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Abstract 
This paper presents an improved method for compu

tation of the gradient from volume data, which can be 
used to improve the rendering of small details in images 
of this data. A common method for estimation of the 
gradient vector is the center difference, which also acts 
as a fixed-response low pass filter, smoothing details in 
the image. The center difference method is extended in 
this paper to allow control of sensitivity to fine details 
in the source data. The amount of smoothing performed 
by the gradient computation can be tuned to filter out 
high frequency noise and aliased energy while retaining 
as much as possible of the valid frequency content which 
may be lost using the conventional center difference. 

Volume visualization techniques extract and display 
structures from three dimensional arrays of sample values 
representing physical objects. The shading of surfaces of 
the structures to simulate natural lighting makes the fea
tures of these structures visible in images. An important 
step in the image rendering process is the determination 
of the orientation of an extracted surface in the form of a 
gradient vector at each point on the surface. This gradient 
vector is then used as a surface normal vector for shad
ing calculations. In addition, some volume visualization 
techniques also use the gradient vector for classification 
of structures contained in the volume. 

Keywords: Volume visualization, gradient vector com
putation, image enhancement. 

Introduction 

Volume imaging processes such as Magnetic Resonance 
Imaging (MRI) and Computed Tomography (CT) pro
duce a three dimensional array of sample values (voxels) . 
Each voxel typical I y represents a den si ty measure of some 
physical property (for example, values resulting from CT 
represent density of tissue which absorbs X-rays) . The 
volume visualization process attempts to classify the vox
els by tissue or material type and produce renderings of 

structures composed of particular tissues or materials . 
A number of different methods have been described 

in recent literature for classifying and displaying volume 
data. One common thread in many of these methods is 
the way in which shading is performed to generate im
ages . The goal is typically to display the best approxima
tion possible to a surface (detected by some classification 
method), shading the surface using the standard Gouraud 
[Gou71] or Phong [Bui75] shading models. The sur
face normal vectors required by these shading models are 
usually found using gradient vectors calculated from the 
voxel values (sometimes known as the gray-level gradi
ent [T+90]). These gradient vectors are perpendicular to 
the estimated surface of constant density, and so can be 
used as surface normal vectors. 

The most commonly used method for approximation 
of the volume gradient vector is the center difference. 
For voxel value Vi ,j ,k at location i , j, k in the volume, the 
three components of the gradient vector g are computed 
by taking the scaled difference along each axis of the 
voxels on either side of the point of interest (the division 
by the distance 2 is frequently omitted since the length 
of the gradient vector is normalized before performing 
shading calculations): 

gx 
Vi +l ,j,k - Vi- l ,j,k 

2 
Vi ,j+ l ,k - Vi,j -l ,k 

2 
Vi ,j ,k+l - Vi ,j ,k -l 

2 

The surface normal n used for shading is the unit vector 
in the direction of g, n = g/Igl. 

The volume visualization algorithms which use this 
method can be divided into two broad classes. One class 
of algorithm extracts surface information as a 3D model, 
which can then be rendered using conventional rendering 
techniques. Lorensen, Cline, et. al. [LC87, CLL + 88] 
use the center difference calculation to compute the gra
dient vector for shading of models extracted from volume 
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data: polygonal models constructed from a volume in the 
"marching cubes" algorithm and point primitives in the 
"dividing cubes" algorithm. 

The other broad class of volume visualization algo
rithms generate pixel values directly from the source data 
without an intermediate geometric model. Levoy de
scribes a ray-casting method [Lev88, Lev90] which uses 
the center difference to compute gradient vectors used for 
classification as well as for shading. Westover [Wes90] 
uses the the same shading techniques for some images 
with a forward (voxel to pixel) mapping rendering tech
nique. Drebin, Carpenter, and Hanrahan [DCH88] use 
the center difference to compute gradient vectors for both 
classification and shading in a voxel to pixel projection 
method. 

H6hne, Tiede, et. al. [H+90, T+90] also use a tech
nique originated by Zucker and Hummel [ZH8I] which 
computes a weighted average of center differences along 
each axis and the diagonals closest to that axis. The use of 
additional off-axis data reduces sensitivity to noise and 
aliasing, although it is computationally expensive and 
produces additional smoothing which mayor may not be 
desired. This gradient calculation technique is also em
ployed by Yagel et. al. [YCK92] for sampled data in a 
ray tracing acceleration technique called 3D Raster Ray 
Tracing (RRT), which applies volume ray tracing tech
niques to accelerate ray tracing of other types of objects. 

