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Abstract 
Volumetric texturing is a method dedicated to 

modeling complex repetitive geometries, such as 
grass, fur or foliage, by storing a density and a local 
reflectance in voxels. It was introduced by Kajiya in 
1989 [KK89], who applied it to fur rendering. 

In this paper, we propose to extend the method to 
a more general and effective tool for complex repet
itive geometry modeling and rendering. Local re
flectance is modeled by a sufficiently generic and 
compact representation. Then, for efficiency and im
age quality, a multiscale representation of the volu
metric texture is used, which requires one to 'filter' 
the geometry represented by the texture. 

A wide class of complex objects can be repre
sented, and rendered efficiently with a cost linked 
to apparent complexity instead of data complexity. 
This is done with low aliasing, in a usual ray-tracing 
environment. 

Keywords: volumetric textures, complex geome
try, rendering. 

1 Introduction 
Complex repetitive geometries such as grass, hairs , 
foliage, fur, forest and so on are a major component 
of the natural world, very important for the real
ism of synthetic images, but hard to deal with in 
terms of explicit geometry. Many methods exist to 
model them, introducing more or less 3D effects de
pending on user needs and means, such as color or 
transparency mapping, mip-mapping [WiI83], bump 
mapping [Bli78 , Per85, Lew89], displacement map
ping [Co084, MKM89]' inverse displacement map
ping [PHL91, Tai92], filterable reflectance mapping 
[Fou92J, particle systems [Ree83, RB85], hypertex
tures [PH89]' volumetric textures [KK89, Shi92]. 

To replace geometry by a representation more 
adapted to the complexity, a method has to deal 
with two main problems: 

• generating most of the 3D effects: parallax, lo
cal illumination and blocking effects, 1 

• producing representative results at various 
scales while avoiding the aliasing due to the 
great amount of information visible in a pixel 
area. 

Two more general problems are: 

• to design a sufficiently general model: the user 
should not have to write additional code for 
each new kind of data. 

• to build the representation from the classical 
geometric data. 

This paper extends Kajiya's volumetric texture 
method in order to satisfy the four points listed 
above, in the following way: 
• Volumetric texture is a textural approach to sim
ulate geometry. This means that a sample of 'ma
terial' is built, and mapped upon a surface. The 
sample , called a texel, is a volume , which guaran
tees parallax and blocking 3D effects. A reflectance 
is stored in the volume's voxels, producing the local 
illumination 3D effect. Thus, volumetric texture is 
able to fully simulate geometry, generating all the 
3D effects. This solves the first problem explained 
above. 
• We describe in this paper how to get a multi-scale 
representation of a texel, inspired by mip-mapping 
techniques, with an octree encoding of the volume. 
This both avoids aliasing and saves a large amount 

IThat is to say apparent motion depending of the distance 
of the different parts of the objects, light reflection depend
ing on the local surfaces orientation, occlusion and shadowing 
depending of relative positions compared to light sources and 
observer. 
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of computation time, hence addressing to the second 
problem. 2 

• By using a sufficiently generic reflectance model, 
we can adapt the parameters to represent almost 
any sample of complex geometry, which is the third 
problem. 
• The fourth problem is a vast subject, which is in
dependent from texel representation and rendering. 
We focus here only on these two latter aspects. 

We present the volumetric texture method in sub
section 2.1. Some reflectance models are considered 
in subsection 2.2. 

We describe our extension in section 3: first, we 
present the multiscale data structure and algorithm. 
Then, we justify the choice of ellipsoid to model re
flectance in subsection 3.1, we explain how to com
pute the local reflectance using this primitive in sub
section 3.2, and finally we describe in subsection 3.3 
how to 'filter' it in order to achieve the multiscale 
representation. 

2 Previous Work 

2.1 Volumetric Textures 

As mentioned in section 1, Kajiya's volumetric tex
ture method is a textural approach : the complex 
geometry that has to be modeled covers a wide sur
face, as a thick skin (e.g. a lawn covering a hill , 
or fur on an animal). A sample of this geometry is 
built in a cubic reference volume, which is mapped 
over the surface similarly to a 2D texture (allowing 
deformations). The copies of the reference volume, 
named texels, are also deformed in height in order to 
stick to each other. 

