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Abstract 
In an earlier paper we described an incremental 

boundary evaluation algorithm in which we were able to 
avoid the vast majority of explicit edge classifications ~ 
using an inference mechanism [13] . That algorithm only 
worked properly if the boundaries of the input and output 
solids were compact 2-manifolds. In this paper we lift those 
restrictions by describing modifications to that algorithm 
which allow input and output solids to be nonmanifold 
and/or only partially bounded. Both the original algorithm 
and the extended one described here allow solids bounded 
by portions of curved surfaces. 
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1.0 Introduction 
Solid Modeling has become an important tool in 

modern industrial design and manufacture. The ability to 
create and manipulate computer-based mathematical 
models of physically realizable solid objects saves industry 
time and money by allowing a variety of preliminary 
design options to be studied and simulations to be 
performed without constructing actual scale models. Many 
di fferent representations for solid models have been 
described [15]. Although it is becoming increasingly 
difficult to place solid modeling sys tems and their 
representations into simple categories, it is .generally 
acknowledged that two basic types of representatIOn are by 
far the most prevalent in systems : Constructive Solid 
Geometry (CS G) and Boundary Representations (BReps). 

A critical algorithm in any solid modeling system, 
whether it is internally based purely on BReps or some 
CSG-BRep combination, is the one which converts a CSG 
representation into the equivalent BRep. Basic boundary 
evaluation and merging algorithms have been known for 
some time [16]. In [13] we presented an algorithm for 
boundary evaluation based on inference of edge 
classifications, and we showed how it works for traditional 
bounded manifold solids. Here we extend this algorithm to 
admit unbounded solids with boundaries which are not 
necessarily manifold. 

By "nonmanifold" we mean solids with a well­
defined interior and exterior but with boundaries which are 
not 2-manifolds. Similarly when we say "partially 
bounded" , we mean well-defined solids, but ones which 
may have infinite volume and/or infinite surface area. In 
both nonmanifold and partially bounded cases we are 
dealing with r-sets [15]. That is, we do not imply by either 
nonmanifold or partially bounded that we are considering 
solids with extra (e.g., "dangling") or missing vertices, 

edges, or faces. . 
We are interested in nonmanifold solids and theIr 

representations for a variety of reasons . First, the CSG 
representation from which the BRep is to be de~ived 
describes an r-set whose boundary may not be 2-mamfold. 
We wish to guarantee that any solid representable in CSG 
can be represented using a BRep data structure capable of 
capturing all adjacency relationships (nonmanifold and 
otherwise) implied in the CSG tree. 

Second, even though a nonmanifold solid may not be 
strictly manufacturable, such a solid may be created in 
passing by the designer as an intermediate stage of the 
modeling process . A subsequent modeling operation may 
add or eliminate material , generating a solid whose 
boundary is 2-manifold. 

Third, it is convenient to generate and manipulate 
nonmanifold solids internally during the course of the 
boundary evaluation algorithm, for example when 
processing certain types of edge coincidences. Finally, it is 
common to have a 3-manifold solid whose boundary is not 
everywhere 2-manifold (cf., the hatched portion of the 
boundary in Figure 2(a». 

There are also a number of reasons for seeking a 
representation and boundary evaluation algorithm 
supporting partially bounded solids. First , CSG 
representations are ultimately general Boolean 
combinations of half-spaces. Most CSG-based systems only 
provide users with bounded primitives, but this is an 
artificial restriction . CSG representations will describe 
partially bounded solids if the half-spaces along with. t~e 
Boolean operations applied to them do not enclose a fmlte 
volume of space. As we argued above for nonmanifold 
solids, we wish to be able to describe in the BRep 
whatever is described in the CSG tree; hence we seek a 
BRep data structure capable of representing partially 
bounded solids and a boundary evaluation algorithm 
capable of .accepting and producing these unbounded 
representations of solids. . 

A second closely related motivation is that It 
becomes almost trivial to provide "user-defined primitives" 
(sometimes called "superprimitives") in a very natural way . 
Observe that if the boundary evaluator supports partially 
bounded solids, then there is no need internally for BRep 
templates for standard bounded primitives . That is, if a 
system developer wi shed to supply a standard set of simple 
bounded modeling primitives such as blocks and bounded 
cylinders, the instancing parameters could be immediately 
converted internally into the appropriate Boolean 
combination of half-spaces , and the boundary evaluator 
could then be invoked on thi s subtree. In this scenario, the 
bounded primitives are essentially viewed by the system as 
a macro since the internal algorithms know nothing of 
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entities other than half-spaces and Boolean operations. a 
course the macro definition could be saved and associated 
with the appropriate tree node, but this would only be used 
by the user interface to expedite subsequent design 
modifications. 

Now if a user wishes to extend the system by adding 
specialized modeling primitives commonly used in some 
application, he need only create a specialized set of 
macros . The resulting user-defined primitives could be 
made to look internally exactly like the standard system­
supplied primitives. Note that this also allows user-defined 
primitives to be represented with much smaller subtrees 
than would be possible by defining them in terms of 
standard system-supplied bounded primitives. This would 
help to minimize storage and computational requirements 
when using these primitives. 

