
43

Multiresolution Modeling for Fast Rendering

Paul S. Heckbert and Michael Garland
Computer Science Department

Carnegie Mellon University
Pittsburgh, Pennsylvania, 15213-3891, USA

ph@cs.cmu. edu, garland@cs.cmu.edu

Abstract
Three dimensional scenes are typically modeled using

a single, fixed resolution model of each geometric ob­
ject. Renderings of such a model are often either slow or
crude, however: slow for distant objects, where the cho­
sen detail level is excessive, and crude for nearby objects,
where the detail level is insufficient. What is needed is a
multiresolution model that represents objects at mUltiple
levels of detail. With a multiresolution model , a render­
ing program can choose the level of detail appropriate
for the object's screen size so that less time is wasted
drawing insignificant detail. The principal challenge is
the development of algorithms that take a detailed model
as input and automatically simplify it, while preserving
appearance. Multiresolution techniques can be used to
speed many applications, including real time rendering
for architectural and terrain simulators, and slower, higher
quality rendering for entertainment and radiosity. This pa­
per surveys existing multiresolution modeling techniques
and speculates about what might be possible in the future.

Keywords: multiresolution model , level of detail, ren­
dering, simplification, approximation.

The first section of thi s paper discusses the goals and
computational cost of complex scene rendering and ex­
plains why the use of a model with the appropriate level
of detail is important. Section 2 summarizes the goals of
multi resolution modeling and section 3 summarizes sev­
eral data structures for achieving these goals. The paper
concludes with a comparison of these data structures.

1 Rendering Complex Scenes

In computer graphics, we would like to render com­
plex scenes such as terrains, cities, building interiors ,
molecules, and biological structures as quickly as possi­
ble. These might contain milli onsof geometric primitives
(polygons, spheres, etc.).

1.1 Optimized Rendering

Early rendering algorithms performed transformation,
clipping, sorting, and hidden line or hidden surface re­
moval. For a scene of n primitives, such algorithms
had costs of O(n2) or O(n logn). In the late 70's and
early 80's, flight simulators capable of displaying several
thousand polygons in real time became available, but at
a price of several million dollars. Advances in graph­
ics hardware and memory technology have allowed brute
force algorithms such as the z-buffer to supplant the ear­
lier, sorting-based algorithms. These advances have sped
rendering dramatically, so that it is now possible to draw
ten thousand shaded polygons in real time on a $40,000
workstation .

The ti me cost of renderi ng a scene of n pri mi ti ves wi th a
total screen area of ac 1 with a simple z-buffer algorithm is
0(n+ac)2 . The cost is linear in the number of primitives
because of transforming and clipping, and linear in the
screen area due to scan conversion and shading. When
the scene is very detailed and most surfaces project to an
area smaller than a pixel , the transformation and clipping
cost (n) dominates . Algorithms with costs that are linear
in n are an improvement over earlier algorithms, but they
are still slower than necessary.

In highly complex scenes, the user cannot see all of the
primitives at one time because many of them are either
off-screen, occluded, or too small to be seen. If a simple
z-buffer algorithm is used, as described above, then each
of the primitives in the scene must be transformed and
clipped, even if it is way off screen , and each on-screen
primitive must be scan converted and (potentially) shaded,
even if it is occluded. Off, screen primitives can be culled
quickly using hierarchical bounding volumes [4] , octrees,

I a e is the sum of screen areas of clipped primitives, ignoring occlu­
sion. It could be much greater than the number of pixels in the image if
the depth complex ity is high .

2 Asymptotic complexity notation : 0 (J (n» is an upper bound,
0(J (n» is both an upper bound and lower bound . We discuss only
worst case cost in this paper.

Graphics Interface '94

44

rl
r I I,
1 1 ,.... l,

1 1
-T-- -- t

l ___ 1

Figure I : Three views out a window. a) Building is off-screen. b) Building is on-screen, but occluded by wall.
c) Building is on-screen, and visible through window.

or other spatial data structures.
Occluded objects can be weeded out either with sophis­

ticated visibility analysis techniques [24] or more brute
force z-buffer pyramids [10]. Together, these optimiza­
tions would reduce the cost of rendering n primitives with
clipped screen area of ae from 8(n+ae) to 8 (nv +(lv)
not counting preprocessing, where nv is the number of
visible primitives, and (Iv is their total screen area. Note
that 0 ~ nv ~ nand 0 ~ (Iv ~ ae, but the relative sizes
of these variables are very scene-dependent.