The reference volume represents an area of space 
sampled into voxels, at a given resolution. Three 
kinds of information are stored in each voxel: a den
sity (which is in fact an isotropic probability of oc
clusion), and a 'memory' of the reflectance behavior 
of the geometry represented in this subarea, which 
can be separated into a generic reflectance model 
and a local orientation (a basis). 

In the implementation described in [KK89} for the 
purpose of rendering fur , the reflectance model is the 
same for the whole texel (it is an ad-hoc cylinder 
reflection model), and the local orientation (cylin
der axis) is equal to the height vector (hairs are 

2Multiscaling requires the ability to 'filter' the data. One 
has to consider that 'filtering' geometric data is an outstand
ing point , connected to the level of detail problem : color ele
ments of a 2D texture can be smoothed, because the apparent 
color is a linear function of color parameters, which is not the 
case for parameters like normals, positions, etc. 

. . 

straight in the reference volume, and the texels are 
'combed') . Therefore only the density has to be 
stored. Texels fit exactly with the bilinear patches 
of the underlying surface, and the vertical edges fol
low the surface's normals (which can be jittered or 
'combed') . Thus, texels are a trilinear deformation 
of the reference volume. 

The rendering is done by ray-tracing, which 
becomes a volumetric ray-tracer when a texel is 
crossed. The light and opacity accumulations are 
achieved by stratified sampling. The local illumina
tion causes the geometric illusion: the light will be 
reflected in a voxel as if a cylinder layed inside. 

Here are the principles of the rendering task: 
• A ray-tracer scans the scene with a succession of 
rays, which hit the surfaces. 
• When a surface is covered by a texel, the ray has 
to switch in 'volumetric mode' . This is done in the 
reference volume, after having computed the corre
sponding in and out points. The path in the refer
ence volume is approximated by a straight trajectory 
(the curvature of the rays in the texture space is ne
glected) , thus the volume can be crossed as usual. 
• The volumetric ray-tracer crosses the volume from 
front to back, multiplying transparencies and adding 
intensities (weighted by cumulated transparency). 
An area with density p crossed on a length L has 
a transparency e- rp .L , where the optical depth T 

converts density into attenuation (see [KK89)) . The 
final intensity collected through a wide inhomoge
nous area is so I = ""far (1/ . fl cur. e- rp .dL ) wnear DC' near . 

• The local illumination I/ oc is the product of the 
received light, the reflectance and the density. The 
reflectance indicates the amount of energy scattered 
from the light to the viewing direction, and is ob
tained from the reflectance model. 
• The received light is estimated by casting a 
shadow-ray towards the source, which only takes 
into account attenuation from the light source to the 
point (Iow-albedo hypothesis neglects multiple light 
reflections) 3 . 

It may be suggested that very efficient algorithms 
like [LL94} already exist for volumetric rendering, 
and are able to render tomographic data in a few sec
onds. In fact, they cannot be used here, because the 
volumetric rendering is done in a particular context: 
the volume is small but repeated and deformed , com
putations have to be done at each voxel to obtain 

3See [AW87] for volumetric ray-tracing, and [RT87] for all 
' interbleeding' volumetric effects in general case. 

4
.'· 

-; . Graphics Interface '95 



local illumination, and texels are just an element 
among a larger ray-traced scene. Anyway, the cost 
is not concentrated on the volume parsing itself. 

Shinya introduces in [Shi92] some ideas and ex
tensions (correlation between voxels content, cone
tracing to go through the volume), and especially 
the need of filtering the data to pre-compute infor
mation at any scale. 

Filtering is a matter of efficiency in two ways: it 
saves time by avoiding the oversampling needed to 
prevent aliasing, and it increases the quality by gen
erating adapted pre-computed data at the needed 
scale according to the apparent size. 
2.2 Reflectance Modeling 

Isolating and filtering the photometric aspect of a 
shape is linked to the problem of reflectance encod
ing, and therefore to anisotropy modeling: at low 
scale, the photometric behavior is much more im
portant than shape itself, so that a local surface can 
be simulated by a reflectance function . 

On the other hand , an arbitrary reflectance behav
ior can be modeled by a 'micro-geometry', which can 
be figured as a kind of 'crystallization' (the shape is 
too small to be seen except by its photometric behav
ior), where shapes could be spheres [Bli82]' cylinders 
[PF90], or less restrictive primitives. 

