
187

Incremental Boundary Evaluation For
Nonmanifold Partially Bounded Solids

James R. Miller
Department of Electrical Engineering and Computer Science

University of Kansas
415 Snow Hall

Lawrence, KS 66045
email: miller@eecs .ukans.edu

Abstract
In an earlier paper we described an incremental

boundary evaluation algorithm in which we were able to
avoid the vast majority of explicit edge classifications ~
using an inference mechanism [13] . That algorithm only
worked properly if the boundaries of the input and output
solids were compact 2-manifolds. In this paper we lift those
restrictions by describing modifications to that algorithm
which allow input and output solids to be nonmanifold
and/or only partially bounded. Both the original algorithm
and the extended one described here allow solids bounded
by portions of curved surfaces.

Keywords: Solid Modeling, Boundary Evaluation ,
Constructive Solid Geometry, Partially Bounded Solids.

1.0 Introduction
Solid Modeling has become an important tool in

modern industrial design and manufacture. The ability to
create and manipulate computer-based mathematical
models of physically realizable solid objects saves industry
time and money by allowing a variety of preliminary
design options to be studied and simulations to be
performed without constructing actual scale models. Many
di fferent representations for solid models have been
described [15]. Although it is becoming increasingly
difficult to place solid modeling sys tems and their
representations into simple categories, it is .generally
acknowledged that two basic types of representatIOn are by
far the most prevalent in systems : Constructive Solid
Geometry (CS G) and Boundary Representations (BReps).

A critical algorithm in any solid modeling system,
whether it is internally based purely on BReps or some
CSG-BRep combination, is the one which converts a CSG
representation into the equivalent BRep. Basic boundary
evaluation and merging algorithms have been known for
some time [16]. In [13] we presented an algorithm for
boundary evaluation based on inference of edge
classifications, and we showed how it works for traditional
bounded manifold solids. Here we extend this algorithm to
admit unbounded solids with boundaries which are not
necessarily manifold.

By "nonmanifold" we mean solids with a well­
defined interior and exterior but with boundaries which are
not 2-manifolds. Similarly when we say "partially
bounded" , we mean well-defined solids, but ones which
may have infinite volume and/or infinite surface area. In
both nonmanifold and partially bounded cases we are
dealing with r-sets [15]. That is, we do not imply by either
nonmanifold or partially bounded that we are considering
solids with extra (e.g., "dangling") or missing vertices,

edges, or faces. .
We are interested in nonmanifold solids and theIr

representations for a variety of reasons . First, the CSG
representation from which the BRep is to be de~ived
describes an r-set whose boundary may not be 2-mamfold.
We wish to guarantee that any solid representable in CSG
can be represented using a BRep data structure capable of
capturing all adjacency relationships (nonmanifold and
otherwise) implied in the CSG tree.

Second, even though a nonmanifold solid may not be
strictly manufacturable, such a solid may be created in
passing by the designer as an intermediate stage of the
modeling process . A subsequent modeling operation may
add or eliminate material , generating a solid whose
boundary is 2-manifold.

Third, it is convenient to generate and manipulate
nonmanifold solids internally during the course of the
boundary evaluation algorithm, for example when
processing certain types of edge coincidences. Finally, it is
common to have a 3-manifold solid whose boundary is not
everywhere 2-manifold (cf., the hatched portion of the
boundary in Figure 2(a».

There are also a number of reasons for seeking a
representation and boundary evaluation algorithm
supporting partially bounded solids. First , CSG
representations are ultimately general Boolean
combinations of half-spaces. Most CSG-based systems only
provide users with bounded primitives, but this is an
artificial restriction . CSG representations will describe
partially bounded solids if the half-spaces along with. t~e
Boolean operations applied to them do not enclose a fmlte
volume of space. As we argued above for nonmanifold
solids, we wish to be able to describe in the BRep
whatever is described in the CSG tree; hence we seek a
BRep data structure capable of representing partially
bounded solids and a boundary evaluation algorithm
capable of .accepting and producing these unbounded
representations of solids. .

A second closely related motivation is that It
becomes almost trivial to provide "user-defined primitives"
(sometimes called "superprimitives") in a very natural way .
Observe that if the boundary evaluator supports partially
bounded solids, then there is no need internally for BRep
templates for standard bounded primitives . That is, if a
system developer wi shed to supply a standard set of simple
bounded modeling primitives such as blocks and bounded
cylinders, the instancing parameters could be immediately
converted internally into the appropriate Boolean
combination of half-spaces , and the boundary evaluator
could then be invoked on thi s subtree. In this scenario, the
bounded primitives are essentially viewed by the system as
a macro since the internal algorithms know nothing of

Graphics Interface '95

188

entities other than half-spaces and Boolean operations. a
course the macro definition could be saved and associated
with the appropriate tree node, but this would only be used
by the user interface to expedite subsequent design
modifications.

Now if a user wishes to extend the system by adding
specialized modeling primitives commonly used in some
application, he need only create a specialized set of
macros . The resulting user-defined primitives could be
made to look internally exactly like the standard system­
supplied primitives. Note that this also allows user-defined
primitives to be represented with much smaller subtrees
than would be possible by defining them in terms of
standard system-supplied bounded primitives. This would
help to minimize storage and computational requirements
when using these primitives.