The third optimization for complex scenes, speedier
handling of small objects, is employed by few existing
rendering systems. It is the focus of this paper.

Figure I shows three views that illustrate the differ­
ences between these optimizations of the z-buffer algo­
rithm. The scene is a building that is (sometimes) visible
through a window in a wall. Suppose the vis ible facade
of the building is modeled using n polygons, the wall and
ground pl ane are modeled using a small , bounded number
of polygons, and the number of pixels in the image is CL.

The costs of various z-buffer-based algorithms on these
three views are:

I ALGORITHM I Fig I a Fig I b Fig I c I
unoptimized 0(n +a) 0(n+a) 0(n + a)
with off-sc reen cu lling 0(a) 0(n+a) 0(n + a)
with off-screen & visibility 0(a) 0(a) 0(n + a)
culling
with off-screen & visibil - 0(a) 0(a) 0(a)
ity culling. & multiresolu -
tion modeling (projection)

Figure I a, where the building is off-screen, is optimized
by simple off-screen culling. Figure I b is more difficult
to optimize; visibi lity cu lling is required to generate thi s
picture quickly. Figure I c is the most difficult of all . In
the case where n ~ a, there are many more polygons
than necessary to model the building, and they're almost
all visible, so neither off-screen nor visibi lity culling will
render this view efficiently.

What is needed are methods for simplifying an object
that has been modeled with excessive detail so that arbi­
trary views can be rendered quickly, ideally with a cost

(not counting preprocessing) proportional to the number
of pixels, but independent of scene complexity. Such an
algorithm would be optimal on a computer where writ­
ing CL pixel s takes 8(a) time3 . For any particular view,
this goal is trivially achievable, since the scene could be
modeled as a plane tiled with one rectangular polygon per
screen pixel. The challenge is to find a model that works
for any viewpoint, while remaining fast and compact.

2 Multiresolution Modeling

Geometric models typically describe each shape in a scene
with a si ngle representation. The scale or level of detail
at which each object is modeled is fixed. Such a model
is called a fixed resolution model. When rendering with
a perspective projection, distant objects project to a small
screen area and nearby objects project to a large area.
In a complex scene, the dynamic range of these screen
areas can be very great. Rendering such a scene using
a fixed resolution model can be very inefficient, as seen
with figure I c.

The best method for optimizing the rendering of small
and distant objects is multi resolution modeling: the de­
scription of geometry and surface attributes such as color
and texture at a variety of scales. Depending on the screen
size of a given object or cluster of objects, the appropriate
level of detail within the model would be chosen [4] . The
appropriate level for a given view is the coarsest level that
looks the same as the finest level. Thus, nearby objects
would be rendered using a detailed model , wh ile di stant
objects would be rendered using a coarse model.

2.1 Applications

Multiresolution modeling has many applications. The pri­
mary one is fast display, both for real-time rendering and
for high quality images that might take minutes or hours

.10n a paralle l machine with 0(a) processors . we might be able to
render in constant time.

Graphics Interface '94

of compute time. Architectural walkthroughs, Aight sim­
ulators, scientific visualization, computer-aided design,
movie special effects, and virtual reality are natural ap­
plications.

In the past, the person who models a 3-D scene has often
been the one who runs the renderer. Since this person
knows what the camera will see, he or she can model the
scene appropriately, including only those details that will
be seen .

For 3-D animation, objects that are seen at widely vary­
ing scales are often modeled at two or more levels of de­
tail: a "fine" model for c10seups and a "coarse" model
for distant shots. As the object recedes into the distance
during animation, the scene description will often be man­
ually altered to switch from the fine model to the coarse
model. This procedure can be automated by including
both the coarse and fine models in the scene description,
and using a measure of screen size, such as the area of
the projected bounding volume of the object, to choose
between the levels of detail.

In Aight simulators and virtual reality, the person
preparing the model is not the person choosing the view­
points (i .e. the pilot) . For these applications, the model er
must include enough detail that the user can move through
the whole scene without losing the illusion of reality.

Multiresolutionmodeling is also useful in radiosity and
other global illumination algorithms. In rendering, we de­
termine the visible surfaces within a viewing pyramid and
create a picture of them, while in radiosity, we determine
the visible surfaces within a hemisphere and integrate
them. These tasks are very similar.