There are many other ways to model reflectance, 
of varying generality. The more general represen
tation is a full BDRF (Bi-Directional Reflectance 
Function), indicating how much light coming from 
a given direction reflects towards another given di
rection [CMS87], that can be tabulated, or encoded 
with harmonic functions . 

When reflectance is caused by microsurfaces, it 
can be represented by the local normal reparti
tion function. Fournier approximates it by a set of 
Phong-peaks. In [Fou92], he explains how to 'filter 
the geometry ' encoded by bump maps, and finally 
how to encode, map and filter reflectance on a sur
face . 

To choose a model, a compromise has to be found 
between generality requirement and memory con
straint. 

3 Multiscale Extension of Volumet
ric Text ures 

In this section, we develop our extension to volu
metric textures: we first present the multiscale texel 
data structure, and the changes to the rendering pro
cess. Then we present the local reflectance model, 

. , 
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and we discuss how to render it, and how to filter it 
in order to build the multiscale representation. 

Regarding 2D textures, multiscaling is achieved 
by methods such as mip-mapping [WiI83], which 
stores successively smoothed and reduced images of 
the texture, and chooses, while rendering, the one 
adapted to the apparent size (so that a pixel on 
screen corresponds roughly to an image pixel). Thus, 
2D textures can be rendered with low aliasing and 
at low cost. 

To adapt this idea to 3D data, we use an octree 
to store the reference volume. Octrees are already 
used by volumetric algorithms as a compact repre
sentation, constant areas being representable by few 
nodes (see [Sam90b, Sam90a]). We exploit them 
here for their multiscale ability (all nodes from root 
to locally useful size are kept), in addition to their 
compactness. 

Any voxel in the octree simulates the photometric 
local behavior (i.e. the 3D effects) of the object rep
resented in the texel: the voxel position gives the 
parallax, but the occlusion and the reflectance in 
each direction have to be encoded. We store the lo
cal density and a micro-primitive (described in 3.1) 
modeling the local reflectance. This primitive also 
modulates the opacity according to the direction. 

'Painting' in 3D the texel with the complex object 
sample fills the leaves of the octree. Higher levels are 
built by successive filterings (we will see in 3.3 how 
to sum the micro-primitives) . 

Like in [KK89], our texels are positionned on bilin
ear faces, with vertical edges following the normals 
at the four vertices. They are thus a trilinear defor
mation of the reference volume. We associate Phong 
col or coefficients to each texel. 

The texel rendering described in 2.1 is modified 
according to the multiscale data structure and to 
the reflectance encoding: 
• The ray-tracer is extended to become a minimal 
cone-tracer, able to indicate roughly the size of the 
pixel inverse projection on the intersected surface. 
This size is used to choose the right level in the oc
tree (the chosen voxel is a cubic area approximating 
a part of the ray conic area, so the filtering is not 
exact: a few aliasing remains or a blur appears, like 
for mip-mapping). 
• The octree is parsed recursively along the ray: the 
segment of ray inside a node is split until the re
quired or the minimal level is reached . 
• The local illumination is computed using the local 

4
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reflectance and density. The reflectivity is obtained 
from the micro-primitive and the directions of light 
and view (see 3.2); the local occlusion is obtained 
from the density, modulated by the micro-primitive. 

In our approach, cone tracing, texel mapping, tri
linear deformation, octree crossing and volume ren
dering are implemented in a usual way. We focus 
here only on the reflectance model, which allows one 
to implement the whole multiscale approach. 

Our requirements are therefore: 
• Specify a good primitive in terms of generality, 

computability, and filtering ability. This is the 
subject of section 3.1. 

• Render the primitive, i.e. evaluating the total 
amount of light reflected towards the eye by the 
primitive. This is detailed in section 3.2. 

• 'Filter' the primitive: the purpose is to build 
coarser representations of the geometry, ob
tained by summing the reflectance functions as 
explained in section 3.3. 

3.1 Choosing a Micro-Primitive 

Keeping a full BDRF is not useful here: anisotropy 
can be represented by the normal repartition func
tion since it is due to the microgeometry inside a 
voxel area. Such a function has to be itself described 
by only a few parameters, because of its storage in 
each voxel. Fournier [Fou92] Phong-peak decompo
sition is a good one, but is still too expensive for 
volumetric data. 