We have demonstrated the feas ibility of thi s user­
defined primitive mechani sm by defining a general 
"convex rounded pocket" primitive which we used to 
generate the pockets in the familiar CAM-I ANC I 01 test 
part. 

A third motivation for the use of partially bounded 
solids relates to certain common modeling and di splay 
processes. When defining through holes, s lots , chamfers, 
and the like, it should be unnecessary for a designer to 
specify artificial limiting geometry. For example, there 
should be no need to provide a starting and stopping point 
for a cylinder which is to be used to drill a hole all the way 
through a part. Similarly, if a designer needs to generate a 
sectioned drawing of a part , we should not require a fully 
bounded solid to be defined and intersected with the part 
when in fact the designer is only concerned with a few 
critical sectioning surfaces (cf. Figure 9) . 

We shall not di scuss in thi s paper the algorithms for 
the basic geometric computations employed at a low level 
in the system. Specific details re lated to curve and surface 
representations as well as analytical algorithms such as 
intersections, the computation of differential quantities of 
curves and surfaces, and the determination of coincidence 
relationships between points, c urves and surfaces are 
transparent to the boundary eva luati on algorithm. Thi s 
algorithm makes appropriate requests th rough a black-box 
interface but has no knowledge of curve and surface 
representations or geometric algorithms. (We confess to 
one exception in Section 5.4 for which we do not yet have 
a good answer, however.) We have implemented, tes ted, 
and evaluated the boundary evaluation algorithm described 
he re usi ng a set of geo metri c re presentations and 
algorithms , the majority of which are described in [I , 10 -
12]. 

The remainder of thi s paper is organi zed as follows . 
In Section 2, we review previous work in thi s area. Section 
3 describes relevant aspects of the host system. We present 
in Section 4 the modification s to the basic a lgorithm 
described in [13] which are required to support nonmanifold 
input and output so lids. Simi larly , Section 5 describes 
those modifications necessary to support partially bounded 
solids. Finally, we summari ze in Section 6. 

2.0 Previous Work 
In [13] we surveyed a number of papers which 

described various algorithms for BRep-CSG conversion for 
tradition al manifo ld and bounded so lids [2-4 , 6-9 , 16]. 

Somewhat less has appeared dealing with nonmanifold 
boundary evaluation, and to our knowledge nothing has 
appeared on boundary evaluation for parti all y bounded 
solids in the sense that we mean. 

Hoffmann , et. al. di scuss the need to order line 
segments about a shared vertex on a plane and polygonal 
faces about a shared edge in space in order to represent 
properly nonmanifold faces and so lids. [7] The emphasis in 
that paper is on the complex issue of numerical reli ability . 
The argument is well-made that even within the relatively 
simple domain of planar polyhedra, ensuring robustness 
requires employing a mixture of numerical techniques and 
organizing the algorithm properly so as to minimi ze the 
possi bility of generating inconsistent answers to related but 
separate queries . The emphasis in thi s paper is not 
numerical reliability, rather on how an ex isting algorithm 
can be enhanced to support nonmanifo ld and parti a lly 
bounded solids. We do make a few general observations on 
numerical reliability later, but we attempt no exhaustive 
treatment of this important issue here. 

Rossignac and Requi c ha propose a modified 
constructive representation fo r describing objects of mixed 
dimensionality [18] . The emphasis in thei r work is the 
representation of dimensionally non- homogeneous objects 
which may have complex internal structure. 

Bound ary evaluation a lgorithms fo r pol yhedra l 
objects of mixed dimensionality have been described in [5 , 
14] . The genera l approac h involves a bottom- up 
intersecti on and incidence testing phase. fo llowed by a top­
down mergi ng operation. 

3.0 Background 
The algorithm to be described has been implemented 

in the geometri c modeler cryph being developed and used 
as a research and teaching tool at the University of Kansas . 
Cryph maintains a dual CSG-BRep representati on of solids 
in whi ch the two representations are intimately linked . For 
example, we can directly determine the set of faces which 
lie o n a given ha lf- space in the CSG tree, and we can 
directly query the half-space in the CSG tree on which a 
given BRep face lies. 

The CSG representation is stored as an Il-ary tree 
with intersection, union , and difference operators at non­
terminal nodes and unbounded half-spaces at the leaves. A 
BRep can be associated with each nonterminal node of the 
tree, although in practice usually only the top level BRep 
is mai ntai ned . 

The BRep is based on Weiler's Radial Edge data 
structure [19] . Among other things, thi s data structure 
exp lici tl y separates the concept of a use of a topologica l 
element fro m the element itself. As we shall see, thi s 
separati on is a natural match to the way we think about 
boundary evaluation, and it a ll ows the log ic in critical 
sections of the a lgorithm to be simplifi ed . We have 
extended it somewhat for thi s work to describe unbounded 
and parti ally bounded edges. For example, an unbounded 
edge on a strai ght line is represented as a self edge loop on 
the line. Further details on these modi ficati ons are provided 
in Section 5.1. 

