quantifying the "preservation of appearance" objective 
can aid in the development of algorithms. The real mea­
sure of appearance is the raster image output by the ren­
derer. This is more important than precise preservation of 
topology or geometry. We would therefore like an image 
error metric that measures the overall difference between 
two images. This metric should measure the difference 
between an image f( x , y) rendered using the fully de­

tailed input model and an image J(x , y) rendered using 
the multiresolution model (the approximation) . We'd like 
the two images to be indistinguishable. Ultimately, hu­
man viewers are the judges, so the best error metric would 
entail a model of the human visual system, a very complex 
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topic. Useful results can be obtained with much simpler 
error metrics, however. These can be viewed as crude 
approximations to human perception. 

A simple starting point is the sum of squared distances 
in ROB color space between corresponding pixels: 

E(J, j) = 2:llf(x , y) - j(x , y)11 2 

X,Y 

This error metric can be improved by adding differential 
weighting for the color channels, nonlinear sensitivity to 
radiance, and spatial filtering. Any multiresolution mod­
eling data structure that is developed should be validated 
either with perceptual tests using human viewers, or with 
a good image error metric. 

3 MuItiresolution Data Structures 

For rendering, a model can be regarded as an abstract data 
type that supports queries of the form : 

what does this object look like when viewed 
from a given viewpoint, with a given resolu­
tion? 

Any fast , compact data structure for such queries would 
suffice as a multiresolution representation . We discuss 
the following six data structures as possible candidates: 

I. image pyramids, 

2. volume pyramids, 

3. texture and reflectance, 

4. pictures from multiple angles, 

5. ray space, and 

6. polygonal model s. 

Several of these are rather speculative. 

3.1 Image Pyramids 

In two dimensions, the most natural multiresolution 
model is the image pyramid . Image pyramids are ubiqui­
tous in image processing and computer vision [18], and 
are also widely used to optimize texture mapping [28, 12]. 
Image pyramids are an attractive multiresolution model 
because they are so easily resampled. Unfortunately, they 
are limited to 2-D. 

3.2 Volume Pyramids 

More natural as a 3-D multiresolution modeling data 
structure is the 3-D volume pyramid. Volume pyramids 
are very helpful for fast volume rendering [21], but as a 
surface representation , they are bulky and crude. 

3.3 Texture and Reflectance 

Texture and reflectance models are a form of multiresolu­
tion modeling. They model the visible effects offine-scale 
variation in geometry and surface attributes that are too 
small to be modeled using geometry. Texture mapping 
is commonly used to model features whose geometry is 
smaller than a pixel but whose visible patterns are big­
ger than a pixel, and reflectance models describe features 
whose patterns are much smaller than a pixel. 

In pictures or animation encompassing a wide range of 
scales, the choice of representation should be allowed to 
vary from frame to frame and from pixel to pixel. When 
flying over a terrain , for example, mountains in the far 
distance are best modeled as a textured plane, and the 
appearance of the trees on the mountain are best modeled 
statistically, in the reflectance model. In the near distance, 
what was texture (the mountain) should become geometry, 
and some of the larger features influencing reflectance (the 
trees) should become texture. Finally, in a c1oseup, the 
trees become geometry. 

This idea has been proposed by Perlin [16], Kajiya [15] , 
and others, but has never been implemented in a general 
way. The best progress along these lines has been made 
in generating bidirectional reflectance di stribution func­
tions (BRDF's) from geometry [2,7 , 27] and in smoothing 
the transitions between BRDF's, bump mapping, and dis­
placement mapping [I]. 

3.4 Pictures from Multiple Angles 

In architecture, initial design is typically done by sketch­
ing a building from multiple viewpoints . When we watch 
film or video, we are seeing a sequence of still images of 
objects from different viewpoints . Such representations 
suffice, in a practical sense, to define a 3-D shape. Hence 
the idea to represent an object not with a set of surface 
primitives, but with a set of pictures. 

This approach has the obvious advantages that the rep­
resentation is of the same form as the output of a renderer 
(a picture) and that image pyramids cou ld be used, allow­
ing quick extraction of an image of the desired resolution. 
The major disadvantage is that the appearance of the ob­
ject from arbitrary viewpoints is not directly available; in 
the process of generating the pictures, information is lost. 