On the other hand, geometric primitives like 
sphere or cylindrical models are too specific. More
over, the light reflectance of a set of two cylinders 
has to be represented at coarser resolution by a sin
gle primitive, which cannot be a cylinder. (We have 
to keep in mind that although geometric, these prim
itives are used to define a normal repartition, more 
than a shape by itself, thus representing a class of 
shapes) . 

As a compromise, we have chosen our geometric 
primitives to be ellipsoids. This is less general than 
a least-square approximation of normal repartition, 
but it has enough degrees of freedom and is quite 
compact: with six parameters it can approximate 
at least a sphere, a cylinder (a long thin ellipsoid), 
a plane element (a very flat ellipsoid), and all other 
intermediary shapes . 

There are several ways of choosing these param
eters: two useful representations are a basis with 
three lengths, or the coefficients of a quadratic form . 
We chose to store the former, which is easier to use 

at construction time, and can quickly be converted 
to the latter representation. 

In fact, we need less than six parameters: as said 
before, the 'micro-primitive' is a kind of 'crystalliza
tion', a shape without size and position, which only 
purpose is to reflect the light. So a normalisation 
process is necessary to treat different shapes with 
the same weight during the rendering and filtering 
stages. We choose the mean apparent surface (the 
context is visibility), the mean being approximated 
by evaluating the apparent surface in the three axis 
directions. 

We show in section 3.3 that the photometric be
havior of a set of ellipsoids can reasonably be ap
proximated by an ellipsoid. 

As a remark, we have to keep in mind that 
we manipulate two different levels of shapes when 
drawing in the reference volume: the geometri
cal global shapes, which occupy many voxels (they 
can be themselve cylinders or ellipsoids), and the 
local micro-primitives stored in each voxel, which 
model microgeometry. For usual objects, the micro
primitive represents the geometrical contribution of 
the shape cli pped in a voxel . 

Anisotropic objects can be modeled as well, by us
ing a micro-primitive (the 'crystallization') more or 
less independent of the global shape, as shown in fig
ure 1. In the same way, roughness can be represented 
by increasing the variations of the local geometric 
contribution. 

1: scratched aluminium (single texel). The local 
primitives are concentric cylinders progressively smoothed t o 
spheres (left), or radial cylinders (right) . 'Cylinders' are mod
eled by thin long ellipsoids. 

3.2 Rendering the Primitives 

We have to compute the reflectance of a micro
primitive, that is to say the ratio of energy received 
from a light source and scattered towards the eye 
by the whole ellipsoid, according to the Phong local 
reflection model. 

The environmental interactions are solved by the 
volumetric ray-tracing, which evaluates the amount 
of incoming light, and accumulates illumination and 

Graphics Interface '95 



opacity along each ray. The local illumination emit
ted is lightxdensityxreflectance. The density is also 
modulated by the micro-primitive, according to its 
apparent surface in the ray direction. 

Evaluating the global reflection consists in sum
ming the BDRF, i.e . integrating the Phong reflec
tion model over the micro-primitive apparent sur
face. 

Integrating over conics seldom has an exact for
mulation. So we use a numerical scheme, sampling 
uniformly the apparent surface. 

The rectangle which bounds the apparent ellipse 
is obtained from the quadratic form of the ellipsoid. 
Only half of the ellipse surface needs to be sampled , 
since symmetrical points can be constructed at the 
same time. 

To evaluate the incoming light, a shadow-ray has 
to be casted towards light sources to test occulta
tions and collect attenuation. We consider the low
albedo hypothesis, so we just have to take care of 
the opacity on this path, the secondary reflections 
being omitted . 

One has to note that complicated opaque shapes 
are welcome: the more occluding the shapes, the 
quicker the computation . For instance only the sur
face of a solid object is visible, so even a fractal solid 
object looks like a surface (possibly discontinuous) 
to the eye. On the other hand, rays fully go through 
in an almost empty volume, and numerous shadow
rays will be launched from a spread material. 