We have demonstrated the feas ibility of thi s user­
defined primitive mechani sm by defining a general
"convex rounded pocket" primitive which we used to
generate the pockets in the familiar CAM-I ANC I 01 test
part.

A third motivation for the use of partially bounded
solids relates to certain common modeling and di splay
processes. When defining through holes, s lots , chamfers,
and the like, it should be unnecessary for a designer to
specify artificial limiting geometry. For example, there
should be no need to provide a starting and stopping point
for a cylinder which is to be used to drill a hole all the way
through a part. Similarly, if a designer needs to generate a
sectioned drawing of a part , we should not require a fully
bounded solid to be defined and intersected with the part
when in fact the designer is only concerned with a few
critical sectioning surfaces (cf. Figure 9) .

We shall not di scuss in thi s paper the algorithms for
the basic geometric computations employed at a low level
in the system. Specific details re lated to curve and surface
representations as well as analytical algorithms such as
intersections, the computation of differential quantities of
curves and surfaces, and the determination of coincidence
relationships between points, c urves and surfaces are
transparent to the boundary eva luati on algorithm. Thi s
algorithm makes appropriate requests th rough a black-box
interface but has no knowledge of curve and surface
representations or geometric algorithms. (We confess to
one exception in Section 5.4 for which we do not yet have
a good answer, however.) We have implemented, tes ted,
and evaluated the boundary evaluation algorithm described
he re usi ng a set of geo metri c re presentations and
algorithms , the majority of which are described in [I , 10 -
12].

The remainder of thi s paper is organi zed as follows .
In Section 2, we review previous work in thi s area. Section
3 describes relevant aspects of the host system. We present
in Section 4 the modification s to the basic a lgorithm
described in [13] which are required to support nonmanifold
input and output so lids. Simi larly , Section 5 describes
those modifications necessary to support partially bounded
solids. Finally, we summari ze in Section 6.

2.0 Previous Work
In [13] we surveyed a number of papers which

described various algorithms for BRep-CSG conversion for
tradition al manifo ld and bounded so lids [2-4 , 6-9 , 16].

Somewhat less has appeared dealing with nonmanifold
boundary evaluation, and to our knowledge nothing has
appeared on boundary evaluation for parti all y bounded
solids in the sense that we mean.

Hoffmann , et. al. di scuss the need to order line
segments about a shared vertex on a plane and polygonal
faces about a shared edge in space in order to represent
properly nonmanifold faces and so lids. [7] The emphasis in
that paper is on the complex issue of numerical reli ability .
The argument is well-made that even within the relatively
simple domain of planar polyhedra, ensuring robustness
requires employing a mixture of numerical techniques and
organizing the algorithm properly so as to minimi ze the
possi bility of generating inconsistent answers to related but
separate queries . The emphasis in thi s paper is not
numerical reliability, rather on how an ex isting algorithm
can be enhanced to support nonmanifo ld and parti a lly
bounded solids. We do make a few general observations on
numerical reliability later, but we attempt no exhaustive
treatment of this important issue here.

Rossignac and Requi c ha propose a modified
constructive representation fo r describing objects of mixed
dimensionality [18] . The emphasis in thei r work is the
representation of dimensionally non- homogeneous objects
which may have complex internal structure.

Bound ary evaluation a lgorithms fo r pol yhedra l
objects of mixed dimensionality have been described in [5 ,
14] . The genera l approac h involves a bottom- up
intersecti on and incidence testing phase. fo llowed by a top­
down mergi ng operation.

3.0 Background
The algorithm to be described has been implemented

in the geometri c modeler cryph being developed and used
as a research and teaching tool at the University of Kansas .
Cryph maintains a dual CSG-BRep representati on of solids
in whi ch the two representations are intimately linked . For
example, we can directly determine the set of faces which
lie o n a given ha lf- space in the CSG tree, and we can
directly query the half-space in the CSG tree on which a
given BRep face lies.

The CSG representation is stored as an Il-ary tree
with intersection, union , and difference operators at non­
terminal nodes and unbounded half-spaces at the leaves. A
BRep can be associated with each nonterminal node of the
tree, although in practice usually only the top level BRep
is mai ntai ned .

The BRep is based on Weiler's Radial Edge data
structure [19] . Among other things, thi s data structure
exp lici tl y separates the concept of a use of a topologica l
element fro m the element itself. As we shall see, thi s
separati on is a natural match to the way we think about
boundary evaluation, and it a ll ows the log ic in critical
sections of the a lgorithm to be simplifi ed . We have
extended it somewhat for thi s work to describe unbounded
and parti ally bounded edges. For example, an unbounded
edge on a strai ght line is represented as a self edge loop on
the line. Further details on these modi ficati ons are provided
in Section 5.1.

Edge uses are ori ented so that the interior of a face
is on the left as one walks along the edge use. Given two
edge uses eu 1 and eu2 of a face J lying on a su rface s ,
writing eul-eu2 indicates that eu! stops at the vertex where

Graphics Interface '95

eu2 starts. euJ -eu2 defines an oriented curvilinear wedge
(or "sector") on s inside of which f lies . The curvilinear
wedge is called the neighborhood defined by euJ -eu2 and
is written as N(euJ,eu2). Each edge use, eu, points to the
use on the immediately adjacent face (radial(eu)) as well
as the use on the other side of the face to which it belongs
(mate(eu)).