Cohen et. al . [CKBB90] consider using a larger neigh
borhood with a depth-buffer (Z-buffer) based gradient 
calculation . In this case increasing the neighborhood size 
using the depth-buffer congradient shading technique 
will smooth the picture while a smaller neighborhood 
will be more sensitive to small changes on the surface. 

It is possible to use a larger neighborhood for gradient 
calculation to increase sensitivity to small changes on 
a surface. To see how this may be done, the gradient 
calculation will be examined as a digital filtering process. 
The properties of the center difference as a filter will be 
analyzed, and it will be shown that it is possible to design 
a filter with greater sensitivity to small changes. This 
filter will be designed to have adjustable sensitivity to 
high frequencies which can be reduced in the presence of 
high frequency noise or aliasing. 

Gradient Calculation Under Ideal Conditions 

Under ideal conditions, volume data would be sampled 
from a source which contained no noise, and had been fil
tered before sampling to remove any frequencies above 
half the sampling frequency. Under these ideal condi
tions, this low pass filtered source data could be perfectly 
reconstructed from the samples (in practice, of course, 
noise and aliasing are always present to some degree) . 

Ideal low pass filte!";n~ produces a continuous function 

in three dimensions . For such a function, the components 
of the gradient vector are the partial derivatives in the 
direction of each primary axis. The first derivative (slope) 
of a one dimensional cross section in a particular direction 
can therefore be used to calculate the component of the 
gradient vector in that direction. 

For a one-dimensional analog function in space xa(t) 
of continuous variable t (for example, a cross section 
of the original data from which a volume data set was 
constructed) samples can be taken at some regular interval 
T to produce the sequence x(n) = xa(nT) for integer 
n. In order to correctly reconstruct the original function 
xa(t) from samples x(n), the sample spacing T must 
satisfy the relationship T < 2~' where F is the highest 
frequency present in xa(t) (2F is the Nyquist sampling 
rate) [OS75]. 

For samples of a periodic function with period NT, 
the Discrete Fourier Transform (DFT) allows a finite se
quence of samples x( n) of length N to be transformed 
from the space domain to the frequency domain using the 
relationship 

N -J 

X(k) = L x(n)e 2~;:" (_!:!.. < k < !:!..) 
2 - - 2 

n =O 

where X (k) (k is an integer) is a sample of the frequency 
spectrum of xa(t) at frequency ;T' and i = J=T. 

The inverse of the DFT (IDFT) transforms frequency 
samples X(k) back to the space domain samples x(n): 

I 
N / 2 

x(n) = N L X(k) e -2~k " (O:S n :S N) 
k= - N/2 

Given the frequency samples X (k) and the IDFT rela
tionship, the original function Xa (t) can be reconstructed : 

N/2 
I ~ - ). ." 

xa(t) = N ~ X(k)e~ 
k=-N/2 

The slope (first derivative) can also be reconstructed from 
the frequency samples; differentiating both sides of the 
above gives: 

d N / 2 2 'k 
I ~ X(k) - 7n' e - 2N~T·k t 

dtX a(t) = N ~ NT 
k=-N/2 

Define a filter H (k) = -~r;;:k and then define 
G(k) = X(k)H(k); the above then becomes 

N /2 
d I ~ -2~ .kt 
dt xa(t) = N ~ G(k)e~ 

k=-N/2 
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Sample this slope function at the same locations as the 
samples of xa(t) to get slope samples g( n) corresponding 
to each function sample x( n); itcan be seen from the form 
of this result that g(n) can be generated using the IDFf 
ofC: 

g(n) 

1 

N 

N/2 

L 
k=-N/2 

- 21'1'"ikn 

C(k)e---W- (0:::; n:::; N) 

For the more common case of non-periodic data, a good 
approximation can be obtained by applying a leveling 
procedure to compute the slope [GP93]. The leveling 
procedure subtracts a line having the mean slope of the 
samples (x~Z~~)~O», finds the slope g of this leveled 
function, and then adds the mean slope to each g(n). 