Intermediate views can differ from the chosen views 
because of either occlusion or specular reflection. In a 
scene where sunlight shines directly through a tunnel , 
for example, only certain views see the sun , so if those 
views were not chosen , the system would have difficulty 
generating accurate intermediate views. And in a scene 
containing mirrors, only certain views see a reflecti on of 
the light sources, so again, intermediate views would be 
difficult to interpolate correctly. 
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Approximate intermediate views can be generated au­
tomatically if the correspondence between pixels of the 
chosen views is known, and the correspondences can be 
derived if the z-buffers of the chosen views are avail­
able [3] . This technique does not solve the complications 
caused by occlusion and specular reflection, however, so 
there are large unsolved problems to make this approach 
viable as a general multiresolution modeling data struc­
ture. 

3.5 Ray Space 

Another approach to multiresolution modeling is to treat 
an object's appearance in terms of ray queries, the type 
of queries performed in a ray tracing algorithm. A ray 
query takes a ray and returns the color traveling backward 
along that ray. Existing data structures for fast ray queries 
require huge memories, so this approach does not seem 
as promising as the use of textures and polygons. This 
approach is attractive, however, because it provides a 
unified, high level abstraction that allows us to blur the 
distinction between geometry and surface attributes such 
as BRDF's. 

3.6 Polygonal Models 

The final approach to multiresolution modeling that we 
consider, polygonal models, has received the most work, 
so we discuss it in the greatest detail. 

The principal challenge when using a polygonal model 
for multiresolution modeling is simplification: automati­
cally converting a detailed model into a simpler one that 
faithfully represents the underlying object. We seek algo­
rithms that will minimize both the number of polygons in 
the simplified model and the error of the approximation. 

Simplification algorithms differ greatly depending on 
the topology of the polygonal model. The simplest are 
curve models, consisting of a sequence of points or line 
segments (not really polygons at all). Next in complexity 
are mesh models, which consist of a network of polygons 
forming a single, continuous surface. The most general 
class of polygonal models are polyhedral models, where 
arbitrary topology is allowed. The latter class is the most 
relevant to multiresolution modeling. 

3.6.1 Curve Simplification 

Numerous algorithms for approximating one piecewise 
linear curve with another have been developed [6] . It is 
possible to find the least squares optimal m-segment ap­
proximation to an n -segment curve in time O( mn3 ) using 
a dynamic programming algorithm [14]. Unfortunately, 
this is too slow for use on complex curves, and it does 
not appear to generalize to surfaces. Curve simplification 
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algorithms may be of some guidance in our search for 
surface simplification methods, however. 

3.6.2 Mesh Simplification 

The aspect of polygonal simplification that has received 
the most attention is the simplification of surface meshes. 
Such models are commonly generated from digital sam­
pling of real world objects. The data tend to be dense and 
redundant, so they can typically be drastically simplified 
without significant loss of fidelity. We consider grids with 
rectangular topology first, then height fields, and finally 
general meshes . 

If the mesh is a grid with rectangular topology then a 
natural simplification technique is to low pass filter the 
data and then discard every other row and every other 
column from the grid, performing what is called "dec­
imation by 2" in signal processing. Williams proposed 
this as a multiresolution modeling technique both to re­
duce the time needed to transform polygons and to reduce 
the need for antialiasing [28]. 

Another area of research is the generation of compact 
triangulations from digital terrain data and other height 
fields [17, 22] . Given a regular grid of height samples, 
the task is to construct a triangle mesh that closely approx­
imates the actual surface with a small number of vertices. 
Typically, these algorithms are constructive; they begin 
with a minimal set of points and then add new points 
until the error of the approximation is below some thresh­
old. Various criteria are used to select which points to 
add. Some of these algorithms are quite slow. For exam­
ple, Polis and McKeown's algorithm required 18 hours 
to achieve a 40-to-1 simplification of a 4,000,000 point 
terrain. These applications compute the simplified model 
off-line, however, so for them, preprocessing speed was 
much less important than accuracy and simplification. 

A broader problem is the simplification of general 
meshes . The typical goal here is to digitize a real world 
object and construct a compact surface description of it. 
In [5], DeHaemer and Zyda present an adaptive subdivi­
sion algorithm that fits polygons to a set of samples. This 
algorithm combines surface reconstruction and simplifi­
cation; it constructs a simple surface directly from the 
data. 