Radiosity algorithms subdivide each input polygon into
many elements. Early radiosity algorithms had a cost that
was quadratic in the number of elements because they
used a fixed subdivision and they calculated the amount
of light reflected between each pair of elements. These
algorithms wasted most of their time computing insignifi­
cant light transfers between distant objects. The hierarchi­
cal radiosity algorithm uses adaptive subdivision instead :
when gathering light into each element, it subdivides dis­
tant polygons coarsely and nearby polygons finely [11].
With this improvement, the algorithm's cost is linear in
the number of elements, but it is still quadratic in the num­
ber of polygons, since pairwise subdivision starts with the
given polygons. Thus, the algorithm is fast only for sim­
ple scenes consisting of a few large polygons. This is
unacceptable for complex scenes.

The quadratic cost term of hierarchical radiosity could
be eliminated, yielding an algorithm whose complexity
would be linear in the number of polygons or better, if
multiresolution modeling were used, clustering distant
objects and treating them as a single unit. Rushmeier
et al. have recently employed multiresolution models

45

for radiosity, but their model creation system was not
automated [20].

2.2 Model Use

Selection of the appropriate level of detail during render­
ing is easy, requiring only hierarchical bounding volumes
and fast estimates of screen area. If levels of detail are se­
lected discretely, however, this will cause visible artifacts
in the spatial or temporal continuity of images. Experi­
ence has shown that consistency is often more important
than correctness in computer graphics . Level-switching
artifacts can be eliminated by smoothing the transitions
using linear interpolation of geometry and color.

2.3 Model Creation

Creation of a multiresolution model is quite difficult. Al­
though multiresolution modeling is an old idea, most
existing such databases have been created by hand. In
Aight simulator and architectural walkthrough systems
that employ multiresolution modeling, laborious manual
database preparation is still required, to the best of our
knowledge [29, 9, 8]. Renderman can render multireso­
lution models but it supplies no automatic tools for gen­
erating them [26] .

The principal challenge of multiresolution modeling is
to find a set of algorithms that can take a complex scene
description as input, including both geometry and surface
attributes such as color and texture, and automatically
generate data structures that allow rapid rendering of the
scene from any viewpoint. For greatest flexibility, the
system should allow arbitrary input (e.g. a set of polygons
with no topological information) and not assume that the
input comes with a hierarchy. It is most important that
the rendering be fast and the appearance of the scene be
preserved, but it is also desirable that the preprocessing
time and memory requirements be low.

2.4 Preservation of Appearance

Quantifying the "preservation of appearance" objective
can aid in the development of algorithms. The real mea­
sure of appearance is the raster image output by the ren­
derer. This is more important than precise preservation of
topology or geometry. We would therefore like an image
error metric that measures the overall difference between
two images. This metric should measure the difference
between an image f(x , y) rendered using the fully de­

tailed input model and an image J(x , y) rendered using
the multiresolution model (the approximation) . We'd like
the two images to be indistinguishable. Ultimately, hu­
man viewers are the judges, so the best error metric would
entail a model of the human visual system, a very complex

Graphics Interface '94

46

topic. Useful results can be obtained with much simpler
error metrics, however. These can be viewed as crude
approximations to human perception.

A simple starting point is the sum of squared distances
in ROB color space between corresponding pixels:

E(J, j) = 2:llf(x , y) - j(x , y)11 2

X,Y

This error metric can be improved by adding differential
weighting for the color channels, nonlinear sensitivity to
radiance, and spatial filtering. Any multiresolution mod­
eling data structure that is developed should be validated
either with perceptual tests using human viewers, or with
a good image error metric.

3 MuItiresolution Data Structures

For rendering, a model can be regarded as an abstract data
type that supports queries of the form :

what does this object look like when viewed
from a given viewpoint, with a given resolu­
tion?

Any fast , compact data structure for such queries would
suffice as a multiresolution representation . We discuss
the following six data structures as possible candidates:

I. image pyramids,

2. volume pyramids,

3. texture and reflectance,

4. pictures from multiple angles,

5. ray space, and

6. polygonal model s.

Several of these are rather speculative.

3.1 Image Pyramids

In two dimensions, the most natural multiresolution
model is the image pyramid . Image pyramids are ubiqui­
tous in image processing and computer vision [18], and
are also widely used to optimize texture mapping [28, 12].
Image pyramids are an attractive multiresolution model
because they are so easily resampled. Unfortunately, they
are limited to 2-D.