Edge uses are ori ented so that the interior of a face 
is on the left as one walks along the edge use. Given two 
edge uses eu 1 and eu2 of a face J lying on a su rface s , 
writing eul-eu2 indicates that eu! stops at the vertex where 
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eu2 starts. euJ -eu2 defines an oriented curvilinear wedge 
(or "sector") on s inside of which f lies . The curvilinear 
wedge is called the neighborhood defined by euJ -eu2 and 
is written as N(euJ,eu2). Each edge use, eu, points to the 
use on the immediately adjacent face (radial(eu)) as well 
as the use on the other side of the face to which it belongs 
(mate(eu )). 

Connected faces are bounded by one or more 
compatible loops of adjacent edge uses. Two loops on a 
surface are said to be compatible if there is a path on the 
surface from an edge use on one loop into its local 
neighborhood which arrives at an edge use of the other loop 
on the side of its local neighborhood such that the path 
does not cross any edge in either loop. On surfaces of genus 
zero, two compatible loops will always form a well-defined 
(but possibly unbounded) connected face. Though 
symmetrical, compatibility is not a transitive relationship. 

An edge lying on one of the solids input to the 
boundary evaluation algorithm is called a self edge (SE). A 
new edge arising from the intersection of a face on one 
operand with a face of the other is called a cross edge (CE). 
If a CE is also an SE, we call it a CESE . We shall use 
"pure CE" or "pure SE" when describing edges which are 
not CESEs. 

It is well known that it suffices to implement the 
regularized Boolean intersection operation if we have a 
unary complement operator. Using the Radial Edge data 
structure [19], the complement operation requires only 
pointer modifications, hence this adds little overhead to the 
overall algorithm. We therefore develop the algorithm 
assuming only regularized intersections are being 
performed, but for clarity we use union, intersection, and 
difference operations when showing sample geometry in 
figures. 

Our basic algorithm for computing the solid C from 
the intersection of given solids A and B is based on the 
standard generate-and-test paradigm: Generate sets of 
faces , edges, and vertices known to contain all those of C, 
then test each member of the three sets to determine which 
ones belong to the boundary of C [16] . It is both sufficient 
and computationally expedient to focus on edges, inferring 
faces and vertices in the process. If an edge is completely 
surrounded either by solid material or by air, then it is not 
on the boundary; otherwise it is . Explicit edge 
classification is the process of characterizing this 
neighborhood of an edge and subsequently concluding 
whether it is part of the boundary of C. 

Explicit edge classification is an expensive process, 
hence we have developed our algorithm so as to avoid the 
vast majority of the edge classifications which would 
normally be required. We need only resort to explicit 
determination and analysis of edge neighborhoods fa' 
CESEs [13]. 

The essence of our basic algorithm for computing (C 
= A (") B) proceeds as follows. More complete details are 
presented in [13]. 
I. If A and/or B is the empty solid, then generate C 

tri vially and exit. 
2. Partition SEs of A at their points of intersection with 

faces of B . 
3. Partition SEs of B at their points of intersection with 

faces of A . 
4. Compute and partition CEs, associating uses with 
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surfaces on A and B. 
5. Classify CESE uses discovered during step 4. 
6. Infer SE classifications, splitting and merging faces as 

appropriate. 
7. Check for split and/or merged shells. 

The remainder of the paper focuses on how this basic 
algorithm must be extended for nonmanifold and partially 
bounded solids. 

4.0 Nonmanifold Issues 
Portions of steps 4-6 of the basic algorithm reviewed 

in the previous section must be extended to allow 
nonmanifold input and output solids. Following a treatment 
of these extensions, we conclude by discussing 
nonmanifold vertex conditions. We shall see that some will 
be automatically represented without any additional effort, 
while others must be explicitly sought. 

4.1 Cross Edges on Tangent Intersection Curves 
An edge arising from the transverse intersection of a 

face ~rom A with one from B will be partly surrounded by 
matenal and partly surrounded by air (and hence will lie m 
C) regardless of the orientations of the two faces involved. 
However if the edge lies on a tangent intersection curve 
(i.e., one along which the two underlying surfaces have 
parallel normal vectors), then special consideration is 
required. If the input and output solids are known to be 
manifold, such intersections can be ignored [13] . Otherwise 
a cross edge is required on a portion of such a tangent 
intersection curve only if one of the following is true: 

A self edge occupies this interval of the curve. A CESE 
is recorded in this case, and modifications to the CESE 
sector analysis operation necessary to deal with this are 
discussed in Section 4.2. 
A nonmanifold edge will result. The logic required to 
determine if a new edge should be created (i.e., to 
determine if the result is locally nonmanifold) requires 
examination of local di fferential properties of the 
surfaces involved and is discussed in the remainder of 
this section. 

