
59

Post-filtering for Depth of Field Simulation with Ray
Distribution Buffer

Mikio Shinya
NTT Human Interface Laboratories

3-9-11 Midori-cho, Musashino-shi, Tokyo 180, Japan
email: shinya@nttarm.ntt.jp

Abstract

In real photography, focus control plays an impor­
tant role in emphasizing the subject in the photo.
In computer graphics, however, focus simulation, or
depth of field simulation, is used only in a limited
way because it is too expensive if super-sampling is
used.

This paper proposes an efficient depth of field
simulation method that can be realized as post­
filtering . To deal with the partial occlusion of out­
of-focus objects, the ray distribution buffer (RDB)
is introduced . Z-buffering with the RDBs performs
hidden surface removal for each distributed ray, as
in distributed ray tracing. Experiments demon­
strate that depth of field simulation is not an ex­
pensive process with the RDB method.

Keywords: Realistic Image Synthesis, Filtering,
Depth of Field.

1 Introduction

The rendering process involves lighting simulation
and imaging simulation. Although lighting mod­
els have been greatly improved, most systems still
use the simplest camera model, the pin-hole camera
model. With the pin-hole model, images are in fo­
cus everywhere on the screen. However , focus con­
trol is an important technique in real photography,
especially in portraits to emphasize the subject.

Potmesil et al. first introduced a lens and aper­
ture model into computer graphics to simulate fo­
cus effects, or depth of field [POTMESIL] . In his
method , the intensity distribution, or the point
spread function (the PSF), is calculated from the
diffraction theory, and pin-hole camera images are
filtered with the calculated PSFs. The advantage

of the method is that the computational cost is in­
dependent of scene complexity (e.g., the number
of polygons), since it can be implemented as post­
filtering. The shortcoming is, however, that it can­
not successfully simulate partial occlusion of out-of­
focus objects because of its linear filtering feature .
This problem limits its applications.

To solve the partial occlusion problem, Cook, et
al., applied distributed ray tracing to the depth of
field simulation [COOK84] . An almost equivalent
process can be also performed by using accumula­
tion buffers [HAEBERLI] and taking advantage of
modern graphics hardware. This super-sampling
approach realizes partial occlusion effects , but is
computationally expensive with a cost proportional
to the scene complexity and the number of samples.

In this paper, we propose a post-fil tering
method which approximates super-sampling meth­
ods at much lower cost. The method calculates
the PSFs for each pixel in the original pin-hole im­
age, like Potmesil's method. In addition, however ,
the proposed method also calculates the direction
of out-of-focus rays . According to the direction ,
the color and depth of the rays are stored at each
pixel in the form of a sub-pixel buffer , called the
ray distribution buffer (RDB) . Elements of RDB
correspond to the sample rays in distributed ray
tracing, and z-buffering of the RDBs can solve the
occlusion problem as does the super-sampling ap­
proach. The computation cost of this method is
still independent of scene complexity. Experiments
demonstrate that the depth of field simulation is
now feasible at reasonable computation cost.

2 Camera models

This section reviews three camera models , the pin­
hole camera model, the diffraction model and the

~
. ",

",~:" , , ;,: . , .-
::' , . Graphics Interface '94

60

Zs

Object - - - -

Pin-hole
Screen

Figure 1: Pin-hole camera model.

geometric model. For the reason described below,
we adopt the geometric model in our method.

Pin-hole camera model Figure 1 illustrates the
pin-hole camera model. Among the rays reflected
off the object point A , only ray OA goes through
pin-hole 0 because the pin-hole is infinitely small .
This is why the image is in focus everywhere. With
the geometry shown in the figure, the image point
(x p , Yp, zp) is described as

xoz. / zo,

Yoz./zo.
(1)

When finite lenses are used in imaging systems ,
the depth of field effect is generally observed. There
are two theories for the analysis, the diffraction the­
ory and the geometric theory.

G eometric model Figure 2 shows a single ideal
thin lens imaging system. The rays emitted (or
reflected) from the object point (xo , Yo, zo) are fo­
cused on the image point (Xi, Yi, z;) and then spread
out onto the screen. From the imaging formula , we
have

l/zi l/f -1/zo

Xi XoZi/ZoJ

Yi Yoz;/zo, (2)

where f is the focal length of the lens.