Connected faces are bounded by one or more
compatible loops of adjacent edge uses. Two loops on a
surface are said to be compatible if there is a path on the
surface from an edge use on one loop into its local
neighborhood which arrives at an edge use of the other loop
on the side of its local neighborhood such that the path
does not cross any edge in either loop. On surfaces of genus
zero, two compatible loops will always form a well-defined
(but possibly unbounded) connected face. Though
symmetrical, compatibility is not a transitive relationship.

An edge lying on one of the solids input to the
boundary evaluation algorithm is called a self edge (SE). A
new edge arising from the intersection of a face on one
operand with a face of the other is called a cross edge (CE).
If a CE is also an SE, we call it a CESE . We shall use
"pure CE" or "pure SE" when describing edges which are
not CESEs.

It is well known that it suffices to implement the
regularized Boolean intersection operation if we have a
unary complement operator. Using the Radial Edge data
structure [19], the complement operation requires only
pointer modifications, hence this adds little overhead to the
overall algorithm. We therefore develop the algorithm
assuming only regularized intersections are being
performed, but for clarity we use union, intersection, and
difference operations when showing sample geometry in
figures.

Our basic algorithm for computing the solid C from
the intersection of given solids A and B is based on the
standard generate-and-test paradigm: Generate sets of
faces , edges, and vertices known to contain all those of C,
then test each member of the three sets to determine which
ones belong to the boundary of C [16] . It is both sufficient
and computationally expedient to focus on edges, inferring
faces and vertices in the process. If an edge is completely
surrounded either by solid material or by air, then it is not
on the boundary; otherwise it is . Explicit edge
classification is the process of characterizing this
neighborhood of an edge and subsequently concluding
whether it is part of the boundary of C.

Explicit edge classification is an expensive process,
hence we have developed our algorithm so as to avoid the
vast majority of the edge classifications which would
normally be required. We need only resort to explicit
determination and analysis of edge neighborhoods fa'
CESEs [13].

The essence of our basic algorithm for computing (C
= A (") B) proceeds as follows. More complete details are
presented in [13].
I. If A and/or B is the empty solid, then generate C

tri vially and exit.
2. Partition SEs of A at their points of intersection with

faces of B .
3. Partition SEs of B at their points of intersection with

faces of A .
4. Compute and partition CEs, associating uses with

189

surfaces on A and B.
5. Classify CESE uses discovered during step 4.
6. Infer SE classifications, splitting and merging faces as

appropriate.
7. Check for split and/or merged shells.

The remainder of the paper focuses on how this basic
algorithm must be extended for nonmanifold and partially
bounded solids.

4.0 Nonmanifold Issues
Portions of steps 4-6 of the basic algorithm reviewed

in the previous section must be extended to allow
nonmanifold input and output solids. Following a treatment
of these extensions, we conclude by discussing
nonmanifold vertex conditions. We shall see that some will
be automatically represented without any additional effort,
while others must be explicitly sought.

4.1 Cross Edges on Tangent Intersection Curves
An edge arising from the transverse intersection of a

face ~rom A with one from B will be partly surrounded by
matenal and partly surrounded by air (and hence will lie m
C) regardless of the orientations of the two faces involved.
However if the edge lies on a tangent intersection curve
(i.e., one along which the two underlying surfaces have
parallel normal vectors), then special consideration is
required. If the input and output solids are known to be
manifold, such intersections can be ignored [13] . Otherwise
a cross edge is required on a portion of such a tangent
intersection curve only if one of the following is true:

A self edge occupies this interval of the curve. A CESE
is recorded in this case, and modifications to the CESE
sector analysis operation necessary to deal with this are
discussed in Section 4.2.
A nonmanifold edge will result. The logic required to
determine if a new edge should be created (i.e., to
determine if the result is locally nonmanifold) requires
examination of local di fferential properties of the
surfaces involved and is discussed in the remainder of
this section.

The portion of the algorithm charged with deciding if
a new edge should be created is given a particular interval
on an intersection curve to consider. The presence of a
CESE on the given interval, if one existed, would have
been detected by the algorithm prior to this stage. We are
therefore free to assume here that no edge on either input
solid occupies this portion of the curve. The logic required
to determine . if a new edge should be created is essentially
the same as that used for CESE sector analysis, but it can
be greatly simplified since we know that no existing edges
lie on the curve. That is, the neighborhoods of the tentative
new CE with respect to A and B are determined solely by
the local surface geometry as modified by face use
orientation flags.

We compute the outward pointing face use unit
normal vectors nA and nB at the midpoint of the curve
segment and then slice both surfaces with a plane passing
through the midpoint and perpendicular to the curve
tangent at the point. We compute certain local differential
properties of the plane section curves, most notably
(cA , K"A) and (CB,K"B), the unit curvature direction vectors
and magnitudes. Observe that at most one of the curvature

Graphics Interface '95

190

magnitudes can be zero. Without loss of generality, we can
assume that the roles of A and B have been assigned based
on these local differential properties. In particular, we can

assume that /(B ~ /(A . In the case that Iq] = /(A, then either
(CA'CB<O) in which case it does not matter which assumes
the role of B, or higher order derivatives can be employed
in order to insure that B is the one which is bending the
most at the common point. It is not difficult to see that a
nonmanifold edge is only possible when the outward
pointing face use norma Is are oppositely directed . This
observation and the results of an exhaustive consideration
of the remaining four possibilities (see Figure I) leads to
the following simple pair of tests.

if nk nB < 0 then
if nB' CB > 0 then

create a nonmanifold edge

A

nB.cA ____ -+-__ • nA. cB nA .cA ... __ + __ .. nB.cB

(a) nB' CB<O: no edge (b) nB,cB>O: nonman. edge

nB ____ -+-__ .. nA. cA.
nA "'---f---. nB. cA. c

(c) nB,cB<O: no edge (d) nB' CB>O: nonman. edge

Figure i: Final Four Nonmanifold Neighborhood
Possibilities

In all other cases, the neighborhood of the current
portion of the tangent intersection curve is either empty,
full, or occupied by only one of A or B . Therefore no edge
should be created in any of those other cases.