The portion of the algorithm charged with deciding if 
a new edge should be created is given a particular interval 
on an intersection curve to consider. The presence of a 
CESE on the given interval, if one existed, would have 
been detected by the algorithm prior to this stage. We are 
therefore free to assume here that no edge on either input 
solid occupies this portion of the curve. The logic required 
to determine . if a new edge should be created is essentially 
the same as that used for CESE sector analysis, but it can 
be greatly simplified since we know that no existing edges 
lie on the curve. That is, the neighborhoods of the tentative 
new CE with respect to A and B are determined solely by 
the local surface geometry as modified by face use 
orientation flags. 

We compute the outward pointing face use unit 
normal vectors nA and nB at the midpoint of the curve 
segment and then slice both surfaces with a plane passing 
through the midpoint and perpendicular to the curve 
tangent at the point. We compute certain local differential 
properties of the plane section curves, most notably 
(cA , K"A) and (CB,K"B), the unit curvature direction vectors 
and magnitudes. Observe that at most one of the curvature 
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magnitudes can be zero. Without loss of generality, we can 
assume that the roles of A and B have been assigned based 
on these local differential properties. In particular, we can 

assume that /(B ~ /(A . In the case that Iq] = /(A, then either 
(CA'CB<O) in which case it does not matter which assumes 
the role of B, or higher order derivatives can be employed 
in order to insure that B is the one which is bending the 
most at the common point. It is not difficult to see that a 
nonmanifold edge is only possible when the outward 
pointing face use norma Is are oppositely directed . This 
observation and the results of an exhaustive consideration 
of the remaining four possibilities (see Figure I) leads to 
the following simple pair of tests. 

if nk nB < 0 then 
if nB' CB > 0 then 

create a nonmanifold edge 

A 

nB.cA ____ -+-__ • nA. cB nA .cA ... __ + __ .. nB.cB 

(a) nB' CB<O: no edge (b) nB,cB>O: nonman. edge 

nB ____ -+-__ .. nA. cA. 
nA "'---f---. nB. cA. c 

(c) nB,cB<O: no edge (d) nB' CB>O: nonman. edge 

Figure i: Final Four Nonmanifold Neighborhood 
Possibilities 

In all other cases, the neighborhood of the current 
portion of the tangent intersection curve is either empty, 
full, or occupied by only one of A or B . Therefore no edge 
should be created in any of those other cases. 

Once we have decided that a nonmanifold edge is to 
be created, four edge use pairs are generated, two pairs for 
each of the two surfaces involved. The two edge use pairs 
assigned to a given surface are oppositely oriented. All that 
remains is to ensure that these new nonmanifold CEs are 
properly handled during the subsequent classification 
inference step. This will be discussed in Section 4.3 . 

A final related consideration involves the process of 
delimiting shells in step 7 of the basic algorithm. We wi sh 
to consider sets of faces which touch only along 
nonmanifold edges as separate shells . When visiting 
adjacent faces during delimiting of shells, we therefore 
wish to follow adjacencies by passing through so lid 
material instead of air. That is, when at an edge use eu , we 
select the face containing mate(radial(mate( eu ») instead 
of the one containing radial(eu). 

4.2 CESE Sector Analysis 
Recall that we classify a CESE by slicing both input 

solids with a plane passing through the midpoint of the 
CESE. If one or both of the input solids is nonmanifold 
along the CESE being examined, the required bookkeeping 
is fairly elaborate. Fortunately the nonmanifold problem 
can be reduced to a series of manifold ones. That is, given 
the ordered list of sectors around A and the ordered list of 
sectors around B: 

for each sector sB in B's sector list do 
for each sector sA in A's sector list containing 
onlyA do 

combine sA and sB 
replace sA with those resulting sec tors 
containing onlyA or AandB 
replace sB with those resulting sectors 
containing onlyB 

Once this has been accomplished, the sectors in A's 
list are quasi-disjoint from those in B's list, and the two 
ordered lists can be merged. Those sectors in the final 
merged li st which contain AandB bound portions of the 
possibly nonmanifold result, and edge use pairs are 
retained and/or created at the boundaries of these sectors. 
The appropriate radial ordering of the edge use pairs is 
determined by the ordering in the final merged list. 

4.3 Classification Inference 
We rely heavily on classification inference in the 

algorithm, and this operation is probably the most sensi tive 
to nonmanifold conditions. When more than two edges 
share a vertex on a face , there are multiple valid ways to 
connect the edge uses . Consider the example illustrated in 
Figure 2 where we are applying a fillet to a simple part. 

(a) Solid to be 
Filleted 

(c) Final Filleted 
Solid 

Figure 2: Rossignae and Requieha's Blending Problem 

The geometry of Figure 2 appeared in [17] as an 
example of a blend with a complex end condition. Here we 
focus on the hatched surface of Figure 2a and consider the 
possible adjacency rel ationships among the indicated 
edges. There are three options: (i) a single maximal face 
bounded by a single loop: eul-eu2-eu3-eu4-eu5-eu6-eu7, 
(ii) a single maximal face bounded by two loops touching 
at a vertex : euJ-eu2-eu3-eu7 and eu4-eu5-eu6, or (iii) two 
connected faces: one bounded byeul-eu2-eu3-eu7 and one 
bounded by eu4-eu5-eu6 . Anyone of these three choices is 
valid in that they unambiguously define the portions of the 
plane forming part of the boundary of the solid . 