3.3 Filtering the Primitives 

3.3.1 Intuitive Filtering 

Considerations on ellipsoids have to be done in the 
normal distribution dual space rather than in the 
geometric space, because local primitives are visible 
by their reflectance behavior rather than by their 
geometry. One has to remember that behaviors that 
seem approximately correct geometrywise often lead 
to incorrect behaviors in the normals space. 

The sum of the normal repartition of two ellip
soids looks not too different from an ellipsoid normal 
repartition, the approximation being the worst for 
orthogonal ellipsoids, but not too bad for primitives 
similar to each over. This is easy to illustrate in 2D 
(see figure 2) . 

For repeatedly filled volumes , the procedure is 
straight forward , e.g. grass can be modeled by cylin
ders, with fluctuating orientations. Successive filt er
ings of a lawn produces at the coarsest level (when 
the whole lawn is included in a single voxel) an ellip-

sum (or mean) of ellipsoids 
- in the normal apace: 
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Figure 3: Filtering geometry : At the coarsest level , a single 
primitive result of the successive filterings , and has to repre
sent the global reflectance of the whole texel. This can be 
verified with two examples. a lawn composed of repeated el
ements, and a wide cylinder composed of continous surface 
elements. 
soid oriented to the mean direction, and elongated 
according to the weakness of the variation. A wide 
cylinder is locally almost flat, so local primitives are 
planar pieces. Successive filterings produce a single 
quasi-cylinder local primitive at the coarsest level, 
as shown in figure 3. 

For non-repeatedly filled volumes, there is really 
an approximation: in 2D, filtering two orthogo
nal similar primitives by this method produces an 
isotropic reflectance. 

Blocking effects (i.e . occultation and shadowing) , 
which are lost with simple mapping techniques , are 
correctly dealt with by texels, in that a real 3D 
information is kept. But things degenerate under 
the voxel size, where photometry replaces geome
try: while filtering, the sum is purely geometric, 
without the notion of hidden objects, which become 
partly visible through the resulting reflectance func
tion. Again, things go well with repeatedly filled 
volumes, as auto-similarity persists while filtering 
(if there is no correlation between positions). Oth
erwise, there is a significant approximation, as no 
blocking effect occurs below the voxel size. This is 
connected to the fact that a normal repartition func
tion loses the position information, and thus forgets 
that a single normal may correspond to two different 
areas of a non-convex object, hiding each other. 

Another point concerns shadows: during succes-
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sive filterings, the density difference decreases be
tween voxels 'inside' or 'outside' objects. Thus den
sity tend to become uniformly low, producing the 
impression of diffuse shadows in haze more than one 
of shadows over solid objects. Although we have to 
be aware of these effects, in practice things behave 
relatively well. 

3.3.2 Defining Filtering 
As suggested before, adding ellipsoids consists in 
choosing the shape whose normal repartition func
tion is the closest to the sum of the normal re par
tition functions of the ellipsoids to be merged . In 
order to avoid a long least-square optimisation, we 
choose a direct way of computing this 'sum', which 
is reasonable as far as the primitive is simple. Nev
ertheless, there is no analytical solution when inte
grating upon ellipsoids, so an approximation has to 
be found. 

With the quadratic form Mt .Q .M = 1 associated 
to the ellipsoids, it is possible to write the expres
sion of the normal repartition function , which can 
be interpreted as the probability density I of having 
a normal N in a given direction . It is equal to the 
Jacobian of the bijection from the ellipsoid surface 
to the dual normal space on the Gaussian sphere: 
IQ(N) = det(Q-l )/(Nt .Q-l.N)2 
The problem is then to find Q with I Q closest to 
IQ l + I Q2· A study of I Q shows that things are 
'almost-additive ' with Q-l : with gQ- l = I Q, we 
have g). .Q-l = >" .gQ-l, so the sum of identic shapes 
is conservative. The Taylor series development of 
gQ~l + gQ"2l for two similar ellipsoids rotated of 0 

relative to one another is gQ~l+Q"2l + O(sin2(O)) . 
This confirms that we can obtain a good approxi
mation for low angles between ellipsoids. 

Thus, we define as the 'mean ellipsoid' the one 
which inverse quadratic form is the mean of inverse 
quadratic forms of the ellipsoids to merge. Of course, 
summed ellipsoids have to be weighted by their asso
ciated density : Q-l = I: Pi.Q; l / I: Pi. Quadratic 
forms are easily obtained from the geometric basis 
and lengths, corresponding to matrices R (orthogo
nal) and L (diagonal): Qi = Ri.L;2 . R~ . The basis 
and lengths of the resulting ellipsoid are recovered 
from the eigenvalues (ri = >..;2) and eigenvectors of 
Q. 