Once we have decided that a nonmanifold edge is to
be created, four edge use pairs are generated, two pairs for
each of the two surfaces involved. The two edge use pairs
assigned to a given surface are oppositely oriented. All that
remains is to ensure that these new nonmanifold CEs are
properly handled during the subsequent classification
inference step. This will be discussed in Section 4.3 .

A final related consideration involves the process of
delimiting shells in step 7 of the basic algorithm. We wi sh
to consider sets of faces which touch only along
nonmanifold edges as separate shells . When visiting
adjacent faces during delimiting of shells, we therefore
wish to follow adjacencies by passing through so lid
material instead of air. That is, when at an edge use eu , we
select the face containing mate(radial(mate(eu ») instead
of the one containing radial(eu).

4.2 CESE Sector Analysis
Recall that we classify a CESE by slicing both input

solids with a plane passing through the midpoint of the
CESE. If one or both of the input solids is nonmanifold
along the CESE being examined, the required bookkeeping
is fairly elaborate. Fortunately the nonmanifold problem
can be reduced to a series of manifold ones. That is, given
the ordered list of sectors around A and the ordered list of
sectors around B:

for each sector sB in B's sector list do
for each sector sA in A's sector list containing
onlyA do

combine sA and sB
replace sA with those resulting sec tors
containing onlyA or AandB
replace sB with those resulting sectors
containing onlyB

Once this has been accomplished, the sectors in A's
list are quasi-disjoint from those in B's list, and the two
ordered lists can be merged. Those sectors in the final
merged li st which contain AandB bound portions of the
possibly nonmanifold result, and edge use pairs are
retained and/or created at the boundaries of these sectors.
The appropriate radial ordering of the edge use pairs is
determined by the ordering in the final merged list.

4.3 Classification Inference
We rely heavily on classification inference in the

algorithm, and this operation is probably the most sensi tive
to nonmanifold conditions. When more than two edges
share a vertex on a face , there are multiple valid ways to
connect the edge uses . Consider the example illustrated in
Figure 2 where we are applying a fillet to a simple part.

(a) Solid to be
Filleted

(c) Final Filleted
Solid

Figure 2: Rossignae and Requieha's Blending Problem

The geometry of Figure 2 appeared in [17] as an
example of a blend with a complex end condition. Here we
focus on the hatched surface of Figure 2a and consider the
possible adjacency rel ationships among the indicated
edges. There are three options: (i) a single maximal face
bounded by a single loop: eul-eu2-eu3-eu4-eu5-eu6-eu7,
(ii) a single maximal face bounded by two loops touching
at a vertex : euJ-eu2-eu3-eu7 and eu4-eu5-eu6, or (iii) two
connected faces: one bounded byeul-eu2-eu3-eu7 and one
bounded by eu4-eu5-eu6 . Anyone of these three choices is
valid in that they unambiguously define the portions of the
plane forming part of the boundary of the solid .

In Figure 2b, we have positioned a solid to be used
as a fillet and consider an intermediate stage of the
boundary evaluation algorithm invoked in order to form the
union of the part with the solid fillet. Edge uses eLl I and
e u3 have been partitioned into eLl lA , e LlIB , e u3A , and
eu3B . The algorithm determines that the new edge use euS
connects so th at we get e Ll3A -eLlS-e Ll I B , and the edge
inference mechanism then deduces that all edges between
the attachment points must be killed (i.e., eu3B-... -euIA).

Graphics Interface '95

The correct result in Figure 2c is generated only if the
input topology is represented as described in (ii) or (iii)
above. Edges eu4, e u5, and eu6 would be incorrectly
deleted if the adjacencies of option (i) had been generated
for the initial object.

The generation of connected faces by the boundary
evaluation algorithm is a sufficient condition for the proper
operation of the classification inference logic . When
multiple edge adjacencies are possible at a given vertex,
we ensure that connected faces will be generated by
establishing edge adjacencies which minimize the size of
the neighborhood determined by pairs of edge uses .
Referring to the example of Figure 3, suppose we generate
eul-eu2 on a face , and we then discover that edge use eu3
also stops at their common vertex. If eul lies in N(eu3,eu2)
as in Figure 3a, then we preserve eul-eu2 . If instead eu3
lies in N(eul,eu2) as in Figure 3b, we generate eu3-eu2.

eu} eu2 eu3

(a) eul in N(eu3,eu2) (b) eu3 in N(eul,eu2)
Figure 3: Determining Edge Use Adjacencies

The computational tools required are similar to those
described for CESE analysis: curves on a surface must be
ordered about a common point based first on tangents, then
on higher order derivatives.