In Figure 2b, we have positioned a solid to be used 
as a fillet and consider an intermediate stage of the 
boundary evaluation algorithm invoked in order to form the 
union of the part with the solid fillet. Edge uses eLl I and 
e u3 have been partitioned into eLl lA , e LlIB , e u3A , and 
eu3B . The algorithm determines that the new edge use euS 
connects so th at we get e Ll3A -eLlS-e Ll I B , and the edge 
inference mechanism then deduces that all edges between 
the attachment points must be killed (i.e., eu3B-... -euIA ). 
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The correct result in Figure 2c is generated only if the 
input topology is represented as described in (ii) or (iii) 
above. Edges eu4, e u5, and eu6 would be incorrectly 
deleted if the adjacencies of option (i) had been generated 
for the initial object. 

The generation of connected faces by the boundary 
evaluation algorithm is a sufficient condition for the proper 
operation of the classification inference logic . When 
multiple edge adjacencies are possible at a given vertex, 
we ensure that connected faces will be generated by 
establishing edge adjacencies which minimize the size of 
the neighborhood determined by pairs of edge uses . 
Referring to the example of Figure 3, suppose we generate 
eul-eu2 on a face , and we then discover that edge use eu3 
also stops at their common vertex. If eul lies in N( eu3,eu2) 
as in Figure 3a, then we preserve eul-eu2 . If instead eu3 
lies in N(eul,eu2) as in Figure 3b, we generate eu3-eu2. 

eu} eu2 eu3 

(a) eul in N(eu3,eu2) (b) eu3 in N(eul,eu2) 
Figure 3: Determining Edge Use Adjacencies 

The computational tools required are similar to those 
described for CESE analysis: curves on a surface must be 
ordered about a common point based first on tangents, then 
on higher order derivatives. 

Once the mechanism for determining proper edge 
use adjacencies has been established, the loop 
compatibility scheme for generating connected faces can 
be used exactly as described in [13]. For example, we 
determine that the CE on the closed curve on the shaded 
face of Figure 4 should connect before and after SEs lying 
on the ellipse which it touches, but that the edges on the 
other half of the ellipses should belong in a separate loop 
defining a separate connected face. 

Figure 4: Nonmanifoldface conditions on the union of two 
bounded right circular cylinders with a protruding pin. 

In section 4.1 we saw that two oppositely-oriented 
uses of the same nonmanifold edge can be assigned to a 
surface. Such pairs will be assigned to the same loop (and 
hence connected to one another) or to different loops based 
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on how they relate to the other edge uses on the surface. 
The process of minimizing the size of neighborhoods as 
just discussed produces the correct connectivities. Consider 
the example of Figure 5a in which the cylindrical through 
hole is tangent to the top face of the block. The two uses of 
the nonmanifold edge will be assigned to the same loop on 
the cylindrical face, but to different loops (and different 
connected faces) on the top plane of the block. If the 
cylinder went only part way into the block as in Figure 5b, 
then the two uses on the top plane would be adjacent to 
each other in the same loop. 

(a) A tangent through hole (b) A tangent blind hole 
Figure 5: Nonmanifold Edges 

When input faces are manifold, we are guaranteed 
that open strings of new CE uses will hit loops an even 
number of times . In each pair of hits, there is one where a 
CE use connects after an existing SE use, and one where a 
CE use (possibly the same one) connects before an 
existing SE use. The two SE uses will be different if the 
result is locally manifold, but may be the same if not. 

However when input faces are nonmanifold (i.e., 
when more than two edges share a vertex on the underlying 
surface as in Figure 6), it is possible for an open string of 
CE uses to bridge two loops, each loop being hit by a string 
of CE uses only once. If this situation arises, the 
classification inference mechanism must know to jump 
from one loop to another when deleting SE uses. The trick 
is to detect and handle thi s as efficiently as possible . It 
does not happen often, so we do not want to add lots of 
overhead to the algorithm and data structures if we can 
avoid it. 

euO -----. 