3.2 Volume Pyramids

More natural as a 3-D multiresolution modeling data
structure is the 3-D volume pyramid. Volume pyramids
are very helpful for fast volume rendering [21], but as a
surface representation , they are bulky and crude.

3.3 Texture and Reflectance

Texture and reflectance models are a form of multiresolu­
tion modeling. They model the visible effects offine-scale
variation in geometry and surface attributes that are too
small to be modeled using geometry. Texture mapping
is commonly used to model features whose geometry is
smaller than a pixel but whose visible patterns are big­
ger than a pixel, and reflectance models describe features
whose patterns are much smaller than a pixel.

In pictures or animation encompassing a wide range of
scales, the choice of representation should be allowed to
vary from frame to frame and from pixel to pixel. When
flying over a terrain , for example, mountains in the far
distance are best modeled as a textured plane, and the
appearance of the trees on the mountain are best modeled
statistically, in the reflectance model. In the near distance,
what was texture (the mountain) should become geometry,
and some of the larger features influencing reflectance (the
trees) should become texture. Finally, in a c1oseup, the
trees become geometry.

This idea has been proposed by Perlin [16], Kajiya [15] ,
and others, but has never been implemented in a general
way. The best progress along these lines has been made
in generating bidirectional reflectance di stribution func­
tions (BRDF's) from geometry [2,7 , 27] and in smoothing
the transitions between BRDF's, bump mapping, and dis­
placement mapping [I].

3.4 Pictures from Multiple Angles

In architecture, initial design is typically done by sketch­
ing a building from multiple viewpoints . When we watch
film or video, we are seeing a sequence of still images of
objects from different viewpoints . Such representations
suffice, in a practical sense, to define a 3-D shape. Hence
the idea to represent an object not with a set of surface
primitives, but with a set of pictures.

This approach has the obvious advantages that the rep­
resentation is of the same form as the output of a renderer
(a picture) and that image pyramids cou ld be used, allow­
ing quick extraction of an image of the desired resolution.
The major disadvantage is that the appearance of the ob­
ject from arbitrary viewpoints is not directly available; in
the process of generating the pictures, information is lost.

Intermediate views can differ from the chosen views
because of either occlusion or specular reflection. In a
scene where sunlight shines directly through a tunnel ,
for example, only certain views see the sun , so if those
views were not chosen , the system would have difficulty
generating accurate intermediate views. And in a scene
containing mirrors, only certain views see a reflecti on of
the light sources, so again, intermediate views would be
difficult to interpolate correctly.

G raphics Interface '94

Approximate intermediate views can be generated au­
tomatically if the correspondence between pixels of the
chosen views is known, and the correspondences can be
derived if the z-buffers of the chosen views are avail­
able [3] . This technique does not solve the complications
caused by occlusion and specular reflection, however, so
there are large unsolved problems to make this approach
viable as a general multiresolution modeling data struc­
ture.

3.5 Ray Space

Another approach to multiresolution modeling is to treat
an object's appearance in terms of ray queries, the type
of queries performed in a ray tracing algorithm. A ray
query takes a ray and returns the color traveling backward
along that ray. Existing data structures for fast ray queries
require huge memories, so this approach does not seem
as promising as the use of textures and polygons. This
approach is attractive, however, because it provides a
unified, high level abstraction that allows us to blur the
distinction between geometry and surface attributes such
as BRDF's.

3.6 Polygonal Models

The final approach to multiresolution modeling that we
consider, polygonal models, has received the most work,
so we discuss it in the greatest detail.

The principal challenge when using a polygonal model
for multiresolution modeling is simplification: automati­
cally converting a detailed model into a simpler one that
faithfully represents the underlying object. We seek algo­
rithms that will minimize both the number of polygons in
the simplified model and the error of the approximation.

Simplification algorithms differ greatly depending on
the topology of the polygonal model. The simplest are
curve models, consisting of a sequence of points or line
segments (not really polygons at all). Next in complexity
are mesh models, which consist of a network of polygons
forming a single, continuous surface. The most general
class of polygonal models are polyhedral models, where
arbitrary topology is allowed. The latter class is the most
relevant to multiresolution modeling.