The frequency domain filter H(k) defines the fre
quency response for the ideal slope calculation. The 
magnitude is linearly proportional to the frequency ;T' 
indicating that the slope calculation is very sensitive to 
high frequencies. Since in real data the high frequencies 
are most affected by noise and aliasing, it is necessary to 
control this sensitivity. 

Analysis of the Center Difference Method 

The center difference method estimates the slope of a 
one-dimensional function along each axis using only the 
two samples adjacent to the point at which the slope is 
desired. 

For a one-<limensional signal x at point n the center 
difference is cx(n) = 4Xn+l- 4Xn-l . This is aconvo
lution of samples x( n) with the three element sequence 
hc(n) = [4,0, -4] , (n = -1 ,0, 1). 

The performance of this calculation in accurately esti
mating the slope can be analyzed by examining the fre
quency response of this filter. The DFf of the sequence 
gives the frequency response, which is 

~ ( e-27rik/N _ e27rik/N) 

k 
-isin27r

N 
(-!:!.. < k <!:!..) 

2 - - 2 

Figure 1 compares the frequency response of this fil
ter with the frequency response of the ideal slope filter 
(DFf method) discussed above. While the center differ
ence provides a good approximation of the ideal at lower 
frequencies, it shows a rapid fall off in response in the 
higher frequencies, corresponding to loss of response to 
fine detail in the resulting slope values. 

This fall off at higher frequencies has some desirable 
properties. Volume data (along with many other types of 
data) often contains noise and aliased energy. The ratio of 
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Figure 1: Center Difference Filter and Frequency Re
sponse Compared to Ideal 

this spurious energy to the actual signal is usually highest 
in the upper frequencies, where the sensitivity of the ideal 
filter is greatest. By attenuating the higher frequencies, 
artifacts caused by noise and aliasing can be reduced. 

The undesirable property of the center difference is 
that the frequency response is fixed. For data with little 
noise or aliasing, the center difference still removes fine 
detail in the data, resulting in a blurred appearance. 

An Adjustable Gradient Filter 

A gradient filter which could be adjusted in sensitivity 
to high frequencies would retain the desirable proper
ties of the center difference without undesired blurring. 
A simple spatial filter for gradient computation can be 
generated by truncation of the (infinite duration) impulse 
response of an ideal gradient filter. For a filter with M 
non-zero elements (even M, with M /2 elements to each 
side of the 0 center), this results in the filter : 

h,(n) = { 
for n =I 0 and - J.:{ :::; n :::; J.:{ 

o otherwise 
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Figure 2: Truncated Gradient Filter with Frequency Re
sponse 

Note that co~m = { - ~ for n odd 

for n even 

The convolution with the voxel data along a single axis 
direction (for example, in the x direction) is computed by 

M/2 

L ht ( -m)vi+m ,j ,k 
m=-M/2 

The resulting filter and its frequency response are 
shown in Figure 2 for the 7-element (M = 6) filter 
[0.333, -0.5,1,0, -1,0.5, -0.333]' Idealandcenterdif
ference frequency responses are shown for comparison. 

The large ripples throughout the frequency range due 
to the abrupt truncation of the filter must be dealt with in 
order to use this filter. Multiplying the filter by a window 
function (a function which gradually tapers off toward ° 
at the edges) can be used to reduce the effects of trunca
tion of the filter. The Kaiser window [Ant79, OS75] is 
particularly useful since it has an adjustable parameter Cl' 

(alpha) which controls how quickly it tapers off to zero 
at the edges. Hamming [Ham89] gives an example of the 
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Figure 3: Kaiser windows with different Cl' values 

use of the Kaiser window for a differentiation filtering 
problem in nuclear physics. 

A Kaiser window of N samples with parameter Cl' is 
computed as 

( ) 
_ Io(f3) 

Wo: n - Io(Cl') ( _!::!... < n < !::!...) 
2 - - 2 

where Io( x) is the order ° modified Bessel function 
[PFTV88] of x, and f3 is calculated from Cl' as 

Kaiser windows with values of Cl' near ° approximate a 
rectangular window, while increasing values of Cl' smooth 
the transition to ° at the edges of the window. When the 
Kaiser window is multiplied by the gradient filter, larger 
values of Cl' reduce ripple in the frequency response at 
the cost of attenuation of the higher frequencies. Fig
ure 3 shows Kaiser windows computed with three dif
ferent values of Cl'. Figure 4 shows the filters which 
result from multiplication of the truncated gradient filter 
by Kaiser windows with Cl' values of 4 .0, 8.0, and 16.0. 
At Cl' = 4.0, the ripples in the frequency response have 
been almost completely smoothed out, but the response 
to high frequencies is still quite good compared to the 
center difference (shown for comparison). 