• 
(a) Delete euO, eul, eu2 (b) Delete euO, eul, eu4 

Figure 6: Processing nonmanifold vertices 

Recall that we infer OUT classifications for SE uses 
by traversing edge uses in loops between connection points. 
During this traversal, we determine at each vertex if the 
vertex is nonmanifold on the surface. If so, we must 
explicitly classify the next SE use which would normally 
have been deleted without any explicit classification. This 
will be a trivial classification, however, since the use 
either lies on a CESE (in which case its classification is 
already known), or it lies on a pure SE in which case a 
simple point-CSG tree classification suffices. That is , we 
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can classify a point in the interior of the SE with respect to 
the CSG tree describing the other operand. The result of 
this classification is the classification of the SE with 
respect to C 

As an example, consider the situations depicted in 
Figure 6. In Figure 6a, we have added the indicated new 
CE, and we are now in the midst of the subsequent 
inference and deletion phase. We have just deleted edge 
use eul, and we are about to delete eu2. Since their 
common vertex is nonmanifold, we explicitly classify eu2, 
verify that it is to be deleted, and then proceed with the 
deletion process. Now consider the variation in Figure 6b. 
Classification of eu2 tells us that it is to survive. Checking 
other edge uses leaving the common vertex, we find that 
eu4 (in a different loop and face) is the next edge use to be 
deleted. We connect eu2 to the predecessor of eu4 (i.e., 
eu3), and proceed with deletion by killing eu4 and its 
successors. If there are multiple choices for eu4, 
neighborhood analysis as discussed above allows us to pick 
the right one. This operation could be optimized try 
maintaining tags in vertex uses which would indicate 
whether the use is nonmanifold on the surface on which it 
lies instead of determining this condition algorithmically 
by using vertex-edge adjacency queries . 

4.4 Nonmanifold Vertices 
Candidate nonmanifold points are identified during 

edge partitioning (steps 2 and 3 of the basic algorithm) and 
during cross edge generation (step 4) . In most cases, no 
extra effort is required on the part of the boundary 
evaluation algorithm to capture the nonmanifold vertex 
condition. The normal operation of the algorithm will 
simply result in a vertex shared by locally distinct 
connected solids touching only at the nonmanifold vertex . 

For example, consider the edge partitioning step 
when an edge e from A intersects a face / from B at a 
single point P. P may be coincident with a vertex of /' it 
may lie in the interior of an edge of /, or it may lie strictly 
in the interior of f If P is at a vertex of /, e will be split 
into two edges , both of which share thi s vertex of /. If 
instead P lies in the interior of an edge of / , a new vertex 
will be created at this point and used to split both e and the 
edge of / involved. In either event, if this vertex turns out to 
be nonmanifold on C, the information recorded in the BRep 
during this process will indicate this. 

Figure 7: Nonmanifold vertex on a/ace 

If P lies strictly in the interior of /, however, 
additional work is required in the event the vertex turns out 
to be nonmanifold . (See, for example, Figure 7.) Either P is 
already a vertex v of e or we create a new vertex at P, call 
it v, and split e at v. We remember (v j), and add v to / as 
a nonmanifold single vertex loop if both e and / survive on 
'C and if no other edge on / references v. 

During cross edge generation (step 4 of the basic 
algorithm), we may discover a pair of surfaces which are 
tangent at one or more isolated points. These points may 
indicate nonmanifold conditions on the result. In a manner 
similar to that just discussed for SE partitioning, we can 
simply keep track of the point(s) of tangency (there is no 
need to create vertices yet) and the two surfaces involved. 
At the end of the algorithm, we can determine if 
nonmanifold single vertex loops should be created for such 
a point by determining if it lies in the interior of a face on 
each surface. 

When creating the preliminary minimal BRep on an 
unbounded surface, the standard approach is to create one 
shell with one face bounded by one single vertex loop. If 
the surface has a nonmanifold point, however, two or more 
such shells are generated which touch at a nonmanifold 
vertex lying at the nonmanifold surface point. The obvious 
example is a right circular cone in which two minimal 
shells are created. 

5.0 Unbounded Issues 
We begin by describing our extensions to the Radial 

Edge data structure which allow it to describe unbounded 
and partially bounded edges. Then we describe how 
classification inference is affected in loops with such 
edges. Next we describe how classification of points with 
respect to faces is affected when faces might have infinite 
area. Finally we discuss a difficult numerical issue which 
can arise on such faces . 

5.1 Data Structures 
The primary issue is the representation of unbounded 

and partially bounded edges . No special data structure 
consideration is required for partially bounded faces or 
partially bounded solids in the BRep. 

It is common to maintain loops of edge uses as 
doubly-linked circular lists. Having both "next" and 
"previous" pointers in this list is of course redundant, but it 
is common since it allows frequently occurring edge 
manipulation operations to be performed very efficiently. 

Edge uses occupying an entire closed curve are self­
edge loops; that is, their next and previous pointers are 
self-referential. We simply extend the notion of self-edge 
loops for unbounded and partially bounded edges. An edge 
occupying an entire straight line, for example, is simply a 
self-edge loop on the line. A loop referencing such an edge 
may be used to define a face occupying half of a plane. 