3.6.1 Curve Simplification

Numerous algorithms for approximating one piecewise
linear curve with another have been developed [6] . It is
possible to find the least squares optimal m-segment ap­
proximation to an n -segment curve in time O(mn3) using
a dynamic programming algorithm [14]. Unfortunately,
this is too slow for use on complex curves, and it does
not appear to generalize to surfaces. Curve simplification

47

algorithms may be of some guidance in our search for
surface simplification methods, however.

3.6.2 Mesh Simplification

The aspect of polygonal simplification that has received
the most attention is the simplification of surface meshes.
Such models are commonly generated from digital sam­
pling of real world objects. The data tend to be dense and
redundant, so they can typically be drastically simplified
without significant loss of fidelity. We consider grids with
rectangular topology first, then height fields, and finally
general meshes .

If the mesh is a grid with rectangular topology then a
natural simplification technique is to low pass filter the
data and then discard every other row and every other
column from the grid, performing what is called "dec­
imation by 2" in signal processing. Williams proposed
this as a multiresolution modeling technique both to re­
duce the time needed to transform polygons and to reduce
the need for antialiasing [28].

Another area of research is the generation of compact
triangulations from digital terrain data and other height
fields [17, 22] . Given a regular grid of height samples,
the task is to construct a triangle mesh that closely approx­
imates the actual surface with a small number of vertices.
Typically, these algorithms are constructive; they begin
with a minimal set of points and then add new points
until the error of the approximation is below some thresh­
old. Various criteria are used to select which points to
add. Some of these algorithms are quite slow. For exam­
ple, Polis and McKeown's algorithm required 18 hours
to achieve a 40-to-1 simplification of a 4,000,000 point
terrain. These applications compute the simplified model
off-line, however, so for them, preprocessing speed was
much less important than accuracy and simplification.

A broader problem is the simplification of general
meshes . The typical goal here is to digitize a real world
object and construct a compact surface description of it.
In [5], DeHaemer and Zyda present an adaptive subdivi­
sion algorithm that fits polygons to a set of samples. This
algorithm combines surface reconstruction and simplifi­
cation; it constructs a simple surface directly from the
data.

Other algorithms require a mesh as input. Schroeder,
Zarge, and Lorensen [23] propose a decimation algo­
rithm. They iteratively remove unimportant points from
the mesh, performing local retriangulations to preserve
the surface. Turk [25] describes a related approach. He
selects a set of points on the surface that will become the
vertices of a new mesh and uses point repulsion to achieve
good coverage of the surface. A new triangulated mesh
is generated by combining the old and new vertices. The

Graphics Interface '94

48

Figure 2: Original cow (5804 triangles)

Figure 3: Simplified cow (658 triangles)

old vertices are then iteratively deleted, using local retri­
angulations to preserve the topology of the surface. Most
recently, Hoppe et al. [13] present an algorithm for op­
timizing fairly general surface meshes. They cast the
problem in terms of minimizing an energy function that
captures the conflicting goals of mesh simplification and
error minimization.

3.6.3 Polyhedral Simplification

Rossignac and Borrel [19] have made one of the few
efforts to address the simplification of general, polyhe­
dral models with arbitrary topology. Their motivation
is to speed interactive viewing of complex objects, so
they seek a minimal set of polygons and lines that sug­
gests a shape to the user. Given a polyhedral model that
has been triangulated, they subdivide its bounding vol­
ume into a grid of boxes. All vertices within each box
are merged together into a new representative vertex. A
simplified model is then synthesized from these repre­
sentative vertices by forming triangles according to the
original topology.

This is essentially a signal processing approach : the
model is filtered, resampled, and reconstructed. As with

Figure 4: Original Beethoven (4998 triangles)

Figure 5: Simplified Beethoven (652 triangles)

all sampling algorithms, aliasing can arise. One weakness
of the algorithm is that averaging vertices removes high­
frequency details that might have significant importance
(features on a face, for example). Another weakness is
that the results are not invariant to rigid body motion of
the input model; if the model is rotated or translated, the
output model ripples like a point-sampled image.

Figures 2-5 show results from an algorithm based on
Rossignac and Borrel's. Figure 2 shows the original
model of a cow and figure 3 is the result of simplifi­
cation. With this model , the results are good; viewed
from a distance the models are fairly similar. The second
example is a bust of Beethoven, figure 4, whose simplified
version, figure 5, illustrates the loss of important detail.
A better algorithm would use more polygons in areas of
high surface curvature and fewer polygons in areas of low
curvature.