Since the imaging rays form a pyramidal cone
with the aperture as its base , the imaging area
on the screen is the intersection of the cone with
the screen plane . The intensity distribution on the

Aperture
g(x,y)

Zs

Screen

Figure 2: Thin lens imaging system.

screen, or the PSF, is

h(x.,y.)
M

g(Mx. -(M -1)x j, My. -(M -l)Yi),

z;/(z. - z;) , (3)

where g(x, y) represents the aperture transmi t­
tance. For example,

g(x,y) = { ~ if x2 + y2 :::; R2 ,
otherwise,

for a circular aperture with radius R. In this case,
the boundary of the support of the function h is a
circle, the circle of confusion .

Diffraction model Figure 3 shows diffraction in
a lens imaging system . The spherical wave emitted
from object point (xo, Yo, zo) is diffracted by the
aperture. With the Fresnel approximation1 , the
intensity at (x. , Y., z.) is represented as

h(x., y.) <X I J J exp{27rz/A.

(a(x 2 + y2)/2 + (xx. + yYs)/z.)}
g(x , y)dxdyI2 , (4)

where g(x , y) is the aperture and

a = l/zo + l/z. -I/f.

The major difference from the geometric PSF
(Eq. 3) is the ringing nature of diffraction. As
seen in Eq. 4, the diffraction pattern strongly de­
pends on wavelength A. Thus , the diffraction effect

1 The Fresnel approximation is a second order approxima­
tion for far fields and neglects the third order t erms such as
O((x /z .)3) and so on. By the way, the FralUlhofer a pproxi­
mation is a first order approximation .

Graphics Interface '94

(~,.~) 10 f : •

- I))
-------~---- - ----.--------

Point source ((r -'))
I (Xi,Yi,ZJ)

Aperture
g(x,y) Screen

Figure 3: Diffraction model.

is more significant for monochromatic light, typi­
cally, laser light. Fortunately, however, since natu­
rallight usually has broad spectral distribution, the
diffraction fringes are hardly noticeable in reality.
For this reason, we adopted the geometric model to
simulate the depth of field.

3 Previous Methods

Linear filtering When neglecting occlusion ef­
fects, the imaging process is a linear optical pro­
cess, and thus, can be simulated by linear filtering
operation, as proposed by Potmesil [POTMESIL).

This method is a two-pass method. The first
pass is the usual rendering process, such as ray
tracing and z-buffering, producing (pin-hole cam­
era) image lo(xp, yp) and its depth image zo(xp, yp).
In the second pass, the diffraction pattern h is
calculated from z-values according to the geomet­
ric model or diffraction model. Object point
(xo, Yo, zo) can be calculated from Eq. 1 for (xp.yp)
and the PSF h can be calculated by Eq. 3 or Eq.
4. The linear fil tering

l(x., Y.) = J h(x., y.)lo(x,y)dxdy (5)

results in images that appear to have a depth of
field.

The advantage of this method is that the com­
putational cost is independent of scene complexity.
Its shortcoming is its neglect of partial occlusion.
As shown in Figure 4, some rays emitted from Point
A are occluded by Object B, which affects the in­
tensity distribution pattern. This causes serious
artifacts especially with objects in focus. Plate 1
shows an example. In the figure, a thin black rect­
angle is located in front of a textured polygon. The
black rectangle, which is in focus, looks partially
'transparent' in Plate 1-b, which is indeed unac-

61

Object B

True h(x"y,)

Screen

Figure 4: Partial occlusion.

Distributed rays

Pixel

Ob,.", 11;---, j
Screen

Figure 5: Distributed ray tracing.

ceptable.

Distributed ray tracing To solve the partial
occlusion problem, distributed ray tracing was ap­
plied to simulate depth of field [COOK84). Similar
computation can be also achieved by the accumu­
lation buffer with z-buffering [HAEBERLI], which
can take advantage of advanced graphics hardware.