/ 
'\. / 

'V 
Figure 8: Two connecting partially bounded edge uses 

If an edge is bounded at one end (connecting to 
another edge use there) but unbounded at the other end , 
then a straightforward extension of thi s idea is used. 
Suppose two lines in a pl ane intersect at a distinct point, 
and consider the two rays on the lines determined by the 
intersection point (Figure 8). Edge use eu J starts at infinity 
on the first line and stops at vertex V; edge use eu2 starts 
at V and ends at infinity on the other line. The loop defined 
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by eul-eu2 determines a face covering a quarter of the 
plane. The "previous" pointer for eul is eul, and the "next" 
pointer for eu2 is eu2. Clearly this notion extends to loops 
defined by n edge uses eul-... -eun where eul and eun are 
partially bounded, and the others are fully bounded. Note 
that having both "next" and "previous" edge use pointers is 
no longer redundant using this scheme. 

Two unbounded edges on straight lines in different 
loops on a plane can define a face occupying an infinite 
strip of the plane. For example, Figure 9 illustrates an L­
Bracket being sectioned by portions of five planes. The five 
edges at the top and bottom of the planes are for 
visualization purposes only. The only actual edges on the 
sectioning geometry are the four unbounded vertical edges. 

(a) L-Bracket with .sec. tioning (b) 
L-Bracket after geometry consisting of . . . 

portions of 5 planes sectlOnmg operatIOn 
the 

Figure 9 

5.2 Classification Inference 
Recall that the basic classification inference scheme 

works by deleting SE uses in loops between points at which 
CE uses are attached. This involves remembering the SE 
use immediately following an SE after which a new string 
of CE uses is attached. In the example of Figure lOa, we 
attach the string of new CE uses CEul, ... ,CEuk so that 
CEul follows eu(j-l) and CEuk precedes eu(i+l) . In the 
process, we remember euj as the first SE use in a string of 
uses whose OUT classification will be inferred. After all 
new strings of CE uses have been added to the face, we 
begin deleting strings of edge uses beginning with each 
saved euj and stopping with the edge use prior to one to 
which a new CE has been connected. In the example of 
Figure lOa, edge uses euj, ... , eun, e u 1, ... , e ui will be 
deleted. 

~ ~ ~ 

Figure 10: Classification inference with unbounded edges 

If instead the face is unbounded as in Figure lOb, 
additional action is required since we can no longer get 
from eun to eul during the edge use deletion operation. An 
obvious solution is to detect that the first edge use of a 
loop is unbounded and then remember eu 1 at the same 
time we remember euj. However this is not a general 
solution as it will only work for simple situations such as 
that depicted in Figure lOb. If the new string of CE uses is 
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also unbounded, for example, then we will not want to 
delete the string of edge uses headed by eul. Alternatively 
if the new string of CE uses is oppositely oriented as in 
Figure 10c, then again we do not wish to delete the string 
of uses starting at eul, and in fact the standard inference 
mechanism as originally described generates the correct 
result. 

The "obvious solution" is almost the correct solution. 
We check to see if the first edge use of a loop into which a 
string of CE uses is added is unbounded. If so, we explicitly 
classify this leading unbounded edge use and remember it 
only if it is to be deleted. Just as with the explicit 
classification we required in Section 4.3, this classification 
adds negligible overhead. The edge use will either lie on a 
CESE, in which case its classification is already known, or 
it can be classified by a simple point-CSG tree 
classification. 

5.3 Point Classification 
Classification of points with respect to edges and 

related utilities such as generating points in the interior of 
edges are trivial for edges which are unbounded. For edges 
which are partially bounded, the logic is somewhat more 
complex than that for normal fully bounded edges, but 
fairly straightforward extensions to the usual logic can be 
implemented to deal with them. 

Classification of points with respect to faces is more 
difficult. The traditional approach is to shoot a rayon the 
surface from the point and either (i) count intersections 
with edges or (ii) compare the ray and edge use 
orientations at the closest edge use encountered. Neither of 
these approaches work properly when faces are allowed to 
be unbounded since one cannot conclude that a point is 
outside a face if the ray intersects no edges at all. One 
approach is to continue to generate and shoot rays until one 
finally hits an edge on a face. This can be expensive, 
however, since arbitrary rays on a surface require more 
complex intersection logic. 

(If faces lie only on natural quadrics, the rays can be 
restricted to lines and circles. Clearly the rays can always 
be circles on spheres. For cones and cylinders, choose as 
the initial ray a straight line. If it hits no edges, shoot a 
circular ray. If this also misses, we know that all points on 
the circle have the same classification as the original 
point, so we can proceed to shoot straight line rays through 
other points on this circle until we hit something. This 
rarely requires more than a couple of rays.) 

Rays on faces pass through vertices or are coincident 
with edges a surprisingly large number of times. This is 
probably due to the fact that we tend to construct regular 
shapes in regular orientations, and we often need to 
classify points which have fairly regular positions with 
respect to these vertices and edges. A related problem 
arises during display in that a surprisingly large number of 
silhouette curves pass through vertices and edges ill 

surfaces, again the predictable result of employing regular 
orthographic views of models. Different rays can be used 
for point classification, but as just noted, this can be 
expensive, and it does not solve the silhouette problem 
since the silhouette curve is not arbitrary . Therefore we 
attempt to determine an answer in these cases by explicitly 
examining vertex neighborhoods on surfaces. Our 
examination of vertex neighborhoods fails only if we 
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cannot locally orient the curve (e.g., at a nodal or cuspidal 
point on a space curve) or the surface (e.g., at the vertex of 
a cone). 