Once the mechanism for determining proper edge
use adjacencies has been established, the loop
compatibility scheme for generating connected faces can
be used exactly as described in [13]. For example, we
determine that the CE on the closed curve on the shaded
face of Figure 4 should connect before and after SEs lying
on the ellipse which it touches, but that the edges on the
other half of the ellipses should belong in a separate loop
defining a separate connected face.

Figure 4: Nonmanifoldface conditions on the union of two
bounded right circular cylinders with a protruding pin.

In section 4.1 we saw that two oppositely-oriented
uses of the same nonmanifold edge can be assigned to a
surface. Such pairs will be assigned to the same loop (and
hence connected to one another) or to different loops based

191

on how they relate to the other edge uses on the surface.
The process of minimizing the size of neighborhoods as
just discussed produces the correct connectivities. Consider
the example of Figure 5a in which the cylindrical through
hole is tangent to the top face of the block. The two uses of
the nonmanifold edge will be assigned to the same loop on
the cylindrical face, but to different loops (and different
connected faces) on the top plane of the block. If the
cylinder went only part way into the block as in Figure 5b,
then the two uses on the top plane would be adjacent to
each other in the same loop.

(a) A tangent through hole (b) A tangent blind hole
Figure 5: Nonmanifold Edges

When input faces are manifold, we are guaranteed
that open strings of new CE uses will hit loops an even
number of times . In each pair of hits, there is one where a
CE use connects after an existing SE use, and one where a
CE use (possibly the same one) connects before an
existing SE use. The two SE uses will be different if the
result is locally manifold, but may be the same if not.

However when input faces are nonmanifold (i.e.,
when more than two edges share a vertex on the underlying
surface as in Figure 6), it is possible for an open string of
CE uses to bridge two loops, each loop being hit by a string
of CE uses only once. If this situation arises, the
classification inference mechanism must know to jump
from one loop to another when deleting SE uses. The trick
is to detect and handle thi s as efficiently as possible . It
does not happen often, so we do not want to add lots of
overhead to the algorithm and data structures if we can
avoid it.

euO -----.

•
(a) Delete euO, eul, eu2 (b) Delete euO, eul, eu4

Figure 6: Processing nonmanifold vertices

Recall that we infer OUT classifications for SE uses
by traversing edge uses in loops between connection points.
During this traversal, we determine at each vertex if the
vertex is nonmanifold on the surface. If so, we must
explicitly classify the next SE use which would normally
have been deleted without any explicit classification. This
will be a trivial classification, however, since the use
either lies on a CESE (in which case its classification is
already known), or it lies on a pure SE in which case a
simple point-CSG tree classification suffices. That is , we

Graphics Interface '95

192

can classify a point in the interior of the SE with respect to
the CSG tree describing the other operand. The result of
this classification is the classification of the SE with
respect to C

As an example, consider the situations depicted in
Figure 6. In Figure 6a, we have added the indicated new
CE, and we are now in the midst of the subsequent
inference and deletion phase. We have just deleted edge
use eul, and we are about to delete eu2. Since their
common vertex is nonmanifold, we explicitly classify eu2,
verify that it is to be deleted, and then proceed with the
deletion process. Now consider the variation in Figure 6b.
Classification of eu2 tells us that it is to survive. Checking
other edge uses leaving the common vertex, we find that
eu4 (in a different loop and face) is the next edge use to be
deleted. We connect eu2 to the predecessor of eu4 (i.e.,
eu3), and proceed with deletion by killing eu4 and its
successors. If there are multiple choices for eu4,
neighborhood analysis as discussed above allows us to pick
the right one. This operation could be optimized try
maintaining tags in vertex uses which would indicate
whether the use is nonmanifold on the surface on which it
lies instead of determining this condition algorithmically
by using vertex-edge adjacency queries .

4.4 Nonmanifold Vertices
Candidate nonmanifold points are identified during

edge partitioning (steps 2 and 3 of the basic algorithm) and
during cross edge generation (step 4) . In most cases, no
extra effort is required on the part of the boundary
evaluation algorithm to capture the nonmanifold vertex
condition. The normal operation of the algorithm will
simply result in a vertex shared by locally distinct
connected solids touching only at the nonmanifold vertex .

For example, consider the edge partitioning step
when an edge e from A intersects a face / from B at a
single point P. P may be coincident with a vertex of /' it
may lie in the interior of an edge of /, or it may lie strictly
in the interior of f If P is at a vertex of /, e will be split
into two edges , both of which share thi s vertex of /. If
instead P lies in the interior of an edge of / , a new vertex
will be created at this point and used to split both e and the
edge of / involved. In either event, if this vertex turns out to
be nonmanifold on C, the information recorded in the BRep
during this process will indicate this.

Figure 7: Nonmanifold vertex on a/ace

If P lies strictly in the interior of /, however,
additional work is required in the event the vertex turns out
to be nonmanifold . (See, for example, Figure 7.) Either P is
already a vertex v of e or we create a new vertex at P, call
it v, and split e at v. We remember (v j), and add v to / as
a nonmanifold single vertex loop if both e and / survive on
'C and if no other edge on / references v.

During cross edge generation (step 4 of the basic
algorithm), we may discover a pair of surfaces which are
tangent at one or more isolated points. These points may
indicate nonmanifold conditions on the result. In a manner
similar to that just discussed for SE partitioning, we can
simply keep track of the point(s) of tangency (there is no
need to create vertices yet) and the two surfaces involved.
At the end of the algorithm, we can determine if
nonmanifold single vertex loops should be created for such
a point by determining if it lies in the interior of a face on
each surface.