In this approach, several sample rays passing
through the lens are traced from each pixel (Figure
5), and the pixel value is determined by the aver­
age of the intensity of the distributed rays. Since
hidden surface removal is achieved in every ray trac­
ing, the partial occlusion effects are taken into ac­
count. Plate 1-c shows the result of the accumula­
tion buffer method. The partial occlusion artifact
is completely solved here.

To reduce aliasing artifacts, the stochastic sam­
pling technique [DIPPE,COOK86) can be applied.
The disadvantage of Ihis method is, however, its
high computational cust, which is proportional to
scene complexity aud the number of samples.

Graphics Interface '94

62

4 RDB Method

Basic idea The key to dealing with occlusion is
to classify imaging rays according to their direc­
tion and to apply hidden surface removal, as in dis­
tributed ray tracing. For this purpose, we introduce
a sub-pixel structure wherein each sub-pixel ele­
ment represents a sample distribution ray, as shown
in Figure 6-a. Let us call this sub-pixel buffer the
ray distribution buffer (RDB). Each RDB element
stores an rgb value and a z-value .

Consider the situation shown in Figure 6-b .
The rays emitted from object point (xo, Yo, zo) are
focused on (Xi, Yi, Zi) and then spread out over
the screen. At (X., y.), the incoming ray direction
(sx, Sy, sz) can be calculated by

Sx (x. - xi)/d ,

Sy (Y. - y;)/d,

Sz Jl- s; - s~, (6)

where

d = J(x. - x;)2 + (Y. - Yi)2 + (z. - zi)2).

With the RDB, z-buffering is applied to these
incoming rays to solve the partial occlusion prob­
lem. According to the ray direction (Eq. 6), the
corresponding RDB elements are calculated. If Zo

is smaller than the stored z-value, the z- and rgb­
values are substituted, just as in conventional z­
buffering.

The RDB elements for the imaging rays can
be determined as in Figure 6-c. The ray direc­
tion at the four corners of pixel Si (i = 0, 1,2,3)
are calculated by Eq. 6 (Figure 6-c) . The RDB
elements whose directions lie in the quadrateral
SO-Sl-S2-S3 are determined as the corresponding
elements (Figure 6-d) .

Jittered sampling can be also achieved by as­
signing a jittered offset 6s[ix][iy] to sample ray di­
rections at each pixel in the pre-processing phase .
When determining the corresponding RDB ele­
ments, Si + 6s[ix][iyJ is used instead of Si (Figure
6-e).

Procedure The procedure can be summarized in
the following way.

1) Render the pin-hole camera image rgb[ix][iy]
and the z-image z[ix][iy] by a conventional
method.

Distributed rays

RDB

(a) Ray distribution buffer. Screen

RDB

(b) Imaging rays and RDB. Screen

Lens

(c) Spread angle or incoming rays.

I I

r--

" os:r. .. ~ .. t--t--t--1 RDB

(d) Corresponding RDB (e) Corresponding RDB
elements (regular sampl ing). elements Uittered sampling).

Figure 6: Ray distribution buffer .

~
.•. <'

"'~' .. " ' ;" . , ' . . .:..

:.' Graphics Interface '94

Table 1: CPU time comparison.

Zj 3 (meter) 5 17

RDB method 212.7 (sec)
ACC method 1321 (sec)

2) Initialize all RDBs.

3) When jittered sampling is applied, set jittered
offset Ds[ix][iy].

4) For all pixels (ix, iy):

i) Calculate the object point (xo, Yo, zo) and
the circle of confusion according to Eqs.
1,2and3.

ii) For all pixels in the circle of confusion:

a) Calculate the ray direction according
to Eq. 6 and determine the corre­
sponding RDB elements.

b) For all the corresponding elements,
if z[ix][iy] is smaller than the stored
z-value, replace the rgb and z-values
with z[ix][iy] and rgb[i][iy].

5) For each pixel, calculate the average ofthe rgb­
values in its RDB to yield the final image.

5 Experiment and discussion

Partial occlusion Figure Plate 1-d shows the
simulation result of the RDB method using the
same parameters as employed in Plate I-b. The
partial occlusion artifacts observed in Figure Plate
1-b are completely suppressed as in Plate I-c.