Figure 4 illustrates the successive filterings steps 
of the voxels: the series of pictures looks like the re
sult of successive smoothing operations on the orig
inal image, while they are the rendering of succes
sive geometry filterings, these filterings being pre-

computed at modeling time. 

volume and lower levels in the octree, down 
to On an Indigo2, the building costs 8 sec, and the ren
dering 20 sec for the first picture, 12 and 10 for the two next 
at resolution 444x444. 

4 Results 

To illustrate the 'geometric illusion' obtained with 
texels, we first show in figure 5 an example of com
plex data in a wide single texel (a typical 3D sample 
does not need to be so complicated !). 

Figure 5: garden-bushes, with various local primitives. (The 
texel is bounded by a frame, whose shadow is visible on the 
floor , itself slightly anisotropic .) 

The strange bushes-and-spheres image of figure 6 
illustrates the progressive filtering: bush texels at 
2563 resolution contain 2000 leaves; 50x500 texels 
are mapped on a plane. This is equivalent to a ge
ometric database of 50 million flattened spheres, or 
at least 400 million triangular facets . Despite only 
one ray per pixel, no aliasing appears. Computa
tion takes 14 minutes on an Indigo2 at resolution 
444x444. 

With the velvet image of figure 7, we can see 
anisotropic effects obtained by small repetitive ge
ometry: each hair locally obeys the Phong model , 
but depending on orientations we see accumulations 
of illuminated top of hairs (on the top of the hump) , 
or shadow at the base of hairs (on the right of the 
hump), in addition to the self-occlusion effect (equiv
alent to the phases of the moon) for each hair. The 
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Figure 6: 50x500 bushes and spheres (14 minutes). 

shadow on the left is a classical one, the light being 
on the right. 

The last three image pairs show various kinds of 
texels at resolution 1283 , and their mapping on a 
geometry composed of 100 to 1000 bilinear patches 
(when the texels are too near, voxels are sometimes 
individually visible). At video size, the computation 
takes between 5 and 20 minutes, a large part being 
taken by the computation of the intersection of the 
rays with the geometric patches. 
In the forest image (figure 8), we can see that the 
representation can be coarse: the level of details 
painted in the texel just has to fit the minimal dis
tance the user wants to assume. On the building 
image (figure 10), the reference volume shows that 
reflectance information can produce an illusion of 
high resolution (however, details finer than a voxel 
become transparent) . The furry torus of figure 9 il
lustrates a cyclic texel (like the lawn on figure 7). 
On the mapped image, some remaining aliasing is 
visible: the texels are deformed a lot in order to 
'comb' the hairs in a given direction. 

Comparatively, the famous Teddy Bear image il
lustrating Kajiya's paper needed the equivalent of 
a dozen CPU hours on an IBM 3090, at resolution 
1280x1024. 

Another method used for simulating repetitive ge
ometry are particle systems ([Ree83, RB85]) . The 
realism induced by the geometric complexity is also 
impressive, but rendering an image takes many 
hours, shading and shapes are specified by coding, 
and the rendering is hard to mix into a classical ray-

.. ' . ~ 
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traced scene. 
Color images and mpeg animations can be seen at 

our WWW address. 

5 Conclusion 
In this paper, we focused on modeling complex 
repetitive geometry efficiently, by extending Kajiya's 
approach of volumetric textures. We introduce a 
compact model which is able to generalize the local 
reflectance, and encode texels with octrees. Then we 
describe how to adapt the mip-mapping multiscale 
approach to volumes containing reflectance informa
tion, which requires one to filter it . 
This greatly extends the scope of this technique: 

• With adaptative rendering, and thus low cost, 
texels are able to produce information at many 
scales: from the level where the whole texel is 
seen in a single pixel to the level where a sin
gle voxel appears as a visible cube. Thus, texels 
can be used everywhere as a saving to repetitive 
geometry. Beyond acceleration, this makes af
fordable the computation of animation on very 
complicated scenes. 