Graphics Interface '94

4 Conclusions

Most current rendering algorithms are inefficient when
rendering very complex scenes. Their cost is linear in
scene complexity, and this is unacceptable when the com­
plexity is very high. When given a scene with many more
surface primitives than pixels, z-buffer algorithms waste
a lot of time transforming and clipping objects smaller
than a pixel that have negligible impact on the final pic­
ture. Using multiresolution modeling it may be possible
to render scenes in time proportional to screen area but
independent of scene complexity.

The six data structures for multiresolution modeling
that we have discussed are evaluated below:

Image Pyramids. Image pyramids are very good for pla­
nar and smoothly curved surfaces, but they do not
represent real 3-D features well.

Volume Pyramids. Total brute force. The results will
look blurry or blocky unless a huge memory is avail­
able.

Texture and Reflectance Models. Texture and reflect­
ance don ' t represent geometry, but they are excel­
lent, compact representations for fine detail, so they
would be important components of any complete
multiresolution modeling system. Much work re­
mains to be done to derive textures from geometric
models, however.

Pictures from Multiple Angles. This approach is in­
triguing, but can the problems of specular objects
and occlusion be solved? Perhaps it should be used
primarily for diffuse, nearly-convex objects.

Ray Space. Also intriguing, but the memory require­
ments may be extreme.

Polygonal Models. Polygonal models will probably
form the core of a successful multiresolution model­
ing system, since they are the simplest, most versatile
representation for geometry.

The polygonal simplification methods we discussed
were developed with different goals in mind. Many
of the simplification algorithms are limited to
meshes, they are slow, and they consider shape
only when doing their simplification, not material
attri butes such as color, specularity, or texture. Fur­
ther work is needed to adapt them to the goals of
multiresolution modeling.

Rossignac and Borrel's simplification algorithm is
the most general, since it accepts polyhedral mod­
els with arbitrary topology as input. It can achieve

49

greater simplification since it is free to change the
topology of models. On the negative side, this al­
gorithm shows artifacts of the clustering grid and it
does not preserve detail as well as might be possible.
Nevertheless, this algorithm is a good starting point
for future research. With additional work on preser­
vation of appearance, a simplification algorithm well
suited for fast rendering could be developed.

A full multiresolution modeling system would need to
combine several of these data structures in order to repre­
sent objects using a combination of geometry, texture, and
reflectance, and it would need to smooth the transitions
between representations during rendering.

Acknowledgments

Thanks to Tom Funkhouser, Jon Webb, Andy Witkin ,
Dave McKeown, and Jarek Rossignac for valuable dis­
cussions. This work was supported by ARPA contract
FI9628-93-C-OI71.

References

[I] Barry G. Becker and Nelson L. Max. Smooth tran­
sitions between bump rendering algorithms. In SIG­
GRAPH '93 Proceedings, pages 183-189. ACM,
1993.

[2] Brian Cabral , Nelson Max , and Rebecca Spring­
meyer. Bidirectional reflection functions from sur­
face bump maps. Computer Graphics (SIGGRAPH
'87 Proceedings) , 21(4):273-281, July 1987.

[3] Shenchang Eric Chen and Lance Williams. View
interpolation for image synthesis. In SIGGRAPH
'93 Proceedings, pages 279-288 . ACM, 1993.

[4] James H. Clark. Hierarchical geometric models for
visible surface algorithms. CACM, 19(10):547-554,
Oct. 1976.

[5] Michael DeHaemer, Jr. and Michael J. Zyda. Sim­
plification of objects rendered by polygonal approx­
imations. Computers and Graphics, 15(2): 175-184,
1991 .

[6] James George Dunham. Optimum uniform piece­
wise linear approx imation of planar curves. IEEE
Transactions on Pattern Analysis and Machine In­
telligence, 8(1) :67-75, January 1986.

[7] Alain Fournier. Normal distribution functions and
multiple surfaces. In Graphics Interface '92 Work­
shop on Local Illumination, pages 45-52, May 1992.

Graphics Interface '94

50

[8] Thomas A. Funkhouser. Database and Display Al­
gorithms for Interactive Visualization of Architec­
tural Models. PhD thesis, CS Division , UC Berke­
ley, 1993.

[9] Thomas A. Funkhouser, Carlo H. Sequin, and Seth 1.
Teller. Management of large amounts of data in
interactive building walkthroughs. In 1992 Sym­
posium on Interactive 3D Graphics, pages 11-20,
1992. Special issue of Computer Graphics.