When creating the preliminary minimal BRep on an
unbounded surface, the standard approach is to create one
shell with one face bounded by one single vertex loop. If
the surface has a nonmanifold point, however, two or more
such shells are generated which touch at a nonmanifold
vertex lying at the nonmanifold surface point. The obvious
example is a right circular cone in which two minimal
shells are created.

5.0 Unbounded Issues
We begin by describing our extensions to the Radial

Edge data structure which allow it to describe unbounded
and partially bounded edges. Then we describe how
classification inference is affected in loops with such
edges. Next we describe how classification of points with
respect to faces is affected when faces might have infinite
area. Finally we discuss a difficult numerical issue which
can arise on such faces .

5.1 Data Structures
The primary issue is the representation of unbounded

and partially bounded edges . No special data structure
consideration is required for partially bounded faces or
partially bounded solids in the BRep.

It is common to maintain loops of edge uses as
doubly-linked circular lists. Having both "next" and
"previous" pointers in this list is of course redundant, but it
is common since it allows frequently occurring edge
manipulation operations to be performed very efficiently.

Edge uses occupying an entire closed curve are self­
edge loops; that is, their next and previous pointers are
self-referential. We simply extend the notion of self-edge
loops for unbounded and partially bounded edges. An edge
occupying an entire straight line, for example, is simply a
self-edge loop on the line. A loop referencing such an edge
may be used to define a face occupying half of a plane.

/
'\. /

'V
Figure 8: Two connecting partially bounded edge uses

If an edge is bounded at one end (connecting to
another edge use there) but unbounded at the other end ,
then a straightforward extension of thi s idea is used.
Suppose two lines in a pl ane intersect at a distinct point,
and consider the two rays on the lines determined by the
intersection point (Figure 8). Edge use eu J starts at infinity
on the first line and stops at vertex V; edge use eu2 starts
at V and ends at infinity on the other line. The loop defined

Graphics Interface '95

by eul-eu2 determines a face covering a quarter of the
plane. The "previous" pointer for eul is eul, and the "next"
pointer for eu2 is eu2. Clearly this notion extends to loops
defined by n edge uses eul-... -eun where eul and eun are
partially bounded, and the others are fully bounded. Note
that having both "next" and "previous" edge use pointers is
no longer redundant using this scheme.

Two unbounded edges on straight lines in different
loops on a plane can define a face occupying an infinite
strip of the plane. For example, Figure 9 illustrates an L­
Bracket being sectioned by portions of five planes. The five
edges at the top and bottom of the planes are for
visualization purposes only. The only actual edges on the
sectioning geometry are the four unbounded vertical edges.

(a) L-Bracket with .sec. tioning (b)
L-Bracket after geometry consisting of . . .

portions of 5 planes sectlOnmg operatIOn
the

Figure 9

5.2 Classification Inference
Recall that the basic classification inference scheme

works by deleting SE uses in loops between points at which
CE uses are attached. This involves remembering the SE
use immediately following an SE after which a new string
of CE uses is attached. In the example of Figure lOa, we
attach the string of new CE uses CEul, ... ,CEuk so that
CEul follows eu(j-l) and CEuk precedes eu(i+l) . In the
process, we remember euj as the first SE use in a string of
uses whose OUT classification will be inferred. After all
new strings of CE uses have been added to the face, we
begin deleting strings of edge uses beginning with each
saved euj and stopping with the edge use prior to one to
which a new CE has been connected. In the example of
Figure lOa, edge uses euj, ... , eun, e u 1, ... , e ui will be
deleted.

~ ~ ~

Figure 10: Classification inference with unbounded edges

If instead the face is unbounded as in Figure lOb,
additional action is required since we can no longer get
from eun to eul during the edge use deletion operation. An
obvious solution is to detect that the first edge use of a
loop is unbounded and then remember eu 1 at the same
time we remember euj. However this is not a general
solution as it will only work for simple situations such as
that depicted in Figure lOb. If the new string of CE uses is

193

also unbounded, for example, then we will not want to
delete the string of edge uses headed by eul. Alternatively
if the new string of CE uses is oppositely oriented as in
Figure 10c, then again we do not wish to delete the string
of uses starting at eul, and in fact the standard inference
mechanism as originally described generates the correct
result.

The "obvious solution" is almost the correct solution.
We check to see if the first edge use of a loop into which a
string of CE uses is added is unbounded. If so, we explicitly
classify this leading unbounded edge use and remember it
only if it is to be deleted. Just as with the explicit
classification we required in Section 4.3, this classification
adds negligible overhead. The edge use will either lie on a
CESE, in which case its classification is already known, or
it can be classified by a simple point-CSG tree
classification.

5.3 Point Classification
Classification of points with respect to edges and

related utilities such as generating points in the interior of
edges are trivial for edges which are unbounded. For edges
which are partially bounded, the logic is somewhat more
complex than that for normal fully bounded edges, but
fairly straightforward extensions to the usual logic can be
implemented to deal with them.