A promising approach for the general problem of 
classification of points with respect to faces is to develop 
methods for exploiting the presence of the dual CSG 
representation. What is required is a scheme for extracting 
from the CSG representation of the solid a CSG description 
for connected faces . General classification of points with 
respect to faces could then be reduced to the much simpler 
problem of classifying points with respect to CSG trees, 
and we would be able to finesse the problematic issues 
raised in the preceding paragraphs of this section. 

5.4 Numerical Issues Specific to Unbounded 
Geometry 
While the general issue of numerical reliability is 

not a focus of this paper, the use of unbounded half-spaces 
occasionally introduces difficult numerical problems which 
would not otherwise arise. We discuss such an example 
here and then make a few general remarks on numerical 
reliability in the summary. 

Consider a variation of the "convex rounded pocket" 
primitive mentioned in Section I which allows a draft 
angle to be specified. The internal representation differs 
only in that right circular cones are used instead of 
cylinders (see Figure 11). When the boundary evaluation 
algorithm is evaluating the solid corresponding to the 
intermediate union node, edges lying on cone rulings 
determined by plane-cone intersections meet edges lying 
on the cone-cone intersection curves at points very far 
away from the region occupied by the pocket itself. These 
connection points must be properly detected and 
represented even though they do not lie on the final solid. 
The edge classification inference logic which will be used 
when evaluating the final intersection node depends on 
proper connectivity of edges having been generated for this 
intermediate solid. In order to generate these connectivities 
properly, the algorithm currently relies in part upon 
classification of points with respect to faces . Differences 
between coordinates of points involved can easily be ten or 
more orders of magnitude, however, and it becomes 
impossible to find ray-edge intersection points reliably 
using normal methods. 

2n planes 

Figure 11: Three-level CSG tree for user-defined primitive 

In order to avoid the use of symbolic computations or 
other mechanisms for dramatically increasing the number 
of significant digits, we have worked around this problem 
for now by employing cone-specific logic. This is of course 
a crude hack which we must replace with a more general 
and consistent solution. One possibility is to employ the 

.. . " . ' . ~ 
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CSG representation of connected faces as mentioned in the 
previous section, thereby completing avoiding the normal 
method for classifying points with respect to faces. 

6.0 Summary 
We have described how our earlier boundary 

evaluation algorithm [13] which depended heavily upon 
inference of edge classifications can be extended to 
support solids which are nonmanifold and/or only partially 
bounded. We required explicit edge classifications in a 
coup le of additional situations, but these classifications 
added negligible overhead to the algorithm since the edge 
was either a CESE, in which case its classification was 
already known, or it was a pure SE, in which case a simple 
classification of a point with respect to the dual CSG tree 
of one of the input operands sufficed. 

We also identified some numerical difficulties 
associated with the low-level point-with-respect-to-face 
classification query. These difficulties provide motivation 
for the study of how CSG representations for connected 
faces can be derived directly from CSG representations of 
input solids since such representations would allow us to 
finesse these difficult problems. 

The focus of this work has been to consider how 
boundary evaluation algorithms based on edge 
classification inference could be extended to handle 
nonmanifold and partially bounded so lids. We have not 
attempted an exhaustive analysis of numerical reliability 
since this is largely an orthogonal issue. Numerical issues 
generally fall into two categories. The first relates to how 
reliably curves and surfaces can be intersected, especially 
in the presence of tangencies and other singularities. These 
issues are dealt with at a low level in curve and surface 
intersection and analysis packages. In our system , we 
employ a set of tools designed primarily using vector 
geometry techniques, and numerical reliability was a 
central consideration throughout the development of those 
tools [I, 10, 11, 12]. 

The other category of numerical issues involves 
queries posed independently, but which yield logically 
inconsistent answers. For example, at one stage of the 
algorithm we may conclude that two planar faces are 
coincident, but later conclude inconsistently that two linear 
edges on those faces are skew. We have not attempted an 
analysis of how well our algorithm operates with respect to 
these sorts of issues . We have evaluated reliability 
empirically in a number of ways. For example, we have 
used the well-known benchmark of intersecting a cube with 
an identical one rotated by small amounts about the x-, y-, 
and z-axes. Given a unit cube centered at the origin, our 
algorithm generates the correct intersection for rotations 
down to 0.26 degrees. Below this the algorithm fails . We 
tried an analogous test with a unit bounded cylinder 
centered on the origin. Our algorithm produced the correct 
results down to 0.19 degrees, failing at angles below that 
threshold. We believe that techniques for avoiding the sorts 
of inconsistent queries which give rise to the algorithmic 
fai lures mentioned could be added to this algorithm in a 
way which does not impact the methods which form the 
thrust of the work described here, namely the ability to 
evaluate and represent the BRep for nonmanifold and 
partially bounded solids. 

~
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