[10] Ned Greene, Michael Kass, and Gavin Miller. Hier­
archical z-buffer visibility. In SIGGRAPH '93 Pro­
ceedings, pages 231-238 . ACM, 1993.

[11] Pat Hanrahan, David Salzman, and Larry Aup­
perle. A rapid hierarchical radiosity algorithm.
Computer Graphics (SIGGRAPH '91 Proceedings) ,
25(4): 197-206, July 1991.

[12] Paul S. Heckbert. Survey of texture mapping. IEEE
Computer Graphics and Applications, 6(11):56-67 ,
Nov. 1986.

[13] Hugues Hoppe, Tony DeRose, Tom Duchamp, John
McDonald, and Werner Stuetzle. Mesh optimiza­
tion . In SIGGRAPH '93 Proceedings, pages 19-26,
Aug. 1993.

[14] Insung Ihm and Bruce Naylor. Piecewise linear ap­
proximations of digitized space curves with applica­
tions. In Hans Hagen, Heinrich Muller, and Gregory
Nielson, editors, Focus on Scientific Visualization,
pages 545-569. Springer Verlag, Berlin, 1993.

[15] James T. Kajiya. Anisotropic reflection models .
Computer Graphics (SIGGRAPH '85 Proceedings),
19(3):15-21,July 1985.

[16] Ken Perlin. A unified texture/reflectance model. In
SIGGRAPH '84 Advanced Image Synthesis seminar
notes, July 1984.

[17] Michael F. Polis and David M. McKeown, Jr. Issues
in iterative TIN generation to support large scale
simulations. Proc. of II th Intl. Symp. on Computer
Assisted Cartography, November 1993.

[18] Azriel Rosenfeld, ed itor.
Processing and Analysis.
Leesberg, VA, July 1982.

Multiresolution Image
Springer, Berlin, 1984.

[19] Jarek Rossignac and Paul Borrel. Multi-resolution
3D approximations for rendering complex scenes.
Technical report, Yorktown Heights, NY 10598,
February 1992. IBM Research Report RC 17697
(#77951). Also appeared in the IFlP TC 5. WC 5.10

11 Conference on Geometric Modeling in Computer
Graphics, Genova, Italy, 1993.

[20] Holly E. Rushmeier, Charles Patterson, and Aravin­
dan Veerasamy. Geometric simplification for indi­
rect illumination calculations. In Proc. Graphics In­
terface '93, pages 227-236, Toronto, Ontario, May
1993. Canadian Inf. Proc. Soc.

[21] Georgios Sakas and Matthias Gerth. Sampling and
anti-aliasing of discrete 3-D volume density tex­
tures . In Eurographics '91, pages 87-102, 527,
Amsterdam, 1991. North-Holland.

[22] Lori Scarlatos and Theo Pavlidis . Hierarchi-
cal triangulation using cartographic coherence.
CVGIP: Graphical Models and Image Processing,
54(2) : 147-161, March 1992.

[23] William 1. Schroeder, Jonathan A. Zarge, and
William E. Lorensen. Decimation of triangle
meshes. Computer Graphics (SIGGRAPH '92 Pro­
ceedings), 26(2):65-70, July 1992.

[24] Seth J. Teller. Visibility Computations in Densely
Occluded Polyhedral Environments. PhD thesis, CS
Division, UC Berkeley, October 1992. Tech. Report
UCB/CSD-92-708.

[25] Greg Turk. Re-tiling polygonal surfaces. Computer
Graphics (SIGGRAPH '92 Proceedings), 26(2):55-
64, July 1992.

[26] Steve Upstill. The Renderman Companion. Addison
Wesley, Reading, MA, 1990.

[27] Stephen H. Westin, James R. Arvo, and Kenneth E.
Torrance. Predicting reflectance functio ns from
complex surfaces. Computer Graphics (SIGGRAPH
'92 Proceedings) , 26(4):255-264, July 1992.

[28] Lance Williams. Pyramidal parametrics. Computer
Graphics (SIGGRAPH '83 Proceedings), 17(3):1-
11, July 1983.

[29] Michael 1. Zyda. Course notes, book 10. Tech­
nical report, Graphics & Video Laboratory, Dept.
of Computer Science, Naval Postgraduate School ,
Monterey, CA, November 1991.

~
-

... ~.: '~.\-
, " --

.... .. Graphics Interface '94