Comparison with the accumulation buffer
method Depth of field was simulated by the
RDB method and the accumulation buffer method
to allow a comparisons to be made. The parameter
Zj is the z-value of objects in focus. The F-number
(J / R) was fixed at 1.0. The image resolution is
640 x 480 and the RDB resolution (super-sampling
rate) is 9 x 9. As seen in Plate 2, the results of the
two methods are almost identical, as theoretically
expected . Table 1 shows the required computation
time on an IRIS Crimson R4400 (150 MHz) Reali­
tyEngine.

Computation time versus the RDB resolu­
tion The computation time versus the RDB res­
olution is plotted for Zj = 3m and Zj = Im using

63

10000

<J

;
..
~
;J

""' U
1000 . zl=l

zl=3 .. ACC . .
•

lOO

. --

. _-e-

.. '
10~----------~----------~----__ ----~

o 100 200 300

RDB resolulion

Figure 7: RDB resolution versus CPU time . In
the figure, ACC indicates the accumulation buffer
methods.

the same scene as in Figure 7. The image resolution
is 256 x 256. As shown in the figure, the increase
of the CPU time with the RDB resolution is very
slow, particularly for Z j = 1. The computational
cost is proportional to the total number of the pro­
cessed RDB elements . In the worst case, the filter
kernel size is very large, and thus, the number of
RDB elements per imaging ray is nearly one. In this
case, the computational cost become O(n x m x br) ,

where n x m is the image resolution and {;-r is the
average filter kernel size. Thus , the worst case cost
is independent of scene complexity and the RDB
resolution. This is why the computation time is al­
most constant for Zj = 1 in Figure 7 . For reference,
the computation time and the super-sampling rate
is also shown for the,accumulation buffer method .

6 Conclusion

A new method for depth of field simulation has
been developed. This method is a post-filtering
process as is Potmesil 's method , but the partial
occlusion artifacts are reduced by introducing the
ray distribution buffer (RDB) . Its efficiency was
demonstrated by exp eriments , and the worst case
analysis shows that the computation cost is inde­
pendent of scene complexity and the RDB resolu­
tion. With this method, depth of field simulation

~"''''
. ··~c:

-~.:.~ Graphics Interface '94

64

can be achieved at a reasonable cost.

Acknowledgments

The author would like to thank the GI review­
ers for their valuable comments. He also wishes
to thank Takashi Sakai and Kazuyoshi Tateishi for
their administrative supports , Atsushi Kajiyama
for his help in preparing the paper , Toki Takahashi,
Takafumi Saito, and Toshi Tanaka for a helpful dis­
cussIOn.

References

[COOK84) R. L. Cook, T . Porter, 1. Carpenter,
'Distributed Ray Tracing ', Computer Graph­
ics 18, No.3 , pp.137-145, 1984 .

[COOK86) R. L. Cook , 'Stochastic Sampling in
Computer Graphics ', ACM Trans . Graphics ,
5 , No.l , pp .51-57 , 1986.

[DIPPE) M. A. Dippe, 'Anti-aliasing through
Stochastic Sampling' , Computer Graphics 19,
No .3, pp.69-78, 1985 .

[HAEBERLI) P . Haeberli , Kurt Akeley, 'The accu­
mulation buffer: Hardware support for high­
quality rendering ', Computer Graphics 24,
No . 4, pp. 309-318, 1990.

[POTMESIL) M. Potmesil , I. Chakravarty, 'A lens
and apert ure camera model for synthetic im­
age generation', Computer Graphics 15 , No.
3, pp. 297-305 , 1981.

Graphics interface '94

65

(a) Pin-hole camera image. (b) Linear filtering method.

(c) Accumulation buffer method. (d) RDB method.

Plate 1: Partial occlusion.

Graphics Interface '94

66

RDB method Accumulation buffer method

Zf = 3rn

Zf = 5rn

Zf = 17m

Plate 2: Comparison between the RDB method

and the accumulation buffer method.

Graphics Interface '94