Classification of points with respect to faces is more
difficult. The traditional approach is to shoot a rayon the
surface from the point and either (i) count intersections
with edges or (ii) compare the ray and edge use
orientations at the closest edge use encountered. Neither of
these approaches work properly when faces are allowed to
be unbounded since one cannot conclude that a point is
outside a face if the ray intersects no edges at all. One
approach is to continue to generate and shoot rays until one
finally hits an edge on a face. This can be expensive,
however, since arbitrary rays on a surface require more
complex intersection logic.

(If faces lie only on natural quadrics, the rays can be
restricted to lines and circles. Clearly the rays can always
be circles on spheres. For cones and cylinders, choose as
the initial ray a straight line. If it hits no edges, shoot a
circular ray. If this also misses, we know that all points on
the circle have the same classification as the original
point, so we can proceed to shoot straight line rays through
other points on this circle until we hit something. This
rarely requires more than a couple of rays.)

Rays on faces pass through vertices or are coincident
with edges a surprisingly large number of times. This is
probably due to the fact that we tend to construct regular
shapes in regular orientations, and we often need to
classify points which have fairly regular positions with
respect to these vertices and edges. A related problem
arises during display in that a surprisingly large number of
silhouette curves pass through vertices and edges ill

surfaces, again the predictable result of employing regular
orthographic views of models. Different rays can be used
for point classification, but as just noted, this can be
expensive, and it does not solve the silhouette problem
since the silhouette curve is not arbitrary . Therefore we
attempt to determine an answer in these cases by explicitly
examining vertex neighborhoods on surfaces. Our
examination of vertex neighborhoods fails only if we

Graphics Interface '95

194

cannot locally orient the curve (e.g., at a nodal or cuspidal
point on a space curve) or the surface (e.g., at the vertex of
a cone).

A promising approach for the general problem of
classification of points with respect to faces is to develop
methods for exploiting the presence of the dual CSG
representation. What is required is a scheme for extracting
from the CSG representation of the solid a CSG description
for connected faces . General classification of points with
respect to faces could then be reduced to the much simpler
problem of classifying points with respect to CSG trees,
and we would be able to finesse the problematic issues
raised in the preceding paragraphs of this section.

5.4 Numerical Issues Specific to Unbounded
Geometry
While the general issue of numerical reliability is

not a focus of this paper, the use of unbounded half-spaces
occasionally introduces difficult numerical problems which
would not otherwise arise. We discuss such an example
here and then make a few general remarks on numerical
reliability in the summary.

Consider a variation of the "convex rounded pocket"
primitive mentioned in Section I which allows a draft
angle to be specified. The internal representation differs
only in that right circular cones are used instead of
cylinders (see Figure 11). When the boundary evaluation
algorithm is evaluating the solid corresponding to the
intermediate union node, edges lying on cone rulings
determined by plane-cone intersections meet edges lying
on the cone-cone intersection curves at points very far
away from the region occupied by the pocket itself. These
connection points must be properly detected and
represented even though they do not lie on the final solid.
The edge classification inference logic which will be used
when evaluating the final intersection node depends on
proper connectivity of edges having been generated for this
intermediate solid. In order to generate these connectivities
properly, the algorithm currently relies in part upon
classification of points with respect to faces . Differences
between coordinates of points involved can easily be ten or
more orders of magnitude, however, and it becomes
impossible to find ray-edge intersection points reliably
using normal methods.

2n planes

Figure 11: Three-level CSG tree for user-defined primitive

In order to avoid the use of symbolic computations or
other mechanisms for dramatically increasing the number
of significant digits, we have worked around this problem
for now by employing cone-specific logic. This is of course
a crude hack which we must replace with a more general
and consistent solution. One possibility is to employ the

.. . " . ' . ~
. .

CSG representation of connected faces as mentioned in the
previous section, thereby completing avoiding the normal
method for classifying points with respect to faces.

6.0 Summary
We have described how our earlier boundary

evaluation algorithm [13] which depended heavily upon
inference of edge classifications can be extended to
support solids which are nonmanifold and/or only partially
bounded. We required explicit edge classifications in a
coup le of additional situations, but these classifications
added negligible overhead to the algorithm since the edge
was either a CESE, in which case its classification was
already known, or it was a pure SE, in which case a simple
classification of a point with respect to the dual CSG tree
of one of the input operands sufficed.

We also identified some numerical difficulties
associated with the low-level point-with-respect-to-face
classification query. These difficulties provide motivation
for the study of how CSG representations for connected
faces can be derived directly from CSG representations of
input solids since such representations would allow us to
finesse these difficult problems.

The focus of this work has been to consider how
boundary evaluation algorithms based on edge
classification inference could be extended to handle
nonmanifold and partially bounded so lids. We have not
attempted an exhaustive analysis of numerical reliability
since this is largely an orthogonal issue. Numerical issues
generally fall into two categories. The first relates to how
reliably curves and surfaces can be intersected, especially
in the presence of tangencies and other singularities. These
issues are dealt with at a low level in curve and surface
intersection and analysis packages. In our system , we
employ a set of tools designed primarily using vector
geometry techniques, and numerical reliability was a
central consideration throughout the development of those
tools [I, 10, 11, 12].