By adjusting the Kaiser window parameter Cl', the re
sponse to higher frequencies can be adjusted to any degree 
desired. As can be seen in Figure 4, as the value of Cl' 

increases, the response of the filter to high frequencies 
decreases, approaching the response of the center differ
ence. If the noise and aliasing characteristics of the data 
can be estimated, a value of Cl' can be selected to optimize 
the gradient filter response. If sufficiently fast process
ing hardware is available. the rendering software could 
even allow a user to interactively adjust the value of Cl' to 
produce a satisfactory image. 
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Figure 4: Windowed Gradient Filters with Frequency Responses 

Results 

Figures 5 through 7 show images generated from two 
volume data sets. The images in the figures were gen
erated using ray casting techniques based on [Lev88]. 
The effect of the gradient filter on the level of detail visi
ble in the images would be similar using other rendering 
techniques. 

Comparison of the two images in figure 5 shows the 
difference in frequency response between the center dif
ference and the improved filter described above. Small 
details are noticeably more distinct in (b), generated using 
the improved filter, than in (a), generated using the center 
difference. The difference is especially noticeable on the 
inside of the torus, the area of greatest high frequency 
content. 

The torus which is the subject of these images is a 
256 x 256 x 128 voxel synthetic data set. Two sine wave 
signals were added to the surface of smooth torus such 
that the highest frequency components (on the inside of 
the torus) were at approximately 0.435 of the sampling 
frequency (0.87 ofNyquist) . The frequency of one of the 
sine waves varies around the minor radius of the torus 
from 0.435 to 0.145 of the sampling frequency, showing 
results in a range of frequencies. The torus was con-

volved with a low pass filter before sampling to eliminate 
most aliasing in the voxel data set. This data set was 
used to generate both images, the only difference being 
the method used to compute the gradient of the volume 
data in each image. In (a), the standard center difference 
method was used, while in (b) a 7 element gradient fil
ter was used (a = 4.0, filter values [0.1086, -0.3167, 
0.8964, 0, -0.8964, 0.3167, -0.1086]). The images 
were rendered at a resolution of 512 x 512 pixels; the re
sults after cropping background pixels are approximately 
450 x 330 pixels. 

Figure 6 shows four images of MRI data from a human 
brain (MRbrain), rendered at a resolution of 400 x 400 
pixels. The upper two images show approximately a 
quarter of the MRbrain data set towards the top and 
back of the head, while the lower two images show c\ose
up views generated using the same rendering parameters. 
In the images on the left the center difference was used 
for gradient computations. The same 7 element gradient 
filter used for the torus above was used for the images on 
the right. The greater response to high frequencies of the 
7 element gradient filter results in sharper contrast and 
better visibility of the smaller features on the surface in 
the images on the right when compared to the images on 
the left. 
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One difficulty with real world imagery is that noise 
and aliased energy is usually present to some extent in 
the high frequencies of volume data. The center differ
ence, by acting as a low pass filter, will remove much of 
the high frequency content and therefore reduce the ef
fects of noise and aliasing. The gradient filter described 
here improves this fixed capability by providing an ad
justable parameter (a) which can vary the response to 
high frequencies. Higher values of a result in greater 
attenuation of high frequencies, approaching the effect 
of the center difference, while lower values of a can be 
used to increase response to high frequencies when the 
presence of noise and aliased energy is not as great. 
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(a) Center Difference 

(b) 7 Element Filter 

Figure 5: Torus rendered using two different gradient computation techniques 
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(a) Center Difference (b) 7 Element Filter 

(c) Center Difference (d) 7 Element Filter 

Figure 6: MRbrain rendered using two different gradient computation techniques 

(a) et = 8.0 (b) et = 16.0 

Figure 7: MRbrain rendered with 7 element gradient filter, varying et values 
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