Other algorithms require a mesh as input. Schroeder, 
Zarge, and Lorensen [23] propose a decimation algo­
rithm. They iteratively remove unimportant points from 
the mesh, performing local retriangulations to preserve 
the surface. Turk [25] describes a related approach. He 
selects a set of points on the surface that will become the 
vertices of a new mesh and uses point repulsion to achieve 
good coverage of the surface. A new triangulated mesh 
is generated by combining the old and new vertices. The 
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Figure 2: Original cow (5804 triangles) 

Figure 3: Simplified cow (658 triangles) 

old vertices are then iteratively deleted, using local retri­
angulations to preserve the topology of the surface. Most 
recently, Hoppe et al. [13] present an algorithm for op­
timizing fairly general surface meshes. They cast the 
problem in terms of minimizing an energy function that 
captures the conflicting goals of mesh simplification and 
error minimization. 

3.6.3 Polyhedral Simplification 

Rossignac and Borrel [19] have made one of the few 
efforts to address the simplification of general, polyhe­
dral models with arbitrary topology. Their motivation 
is to speed interactive viewing of complex objects, so 
they seek a minimal set of polygons and lines that sug­
gests a shape to the user. Given a polyhedral model that 
has been triangulated, they subdivide its bounding vol­
ume into a grid of boxes. All vertices within each box 
are merged together into a new representative vertex. A 
simplified model is then synthesized from these repre­
sentative vertices by forming triangles according to the 
original topology. 

This is essentially a signal processing approach : the 
model is filtered, resampled, and reconstructed. As with 

Figure 4: Original Beethoven (4998 triangles) 

Figure 5: Simplified Beethoven (652 triangles) 

all sampling algorithms, aliasing can arise. One weakness 
of the algorithm is that averaging vertices removes high­
frequency details that might have significant importance 
(features on a face, for example). Another weakness is 
that the results are not invariant to rigid body motion of 
the input model; if the model is rotated or translated, the 
output model ripples like a point-sampled image. 

Figures 2-5 show results from an algorithm based on 
Rossignac and Borrel's. Figure 2 shows the original 
model of a cow and figure 3 is the result of simplifi­
cation. With this model , the results are good; viewed 
from a distance the models are fairly similar. The second 
example is a bust of Beethoven, figure 4, whose simplified 
version, figure 5, illustrates the loss of important detail. 
A better algorithm would use more polygons in areas of 
high surface curvature and fewer polygons in areas of low 
curvature. 
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4 Conclusions 

Most current rendering algorithms are inefficient when 
rendering very complex scenes. Their cost is linear in 
scene complexity, and this is unacceptable when the com­
plexity is very high. When given a scene with many more 
surface primitives than pixels, z-buffer algorithms waste 
a lot of time transforming and clipping objects smaller 
than a pixel that have negligible impact on the final pic­
ture. Using multiresolution modeling it may be possible 
to render scenes in time proportional to screen area but 
independent of scene complexity. 

The six data structures for multiresolution modeling 
that we have discussed are evaluated below: 

Image Pyramids. Image pyramids are very good for pla­
nar and smoothly curved surfaces, but they do not 
represent real 3-D features well. 

Volume Pyramids. Total brute force. The results will 
look blurry or blocky unless a huge memory is avail­
able. 

Texture and Reflectance Models. Texture and reflect­
ance don ' t represent geometry, but they are excel­
lent, compact representations for fine detail, so they 
would be important components of any complete 
multiresolution modeling system. Much work re­
mains to be done to derive textures from geometric 
models, however. 

Pictures from Multiple Angles. This approach is in­
triguing, but can the problems of specular objects 
and occlusion be solved? Perhaps it should be used 
primarily for diffuse, nearly-convex objects. 

Ray Space. Also intriguing, but the memory require­
ments may be extreme. 

Polygonal Models. Polygonal models will probably 
form the core of a successful multiresolution model­
ing system, since they are the simplest, most versatile 
representation for geometry. 

The polygonal simplification methods we discussed 
were developed with different goals in mind. Many 
of the simplification algorithms are limited to 
meshes, they are slow, and they consider shape 
only when doing their simplification, not material 
attri butes such as color, specularity, or texture. Fur­
ther work is needed to adapt them to the goals of 
multiresolution modeling. 

Rossignac and Borrel's simplification algorithm is 
the most general, since it accepts polyhedral mod­
els with arbitrary topology as input. It can achieve 
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greater simplification since it is free to change the 
topology of models. On the negative side, this al­
gorithm shows artifacts of the clustering grid and it 
does not preserve detail as well as might be possible. 
Nevertheless, this algorithm is a good starting point 
for future research. With additional work on preser­
vation of appearance, a simplification algorithm well 
suited for fast rendering could be developed. 

A full multiresolution modeling system would need to 
combine several of these data structures in order to repre­
sent objects using a combination of geometry, texture, and 
reflectance, and it would need to smooth the transitions 
between representations during rendering. 
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