• Using a quite generic reflectance primitive, a 
wide range of data can be modeled. 

• Avoiding most of the aliasing, texels can be seen 
as a way to correctly render small geometries. 
Moreover, this is done at low cost. 

• The concept of mapping 3D geometry on 3D ge
ometry is itself a useful way of designing com
plex scenes. 

• Anisotropy is available, as a simple side effect 
of the method. 

There are nevertheless some limits and drawbacks: 
• As a textural approach, volumetric texturing 

applies to repetitive patterns, and to surfaces 
on which the mapping can be performed with 
reasonable deformations. 

• It may seem natural to imbricate two 'geometric 
textures', or to put a real object and a texel on 
the same place, but this turns out to be hard to 
implement. 

• Mapping supposes no motion inside the pattern 
itself, otherwise the reference pattern has to be 
recomputed each time. 

• There is no perfectly precomputed data, as for 
classical 2D mip-map: a choice has to be made 
between blur and aliasing (or oversampling) in 
bad cases. However things are far better than 
with real repetitive small geometry! 

• Filtering does not handle blocking effects per
fectly, which may limit the scale of applicability 
in some cases. 

4 
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Figure 7: left: a lawn on 14 04 bilinear patches. The texel contains 16 blades of grass with a 
'V' section; its resolution is 12Bx 12Bx12B (compression 91%). right: velvet. Cylinders all 
orthogonal to the sur f ace cause a global anisotropy. 

Figure B: left: a single texel at 12Bx12Bx1 2B (compression 92\), designed to be seen from far 
away. right: mapping on a hill with 57B bilinear patches (23 minutes for rendering, including 
12 for patches intersection). 

Figure 9: left: hairs cyclically drawn in a 12Bx12Bx12B volume (compressed at 93%). The single 
texel rendering needs 3.5 minutes. right: mapping on a torus with 240 bilinear patches (12 
minutes) . 

Figure 10: left: texel with building elements at 12Bx12Bx12B resolution compressed at 92% 
( e lements are sometimes smaller than a voxel, becoming transparent). right: mapping on cubi c 
shapes (B1 bilinear patches, 14 minutes). 
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Future work will address improving the filtering 
techniques, and accelerating the rendering by es
timating reflection without numerical integration. 
Fine estimation of the correct voxel size to use at 
rendering time has to be done, in order to suppress 
the remaining aliasing without blurring the data. 
Moreover, the mapping refers to bilinear faces, which 
is quite limiting. The usual parametrizations used 
with other texture methods have to be adapted. 

And, of course, to obtain a useful productive tool, 
the implementation has to be completed with several 
volume initialisation methods, such as tomographic 
3D images, particles systems, script primitives de
scription, geometry sampling, procedural noise func
tions [Lew89) or hypertextures [PH89). 

6 Acknowledgements 

I would like to thank Sabine Coquillart, Anne Ver
roust, Jean-Marc Vezien, Philippe Decaudin and 
Xavier Provot for their helpful discussions, and their 
patient corrections of this paper. 

References 
[AW87] John Amanatides and Andrew Woo. A fast 

voxel traversal algorithm for ray tracing. In 
G . Marechal, editor, Eurographics '87, pages 3- 10. 
North-Holland, August 1987. 

[Bli78] 

[Bli82] 

James F. Blinn . Simulation of wrinkled surfaces. 
In Computer Graphics (SIGGRAPH '78 Proceed
ings), volume 12(3), pages 286- 292, August 1978. 

J . F. Blinn. Light reflection functions for simu
lation of clouds and dusty surfaces. In Computer 
Graphics (SIGGRAPH '82 Proceedings), volume 
16(3), pages 21- 29, July 1982. 

[CMS87] Brian Cabral, Nelson Max, and Rebecca Spring
meyer. Bidirectional reflection functions from sur
face bump maps . In Maureen C. Stone, edi
tor, Computer Graphics (SIGGRAPH '87 Pro
ceedings), volume 21(4), pages 273- 281 , July 1987. 

[Coo84] Robert L. Cook. Shade trees. In Hank Chris
tiansen, editor, Computer Graphics (SIGGRAPH 
'84 Proceedings) , volume 18, pages 223- 231, July 
1984. 