The other category of numerical issues involves
queries posed independently, but which yield logically
inconsistent answers. For example, at one stage of the
algorithm we may conclude that two planar faces are
coincident, but later conclude inconsistently that two linear
edges on those faces are skew. We have not attempted an
analysis of how well our algorithm operates with respect to
these sorts of issues . We have evaluated reliability
empirically in a number of ways. For example, we have
used the well-known benchmark of intersecting a cube with
an identical one rotated by small amounts about the x-, y-,
and z-axes. Given a unit cube centered at the origin, our
algorithm generates the correct intersection for rotations
down to 0.26 degrees. Below this the algorithm fails . We
tried an analogous test with a unit bounded cylinder
centered on the origin. Our algorithm produced the correct
results down to 0.19 degrees, failing at angles below that
threshold. We believe that techniques for avoiding the sorts
of inconsistent queries which give rise to the algorithmic
fai lures mentioned could be added to this algorithm in a
way which does not impact the methods which form the
thrust of the work described here, namely the ability to
evaluate and represent the BRep for nonmanifold and
partially bounded solids.

~
" ""--""

:;-. Graphics Interface '95

Acknowledgments
The author is indebted to Kevin Weiler for his

willingness during the early stages of this work to discuss
at length various aspects of his Radial Edge data structure,
particularly how representations of unbounded and partially
bounded edges might best fit into the overall philosophy of
the data structure. This work was supported in part by the
University of Kansas General Research Allocations #3143-
XO-OO38 and #3270-XO-OO38.

References
I. E. Chionh, R. N. Goldman, and J. R. Miller, Using

Multivariate Resultants to Find the Intersection of
Three Quadric Surfaces, A CM Transactions a1

Graphics, Vol. 10, No. 4, October 1991, pp. 378-400.
2 H. Chiyokura, Solid Modelling with DESIGNBASE:

Theory and Implementation, Addison-Wesley, 1988.
3. G. A. Crocker and W. F. Reinke, Boundary Evaluation

of Non-Convex Primitives to Produce Parametric
Trimmed Surfaces, Computer Graphics (Proceedings
SIGGRAPH '87), Vol. 21, No. 4, July 1987, pp 129-136.

4. G . A. Crocker and W. F. Reinke, An Editable
Nonmanifold Boundary Representation, IEEE Computer
Graphics and Applications, Vol. 11, No. 2, March 1991,
pp 39-51 .

5. E. L. Gursoz, Y. Choi, and F. B. Prinz, Boolean set
operations on non-manifold boundary representation
objects, Computer-Aided Design, Vol. 23, No. I ,
January/February 1991 , pp. 33-39.

6. C . M. Hoffmann, Geometric & Solid Modeling: An
Introduction, Morgan Kaufmann Publishers, Inc, 1989.

7. C. M. Hoffmann, J. E. Hopcroft, M. S. Karasick, Robust
Set Operations on Polyhedral Solids, IEEE Computer
Graphics and Applications, Vol. 9, No. 6, November
1989, pp. 50-59.

8. M. Mantyla, Boolean Operations of 2-Manifolds
Through Vertex Neighborhood Classification, ACM
Transactions on Graphics, Vol. 5, No. I, January 1986,
pp 1-29.

9. M. Mantyla, An Introduction to Solid Modeling,
Computer Science Press, Rockville, Maryland, 1988.

10. J . R. Miller, Geometric Approaches to Nonplanar
Quadric Surface Intersection Curves, A CM
Transactions on Graphics , Vol. 6, No. 4, October 1987,
pp. 274-307.

11. J. R. Miller and R. N. Goldman, Using Tangent Balls to
Find Plane Sections of Natural Quadrics, IEEE
Computer Graphics and Applications, Vol. 12, No. 2,
March 1992, pp. 68-82.

12 J . R. Miller and R. N. Goldman, Geometric Algorithms
for Detecting and Calculating All Conic Sections in
the Intersection of Any Two Natural Quadric Surfaces,
Computer Vision, Graphics, and Image Processing, Vol.
57, No. I, January 1995, pp. 55-66.

13. J. R. Miller, Incremental Boundary Evaluation Using
Inference of Edge Classifications, IEEE Computer
Graphics and Applications, Vol. 13, No. I, January
1993, pp. 71-78.

14. M. Muuss and L. Butler, Combinatorial Solid
Geometry, Boundary Representations, and n-Manifold
Geometry , in State of the Art in Computer Graphics:
Visualization and Modeling , Rogers and Earnshaw, ed.,
Springer Verlag, New York, 1991, p. 368.

. ' .

195

15. A. A. G. Requicha, Representations for Rigid Solids:
Theory, Methods, and Systems, ACM Computing
Surveys, Vol. 12, No. 4, pp. 437-464, December 1980.

16. A. A. G. Requicha and H. B. Voelcker, Boolean
Operations in Solid Modeling: Boundary Evaluation
and Merging Algorithms, Proceedings of the IEEE, Vol.
73, No. I , January 1985, pp. 30-44.

17. J. R. Rossignac and A. A. G. Requicha, Constant·
Radius Blending in Solid Modeling, Computers in
Mechanical Engineering. Vol. 3, No. I, July 1984, pp.
65-73.

18. J. R. Rossignac and A. A. G. Requicha, Constructive
Non-Regularized Geometry, CAD, Vol. 23, No. I ,
JanlFeb 1991, pp. 21-32.

19. K. J . Weiler, Topological Structures for Geometric
Modeling , Ph.D. Dissertation, Computer and Systems
Engineering, Rensselaer Polytechnic Insti tute, August
1986.

4
·· .. '···,

:-. ' Graphics Interface '95