[Fou92] Alain Fournier. Normal distribution functions and 
multiple surfaces . In Graphics Interface '92 Work
shop on Local Illumination, pages 45- 52 , May 
1992. 

[KK89] James T. Kajiya and Timothy L. Kay. Render
ing fur with three dimensional textures. In Jeffrey 
Lane, editor, Computer Graphic8 (SIGGRAPH 
'89 Proceedings) , volume 23(3) , pages 271- 280, 
July 1989. 

[Lew89] John-Peter Lewis. Algorithms for solid noise syn
thesis. In Jeffrey Lane , editor, Computer Graph
ics (SIGGRAPH '89 Proceedings), volume 23(3), 
pages 263- 270, July 1989. 

.' . 

91 

[LL94] Philippe Lacroute and Marc Levoy. Fast volume 
rendering using a shear- warp factorization of the 
viewing transformation . In Andrew Glassner, ed
itor, Proceedings of SIGGRAPH '94 (Orlando , 
Florida, July 24-29, 1994), Computer Graphics 
Proceedings, Annual Conference Series, pages 451-
458. ACM SIGGRAPH, ACM Press, July 1994. 
ISBN 0-89791-667-0. 

[MiI88] Gavin S. P. Miller. From wire-frames to furry an
imals. In Proceedings of Graphics Interface '88, 
pages 138- 145, June 1988. 

[MKM89] F . Kenton Musgrave, Craig E . Kolb, and Robert S. 
Mace . The synthesis and rendering of eroded frac
tal terrains. In Jeffrey Lane, editor, Computer 
Graphics (SIGGRAPH '89 Proceedings), volume 
23(3), pages 41- 50, July 1989. 

[Per85] Ken Perlin. An image synthesizer. In B. A. Barsky, 
editor, Computer Graphics (SIGGRAPH '85 Pro
ceedings), volume 19(3), pages 287- 296, July 1985. 

[PF90] Pierre Poulin and Alain Fournier. A model for 
anisotropic reflection . In Forest Baskett , edi
tor, Computer Graphics (SIGGRAPH '90 Pro
ceedings), volume 24(4) , pages 273- 282, August 
1990. 

[PH89] Ken Perlin and Eric M. Hoffert. Hypertexture. 
In Jeffrey Lane, editor, Computer Graphics (SIG
GRAPH '89 Proceedings), volume 23(3), pages 
253-262, July 1989. 

[PHL91] J . W . Patterson , S. G. Hoggar, and J . R. Logie. In
verse displacement mapping. Computer Graphics 
Forum, 10(2):129-139, June 1991. 

[RB85] William T. Reeves and Ricki Blau. Approxi
mate and probabilistic algorithms for shading and 
rendering structured particle systems. In B. A. 
Barsky, editor, Computer Graphics (SIGGRAPH 
'85 Proceedings), volume 19(3), pages 313-322, 
July 1985. 

[Ree83] W. T . Reeves. Particle systems - a technique for 
modeling a class of fuzzy objects. ACM Trans. 
Graphics, 2:91- 108, April 1983. 

[RT87] Holly E. Rushmeier and Kenneth E . Torrance. The 
zonal method for calculating light intensities in the 
presence of a participating medium. In Maureen C. 
Stone, editor, Computer Graphics (SIGGRAPH 
'87 Proceedings), volume 21(4) , pages 293-302, 
July 1987. 

[Sam90a] Hanan Samet. Applications of Spatial Data Struc
tures. Addison-Wesley, Reading, Massachusetts, 
1990. 

[Sam90b] Hanan Samet. Design and Analysis of Spatial 
Data Structures. Addison-Wesley, Reading, Mas
sachusetts, 1990. 

[Shi92] 

[Tai92] 

[WiI83] 

Mikio Shinya. Hierarchical 3D texture. In Graph
ics Interface '92 Workshop on Local Illumination, 
pages 61- 67, May 1992. 

Frederic Taillefer. Fast inverse displacement map
ping and shading in shadow. In Graphics Interface 
'92 Workshop on Local Illumination, pages 53- 60, 
May 1992. 

Lance Williams. Pyramidal parametrics. In Com
puter Graphics (SIGGRAPH '83 Proceedings) , 
volume 17(3), pages 1- 11 , July 1983. 

4
·· .. '··'··· , 
;; .. Graphics Interface '95 


